Skip to main content

Advertisement

Log in

Role of BMP7 in appetite regulation, adipogenesis, and energy expenditure

  • Mini Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Bone morphogenetic protein 7 (BMP7), also known as osteogenic protein-1 (OP-1) is a member of Transforming growth factor-β (TGF-β) family of proteins. Bone morphogenetic proteins were discovered in 1965 by Marshal Urist, of which BMP7 is of particular interest in this review being a leptin-independent anorexinogen and having role in energy expenditure in the brown adipose tissue, which makes it a potential target for preventing/treating obesity. As it has been established that Obesity displays a state of leptin-resistance, thus a protein-like BMP7 which acts through a leptin-independent pathway could give new therapeutic directions. This review will also discuss the synthesis and action of BMP7, along with its receptors and signal transduction. A brief note about BMP7-mediated brown fat development and energy balance is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Y. Bottcher et al., Adipose tissue expression and genetic variants of the bone morphogenetic protein receptor 1A gene (BMPR1A) are associated with human obesity. Diabetes. 58(9), 2119–2128 (2009)

    Article  PubMed Central  PubMed  Google Scholar 

  2. D. Schleinitz et al., Genetic and evolutionary analyses of the human bone morphogenetic protein receptor 2 (BMPR2) in the pathophysiology of obesity. PLoS. ONE. 6(2), e16155 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. S. Kishigami, Y. Mishina, BMP signaling and early embryonic patterning. Cytokine Growth Factor Rev. 16(3), 265–278 (2005)

    Article  CAS  PubMed  Google Scholar 

  4. Y. Yamamoto, M. Oelgeschlager, Regulation of bone morphogenetic proteins in early embryonic development. Naturwissenschaften. 91(11), 519–534 (2004)

    Article  CAS  PubMed  Google Scholar 

  5. N. Zamani, C.W. Brown, Emerging roles for the transforming growth factor-{beta} superfamily in regulating adiposity and energy expenditure. Endocr. Rev. 32(3), 387–403 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Y.H. Tseng et al., New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature. 454(7207), 1000–1004 (2008)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. E. Ozkaynak et al., OP-1 cDNA encodes an osteogenic protein in the TGF-beta family. EMBO J. 9(7), 2085–2093 (1990)

    PubMed Central  CAS  PubMed  Google Scholar 

  8. M. Tanaka et al., Expression of BMP-7 and USAG-1 (a BMP antagonist) in kidney development and injury. Kidney Int. 73(2), 181–191 (2008)

    Article  CAS  PubMed  Google Scholar 

  9. A.M. Cypess, C.R. Kahn, Brown fat as a therapy for obesity and diabetes. Curr. Opin. Endocrinol. Diabetes Obes. 17(2), 143–149 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. B. Cannon, J. Nedergaard, Brown adipose tissue: function and physiological significance. Physiol. Rev. 84(1), 277–359 (2004)

    Article  CAS  PubMed  Google Scholar 

  11. C.M. Vacher et al., A putative physiological role of hypothalamic CNTF in the control of energy homeostasis. FEBS Lett. 582(27), 3832–3838 (2008)

    Article  CAS  PubMed  Google Scholar 

  12. G. Perides et al., Neuroprotective effect of human osteogenic protein-1 in a rat model of cerebral hypoxia/ischemia. Neurosci. Lett. 187(1), 21–24 (1995)

    Article  CAS  PubMed  Google Scholar 

  13. J.K. Sabo, T.J. Kilpatrick, H.S. Cate, Effects of bone morphogenic proteins on neural precursor cells and regulation during central nervous system injury. Neurosignals. 17(4), 255–264 (2009)

    Article  CAS  PubMed  Google Scholar 

  14. B. Lebrun et al., Brain-derived neurotrophic factor (BDNF) and food intake regulation: a minireview. Auton. Neurosci. 126–127, 30–38 (2006)

