Skip to main content

Advertisement

Log in

The methyl donor S-adenosylmethionine potentiates doxorubicin effects on apoptosis of hormone-dependent breast cancer cell lines

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

An Erratum to this article was published on 08 July 2016

Abstract

In this work, we have investigated the antiproliferative effect of AdoMet and Doxorubicin (Doxo), alone or in combination, on different breast cancer cell lines. For the evaluation of synergism, we have calculated the combination index (CI) by the Calcusyn software and we have evaluated the effects of the combination on apoptosis occurrence at FACS analysis in hormone-dependent CG5 cell line. We have found that AdoMet and Doxo given in combination were strongly synergistic in the hormone-dependent CG5 and MCF-7 human breast cancer cell line, as a CI50 < 0.5 was found after 72 h of treatment while the effect was only additive in hormone-independent MDA-MB 231 cells. On the basis of our results, we have selected a combination of AdoMet and Doxo, that was highly synergistic and we have found that the AdoMet in combination with Doxo increased apoptosis induced by Doxo alone, suggesting that the synergism on growth inhibition was largely due to apoptosis. Notably, the AdoMet/Doxo combination induced a significant activation of caspases 3, and 8, while no effect was found on caspase 9 cleavage. In contrast, no significant changes of the expression of cleaved caspase 8 and 9 were found in cells treated with AdoMet and Doxo alone. Moreover, the combination induced a significant increase of Fas and FasL expression. These results highlight the importance of the synergistic effect of AdoMet with Doxo in the regulation of hormone-dependent breast cancer cell proliferation and emphasize the anti-tumor activity of these molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AdoMet:

S-adenosyl-l-methionine

Doxo:

Doxorubicin

BSA:

Bovine serum albumin

FBS:

Fetal bovine serum

PI:

Propidium iodide

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

PBS:

Phosphate-buffered saline

HE:

Hydroethidine

MDC:

Monodansylcadaverine

CI:

Combination index

DRI:

Dose reduction index

SD:

Standard deviation

PF:

Potentiation factor

TNF:

Tumor necrosis factor

References

  1. L. Giacinti, P.P. Claudio, M. Lopez, A. Giordano, Epigenetic information and estrogen receptor alpha expression in breast cancer. Oncologist 11, 1–8 (2006)

    Article  CAS  PubMed  Google Scholar 

  2. W.L. McGuire, Hormone receptors: their role in predicting prognosis and response to endocrine therapy. Semin. Oncol. 5, 428–433 (1978)

    CAS  PubMed  Google Scholar 

  3. X. Yang, D.L. Phillips, A.T. Ferguson, W.G. Nelson, J.G. Herman et al., Synergistic activation of functional estrogen receptor (ER)-alpha by DNA methyltransferase and histone deacetylase inhibition in human ER-alpha-negative breast cancer cells. Cancer Res. 61, 7025–7029 (2001)

    CAS  PubMed  Google Scholar 

  4. R.G. Lapidus, S.J. Nass, N.E. Davidson, The loss of estrogen and progesterone receptor gene expression in human breast cancer. J Mammary Gland Biol. Neoplasia. 3, 85–94 (1998)

    Article  CAS  PubMed  Google Scholar 

  5. M. Widschwendter, P.A. Jones, DNA methylation and breast carcinogenesis. Oncogene 21, 5462–5482 (2002)

    Article  CAS  PubMed  Google Scholar 

  6. K. Polyak, Breast cancer: origins and evolution. J. Clin. Invest. 117, 3155–3163 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. R.G. Lapidus, S.J. Nass, K.A. Butash, F.F. Parl, S.A. Weitzman et al., Mapping of ER gene CpG island methylation-specific polymerase chain reaction. Cancer Res. 58, 2515–2519 (1998)

