Skip to main content
Log in

Determination of thiol/disulphide homeostasis in type 1 diabetes mellitus and the factors associated with thiol oxidation

  • Endocrine Methods and Techniques
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

In this study, we aimed to examine dynamic thiol/disulfide homeostasis in type 1 diabetes mellitus (T1DM) and identify the factors associated with thiol oxidation. Thirty-eight subjects (18 male, 20 female) diagnosed with T1DM and 38 (17 male, 21 female) healthy volunteers without any known diseases were included in the study. Thiol/disulfide homeostasis concentrations were measured by a newly developed method (Erel & Neselioglu) in this study. After native thiol, total thiol and disulfide levels were determined; measures such as disulfide/native thiol, disulfide/total thiol, and native thiol/total thiol were calculated. In T1DM patients, compared to the control group, disulfide (p = 0.024), disulfide/native thiol (p < 0.001), and disulfide/total thiol (p < 0.001) were determined higher, while native thiol (p = 0.004) and total thiol (p < 0.001) levels were much lower. In the patient group, a positive correlation was determined between c-reactive protein (r = 325, p = 0.007; r = 316, p = 0.010, respectively), fasting blood glucose (r = 279, p = 0.018; r = 251, p = 0.035, respectively), and glycosylated hemoglobin (r = 341, p = 0.004; r = 332, p = 0.005, respectively) and rates of disulfide/native thiol and disulfide/total thiol. We determined that thiol oxidation increase in T1DM patients compared to the control group. We thought that hyperglycemia and chronic inflammation might be the major cause of increase in oxide thiol form. In order to determine the relationship between the status of autoimmunity and dynamic thiol/disulfide in T1DM, dynamic thiol/disulfide homeostasis in newly diagnosed-antibody positive-T1DM patients is required to be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Ates, N. Ozkayar, C. Topcuoglu, F. Dede, Relationship between oxidative stress parameters and asymptomatic organ damage in hypertensive patients without diabetes mellitus. Scand. cardiovasc. J 49(5), 249–256 (2015). doi:10.3109/14017431.2015.1060355

    Article  PubMed  Google Scholar 

  2. C.M. Cremers, U. Jakob, Oxidant sensing by reversible disulfide bond formation. J. Biol. Chem. 288(37), 26489–26496 (2013). doi:10.1074/jbc.R113.462929

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. F.Q. Schafer, G.R. Buettner, Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 30(11), 1191–1212 (2001)

    Article  PubMed  CAS  Google Scholar 

  4. O. Erel, S. Neselioglu, A novel and automated assay for thiol/disulphide homeostasis. Clin. Biochem. 47(18), 326–332 (2014). doi:10.1016/j.clinbiochem.2014.09.026

    Article  PubMed  CAS  Google Scholar 

  5. J.R. Winther, C. Thorpe, Quantification of thiols and disulfides. Biochim. Biophys. Acta 1840(2), 838–846 (2014). doi:10.1016/j.bbagen.2013.03.031

    Article  PubMed  CAS  Google Scholar 

  6. W.T. Friedewald, R.I. Levy, D.S. Fredrickson, Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18(6), 499–502 (1972)

    PubMed  CAS  Google Scholar 

  7. S.D. Rodrigues, G.B. Batista, M. Ingberman, R. Pecoits-Filho, L.S. Nakao, Plasma cysteine/cystine reduction potential correlates with plasma creatinine levels in chronic kidney disease. Blood Purif. 34(3–4), 231–237 (2012). doi:10.1159/000342627

    Article  PubMed  CAS  Google Scholar 

  8. E. Matteucci, O. Giampietro, Thiol signalling network with an eye to diabetes. Molecules 15(12), 8890–8903 (2010). doi:10.3390/molecules15128890

    Article  PubMed  CAS  Google Scholar 

  9. Y.M. Go, D.P. Jones, Cysteine/cystine redox signaling in cardiovascular disease. Free Radic. Biol. Med. 50(4), 495–509 (2011). doi:10.1016/j.freeradbiomed.2010.11.029

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Q.N. Dinh, G.R. Drummond, C.G. Sobey, S. Chrissobolis, Roles of inflammation, oxidative stress, and vascular dysfunction in hypertension. Biomed. Res. Int. 2014, 406960 (2014). doi:10.1155/2014/406960

    Article  PubMed  PubMed Central  Google Scholar 

  11. B.T. Kurien, R.H. Scofield, Autoimmunity and oxidatively modified autoantigens. Autoimmun. Rev. 7(7), 567–573 (2008). doi:10.1016/j.autrev.2008.04.019

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. S. Tangvarasittichai, Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes 6(3), 456–480 (2015). doi:10.4239/wjd.v6.i3.456

    Article  PubMed  PubMed Central  Google Scholar 

  13. E.L. Feldman, Oxidative stress and diabetic neuropathy: a new understanding of an old problem. J. Clin. Invest. 111(4), 431–433 (2003). doi:10.1172/JCI17862

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. I. Ates, M. Kaplan, B. Inan, M. Alısık, O. Erel, N. Yilmaz, S. Guler, How does thiol/disulfide homeostasis change in prediabetic patients? Diabetes Res Clin. Pract. (2015). doi:10.1016/j.diabres.2015.09.011

    PubMed  Google Scholar 

  15. E. Matteucci, G. Malvaldi, F. Fagnani, I. Evangelista, O. Giampietro, Redox status and immune function in type I diabetes families. Clin. Exp. Immunol. 136(3), 549–554 (2004). doi:10.1111/j.1365-2249.2004.02470.x

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. D. Darmaun, S.D. Smith, S. Sweeten, B.K. Sager, S. Welch, N. Mauras, Evidence for accelerated rates of glutathione utilization and glutathione depletion in adolescents with poorly controlled type 1 diabetes. Diabetes 54(1), 190–196 (2005)

    Article  PubMed  CAS  Google Scholar 

  17. P.M. Abuja, R. Albertini, Methods for monitoring oxidative stress, lipid peroxidation and oxidation resistance of lipoproteins. Clin. Chim. Acta 306(1–2), 1–17 (2001)

    Article  PubMed  CAS  Google Scholar 

  18. N.D. Vaziri, Causal link between oxidative stress, inflammation, and hypertension. Iran. J. Kidney Dis. 2(1), 1–10 (2008)

    PubMed  Google Scholar 

  19. D. Cai, T. Liu, Inflammatory cause of metabolic syndrome via brain stress and NF-κB. Aging 4(2), 98–115 (2012)

    PubMed  CAS  PubMed Central  Google Scholar 

  20. H.L. Pahl, Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18(49), 6853–6866 (1999). doi:10.1038/sj.onc.1203239

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ihsan Ates.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest

Funding

None

Statement of Human and Animal Rights

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institution and with the Declaration of Helsinki 2013 Brazil version)

Statement of Informed Consent

Informed consent was obtained from all patients for being included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ates, I., Kaplan, M., Yuksel, M. et al. Determination of thiol/disulphide homeostasis in type 1 diabetes mellitus and the factors associated with thiol oxidation. Endocrine 51, 47–51 (2016). https://doi.org/10.1007/s12020-015-0784-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-015-0784-6

Keywords

Navigation