    Article  PubMed  Google Scholar 

  15. J.W. Cordeira et al., Brain-derived neurotrophic factor regulates hedonic feeding by acting on the mesolimbic dopamine system. J. Neurosci. 30(7), 2533–2541 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. K.L. Townsend et al., Bone morphogenetic protein 7 (BMP7) reverses obesity and regulates appetite through a central mTOR pathway. FASEB J. 26(5), 2187–2196 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. K.L. Townsend et al., Increased mitochondrial activity in BMP7-treated brown adipocytes, due to increased CPT1- and CD36-mediated fatty acid uptake. Antioxid. Redox Signal. 19(3), 243–257 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. M.R. Boon et al., BMP7 activates brown adipose tissue and reduces diet-induced obesity only at subthermoneutrality. PLoS. ONE. 8(9), e74083 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. M. Bluher, Adipokines-removing road blocks to obesity and diabetes therapy. Mol. Metab. 3(3), 230–240 (2014)

    Article  PubMed Central  PubMed  Google Scholar 

  20. K.L. Ong et al., Off-label use of bone morphogenetic proteins in the United States using administrative data. Spine. 35(19), 1794–1800 (2010)

    Article  PubMed  Google Scholar 

  21. A.P. White et al., Clinical applications of BMP-7/OP-1 in fractures, nonunions and spinal fusion. Int. Orthop. 31(6), 735–741 (2007)

    Article  PubMed Central  PubMed  Google Scholar 

  22. S. Vukicevic, M.N. Helder, F.P. Luyten, Developing human lung and kidney are major sites for synthesis of bone morphogenetic protein-3 (osteogenin). J. Histochem. Cytochem. 42(7), 869–875 (1994)

    Article  CAS  PubMed  Google Scholar 

  23. M. Zeisberg, Bone morphogenic protein-7 and the kidney: current concepts and open questions. Nephrol. Dial. Transplant. 21(3), 568–573 (2006)

    Article  CAS  PubMed  Google Scholar 

  24. A. Divoux, K. Clement, Architecture and the extracellular matrix: the still unappreciated components of the adipose tissue. Obes. Rev. 12(5), e494–e503 (2011)

    Article  CAS  PubMed  Google Scholar 

  25. T.J. Schulz, Y.H. Tseng, Systemic control of brown fat thermogenesis: integration of peripheral and central signals. Ann. N. Y. Acad. Sci. 1302, 35–41 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. T.J. Schulz et al., Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. Proc. Natl. Acad. Sci. U S A 108(1), 143–148 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. B. Dattatreyamurty et al., Cerebrospinal fluid contains biologically active bone morphogenetic protein-7. Exp. Neurol. 172(2), 273–281 (2001)

    Article  CAS  PubMed  Google Scholar 

  28. M.N. Helder et al., Expression pattern of osteogenic protein-1 (bone morphogenetic protein-7) in human and mouse development. J. Histochem. Cytochem. 43(10), 1035–1044 (1995)

    Article  CAS  PubMed  Google Scholar 

  29. C.E. Johanson et al., Choroid plexus recovery after transient forebrain ischemia: role of growth factors and other repair mechanisms. Cell. Mol. Neurobiol. 20(2), 197–216 (2000)

    Article  CAS  PubMed  Google Scholar 

  30. S. Soderstrom, T. Ebendal, Localized expression of BMP and GDF mRNA in the rodent brain. J. Neurosci. Res. 56(5), 482–492 (1999)

    Article  CAS  PubMed  Google Scholar 

  31. A.P. Coll, I.S. Farooqi, S. O’Rahilly, The hormonal control of food intake. Cell. 129(2), 251–262 (2007)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. M.W. Schwartz, D. Porte Jr, Diabetes, obesity, and the brain. Science. 307(5708), 375–379 (2005)

    Article  CAS  PubMed  Google Scholar 

  33. K. Ohyama, R. Das, M. Placzek, Temporal progression of hypothalamic patterning by a dual action of BMP. Development. 135(20), 3325–3331 (2008)