    CAS  PubMed  Google Scholar 

  8. A.P. Bird, CpG-rich islands and the function of DNA methylation. Nature 321, 209–213 (1986)

    Article  CAS  PubMed  Google Scholar 

  9. M. Fontecave, M. Atta, E. Mulliez, S-Adenosylmethionine: nothing goes to waste. Trends Biochem. Sci. 29, 243–249 (2004)

    Article  CAS  PubMed  Google Scholar 

  10. G.L. Cantoni, Biological methylation: selected aspects. Annu. Rev. Biochem. 44, 435–451 (1975)

    Article  CAS  PubMed  Google Scholar 

  11. J.M. Mato, F.J. Corrales, S.C. Lu, M.A. Avila, S-Adenosylmethionine: a control switch that regulates liver function. FASEB J. 16, 15–26 (2002)

    Article  CAS  PubMed  Google Scholar 

  12. S.C. Lu, J.M. Mato, Role of methionine adenosyltrasferase and S-adenosylmethionine in alcohol-associated liver cancer. Alcohol 35, 227–234 (2005)

    Article  CAS  PubMed  Google Scholar 

  13. M. Porcelli, G. Cacciapuoti, M. Cartenì-Farina, A. Gambacorta, S-Adenosylmethionine synthetase in the thermophilic archaebacterium Sulfolobus solfataricus. Purification and characterization of two isoforms. Eur. J. Biochem. 177, 273–280 (1988)

    Article  CAS  PubMed  Google Scholar 

  14. P. Chiang, R.K. Gordon, J. Tal, G.C. Zeng, B.P. Doctor, K. Pardhasaradhi, P.P. McCann, S-Adenosylmethionine and methylation. FASEB J. 10, 471–480 (1996)

    CAS  PubMed  Google Scholar 

  15. A.W. Struck, M.L. Thompson, L.S. Wong, J. Micklefield, S-Adenosylmethionine-dependent methyltransferases: highly versatile enzymes in biocatalysis, biosynthesis and other biotechnological applications. ChemBioChem 13, 2642–2655 (2012)

    Article  CAS  PubMed  Google Scholar 

  16. S.C. Lu, Regulation of glutathione synthesis. Mol. Asp. Med. 30, 42–59 (2009)

    Article  CAS  Google Scholar 

  17. A.E. Pegg, Recent advances in the biochemistry of polyamines in eukaryotes. Biochem. J. 234, 249–262 (1986)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. P.A. Frey, A.D. Hegeman, F.J. Ruzicka, The radical SAM superfamily. Crit. Rev. Biochem. Mol. Biol. 43, 63–88 (2008)

    Article  CAS  PubMed  Google Scholar 

  19. M. Sauter, B. Moffatt, M.C. Saechao, R. Hell, M. Wirtz, Methionine salvage and S-adenosylmethionine: essential links between sulfur, ethylene and polyamine biosynthesis. Biochem. J. 451, 145–154 (2013)

    Article  CAS  PubMed  Google Scholar 

  20. T. Bottiglieri, S-Adenosyl-l-methionine (SAMe): from the bench to the bedside-molecular basis of a pleiotropic molecule. Am. J. Clin. Nutr. 76, 1151S–1157S (2002)

    CAS  PubMed  Google Scholar 

  21. G.I. Papakostas, C.F. Cassiello, N. Iovieno, Folates and S-adenosylmethionine for major depressive disorder. Can. J. Psychiatry 57, 406–413 (2012)

    PubMed  Google Scholar 

  22. K.L. Soeken, W.L. Lee, R.B. Bausell, M. Agelli, B.M. Berman, Safety and efficacy of S-adenosylmethionine (SAMe) for osteoarthritis. J. Farm. Pract. 51, 425–430 (2012)

    Google Scholar 

  23. L. Gomez-Santos, M. Vazquez-Chantada, J.M. Mato, M.L. Martinez-Chantar, SAMe and HuR in liver physiology: usefulness of stem cells in hepatic differentiation research. Methods Mol. Biol. 826, 133–149 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Q.M. Anstee, C.P. Day, S-Adenosylmethionine (SAMe) therapy in liver disease: a review of current evidence and clinical utility. J. Hepatol. 57, 1097–1109 (2012)

    Article  CAS  PubMed  Google Scholar 

  25. S.C. Lu, J.M. Mato, S-Adenosylmethionine in liver health, injury, and cancer. Physiol. Rev. 92, 1515–1542 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. J.M. Mato, M.L. Martinez-Chantar, S.C. Lu, S-Adenosylmethionine metabolism and liver disease. Ann. Hepatol. 12, 183–189 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  27. N.M. Martinez-Lopez, M.V. Valera-Rey, U. Ariz, N. Embade, M.V. Vazquez-Chantada, D.F. Fernandez-Ramos, L.G. Gomez-Santos, S.C. Lu, M.L.M. Martinez-Chantar, S-Adenosylmethionine and proliferation: new pathways, new targets. Biochem. Soc. Trans. 36, 848–852 (2008)

    Article  CAS  PubMed  Google Scholar 

  28. T.W.H. Li, H. Yang, H. Peng, M. Xia, J.M. Mato, S.C. Lu, Effects of S-adenosylmethionine and metylthioadenosine on inflammation-induced colon cancer in mice. Carcinogenesis 33, 427–435 (2012)

    Article  PubMed  Google Scholar 

  29. E. Ansorena, E.R. García-Trevijano, M.L. Martínez-Chantar, Z.Z. Huang, L. Chen, J.M. Mato, M. Iraburu, S.C. Lu, M.A. Avila, S-Adenosylmethionine and methylthioadenosine are antiapoptotic in cultured rat hepatocytes but proapoptotic in human hepatoma cells. Hepatology 35, 274–280 (2002)

    Article  CAS  PubMed  Google Scholar 

  30. Z. Hussian, M.I. Khan, M. Shahid, F.N. Almajhdi, S-Adenosylmethionine, a methyl donor, up regulates tissue inhibitor of metalloproteinase-2 in colorectal cancer. Genet. Mol. Res. 12, 1106–1118 (2013)

    Article  Google Scholar 

  31. L. Chen, Y. Zeng, H. Yang, T.D. Lee, S.W. French, F.J. Corrales, E.R. García-Trevijano, M.A. Avila, J.M. Mato, S.C. Lu, Impaired liver regeneration in mice lacking methionine adenosyltransferase 1A. FASEB J. 18, 914–916 (2004)

    Article  CAS  PubMed  Google Scholar 

  32. H. Chen, M. Xia, M. Lin, H. Yang, J. Kuhlenkamp, T. Li, N.M. Sodir, Y.H. Chen, H. Josef-Lenz, P.W. Laird, S. Clarke, J.M. Mato, S.C. Lu, Role of methionine adenosyltransferase 2A and S-adenosylmethionine in mitogen-induced growth of human colon cancer cells. Gastroenterology 133, 207–218 (2007)

    Article  CAS  PubMed  Google Scholar 

  33. T.W. Li, Q. Zhang, P. Oh, M. Xia, H. Chen, S. Bemanian, N. Lastra, M. Circ, M.P. Moyer, J.M. Mato, T.Y. Aw, S.C. Lu, S-Adenosylmethionine and methylthioadenosine inhibit cellular FLICE inhibitory protein expression and induce apoptosis in colon cancer cells. Mol. Pharmacol. 76, 192–200 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. T.C. Chou, P. Talalay, Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv. Enzyme Regul. 22, 27–55 (1984)

    Article  CAS  PubMed  Google Scholar 

  35. T.C. Chou, R.J. Motzer, Y. Tong, G.J. Bosl, Computerized quantitation of synergism and antagonism of taxol, topotecan, and cisplatin against human teratocarcinoma cell growth: a rational approach to clinical protocol design. J. Natl Cancer Inst. 86, 1517–1524 (1994)

    Article  CAS  PubMed  Google Scholar 

  36. M. Lamberti, S. Porto, M. Marra, S. Zappavigna, A. Grimaldi, D. Feola, D. Pesce, S. Naviglio, A. Spina, N. Sannolo, M. Caraglia, 5-Fluorouracil induces apoptosis in rat cardiocytes through intracellular oxidative stress. J. Exp. Clin. Cancer. Res. 31, 60–68 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. A. Morana, P. Stiuso, G. Colonna, M. Lamberti, M. Cartenì, M. De Rosa, Stabilization of S-adenosyl-l-methionine promoted by trehalose. Biochim. Biophys. Acta 1573, 105–108 (2002)

    Article  CAS  PubMed  Google Scholar 

  38. Z. Song, T. Chen, I.V. Deaciuc, S. Uriarte, D. Hill, S. Barve, C.J. McCain, Modulation of endotoxin stimulated interleukin-6 production in monocytes and kupffer cells by S-adenosylmethionine (SAMe). Cytokine 28, 214–223 (2004)

    Article  CAS  PubMed  Google Scholar 

  39. D.R. Barpe, D.D. Rosa, P.E. Froehlich, Pharmacokinetic evaluation of doxorubicin plasma levels in normal and overweight patients with breast cancer and simulation of dose adjustment by different indexes of body mass. Eur. J. Pharm. Sci. 41(3–4), 458–463 (2010)

    Article  CAS  PubMed  Google Scholar 

  40. J. Yasunaga, Y. Taniguchi, K. Nosak, M. Yoshida, Y. Satou, T. Sakai, H. Mitsuya, M. Matsuoka, Identification of aberrantly methylated genes in association with adult T-cell leukemia. Cancer Res. 64, 6002–6009 (2004)

    Article  CAS  PubMed  Google Scholar 

  41. F. Chiz, Z. Machnes, M. Szyf, Synergistic anti breast cancer effect of combined treatment with the methyl donor S-adenosyl methionine (SAM) with the DNA methylation inhibitor 5-aza-2′-deoxycytidine. Carcinogenesis 35, 138–144 (2014)

    Article  Google Scholar 

  42. P. Lipponen, T. Pietilainen, V.M. Kosma, S. Aaltomaa, M. Eskelinen, K. Syrjanen, Apoptosis suppressing protein bcl-2 is expressed in well-differentiated breast carcinomas with favourable prognosis. J. Pathol. 177, 49–55 (1995)

    Article  CAS  PubMed  Google Scholar 

  43. S.J. Dawson, N. Makretsov, F.M. Blows, K.E. Driver, E. Provenzano, J. Le Quesne et al., BCL2 in breast cancer: a favourable prognostic marker across molecular subtypes and independent of adjuvant therapy received. Br. J. Cancer 103, 668–675 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. B. Perillo, A. Sasso, C. Abbondanza, Palumbo G 17beta-estradiol inhibits apoptosis in MCF-7 cells, inducing bcl-2 expression via two estrogen-responsive elements present in the coding sequence. Mol. Cell. Biol. 20, 2890–2901 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work was supported by the Italian Ministry of Education, University and Research (MIUR) with a project (FIRB-ACCORDI DI PROGRAMMA 2011) entitled “Application of High-Throughput Technology Platforms for the Characterization of New Biomarkers and Molecular Targets in Nanovectors for the Diagnosis and Treatment of Human Cancer.” Moreover, the work was partially supported by from Regione Campania in a project entitled “Laboratori Pubblici Hauteville.”

Conflict of interest

All the authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Silvia Zappavigna or Michele Caraglia.

Additional information

Concetta Paola Ilisso and Maria Castellano have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilisso, C.P., Castellano, M., Zappavigna, S. et al. The methyl donor S-adenosylmethionine potentiates doxorubicin effects on apoptosis of hormone-dependent breast cancer cell lines. Endocrine 50, 212–222 (2015). https://doi.org/10.1007/s12020-014-0484-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-014-0484-7

Keywords

Navigation