    Article  CAS  PubMed  Google Scholar 

  34. J.L. Wrana et al., Mechanism of activation of the TGF-beta receptor. Nature. 370(6488), 341–347 (1994)

    Article  CAS  PubMed  Google Scholar 

  35. J. Massague, F. Weis-Garcia, Serine/threonine kinase receptors: mediators of transforming growth factor beta family signals. Cancer Surv. 27, 41–64 (1996)

    CAS  PubMed  Google Scholar 

  36. B.L. Hogan, Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev. 10(13), 1580–1594 (1996)

    Article  CAS  PubMed  Google Scholar 

  37. D.M. Kingsley, The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev. 8(2), 133–146 (1994)

    Article  CAS  PubMed  Google Scholar 

  38. A. Nohe et al., The mode of bone morphogenetic protein (BMP) receptor oligomerization determines different BMP-2 signaling pathways. J. Biol. Chem. 277(7), 5330–5338 (2002)

    Article  CAS  PubMed  Google Scholar 

  39. E.D. Rosen, B.M. Spiegelman, Adipocytes as regulators of energy balance and glucose homeostasis. Nature. 444(7121), 847–853 (2006)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. N. Hosogai et al., Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes. 56(4), 901–911 (2007)

    Article  CAS  PubMed  Google Scholar 

  41. B.M. Spiegelman, J.S. Flier, Obesity and the regulation of energy balance. Cell. 104(4), 531–543 (2001)

    Article  CAS  PubMed  Google Scholar 

  42. K. Townsend, Y.H. Tseng, Brown adipose tissue: Recent insights into development, metabolic function and therapeutic potential. Adipocyte. 1(1), 13–24 (2012)

    Article  PubMed Central  PubMed  Google Scholar 

  43. K.I. Stanford et al., Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J. Clin. Invest. 123(1), 215–223 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. S. Gesta, Y.H. Tseng, C.R. Kahn, Developmental origin of fat: tracking obesity to its source. Cell. 131(2), 242–256 (2007)

    Article  CAS  PubMed  Google Scholar 

  45. H.E. Young et al., Mesenchymal stem cells reside within the connective tissues of many organs. Dev. Dyn. 202(2), 137–144 (1995)

    Article  CAS  PubMed  Google Scholar 

  46. M. Harms, P. Seale, Brown and beige fat: development, function and therapeutic potential. Nat. Med. 19(10), 1252–1263 (2013)

    Article  CAS  PubMed  Google Scholar 

  47. M. Ghorbani, T.H. Claus, J. Himms-Hagen, Hypertrophy of brown adipocytes in brown and white adipose tissues and reversal of diet-induced obesity in rats treated with a beta3-adrenoceptor agonist. Biochem. Pharmacol. 54(1), 121–131 (1997)

    Article  CAS  PubMed  Google Scholar 

  48. D. Richard, F. Picard, Brown fat biology and thermogenesis. Front. Biosci. 16, 1233–1260 (2011)

    Article  CAS  Google Scholar 

  49. D. Richard et al., Determinants of brown adipocyte development and thermogenesis. Int. J. Obes. 34(Suppl 2), S59–S66 (2010)

    Article  CAS  Google Scholar 

  50. S. Cinti, The adipose organ. Prostaglandins Leukot. Essent. Fatty Acids. 73(1), 9–15 (2005)

    Article  CAS  PubMed  Google Scholar 

  51. D. Sellayah, P. Bharaj, D. Sikder, Orexin is required for brown adipose tissue development, differentiation, and function. Cell Metab. 14(4), 478–490 (2011)

    Article  CAS  PubMed  Google Scholar 

  52. J.N. Artaza et al., Myostatin inhibits myogenesis and promotes adipogenesis in C3H 10T(1/2) mesenchymal multipotent cells. Endocrinology. 146(8), 3547–3557 (2005)

    Article  CAS  PubMed  Google Scholar 

  53. A. Rebbapragada et al., Myostatin signals through a transforming growth factor beta-like signaling pathway to block adipogenesis. Mol. Cell. Biol. 23(20), 7230–7242 (2003)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. B.J. Feldman et al., Myostatin modulates adipogenesis to generate adipocytes with favorable metabolic effects. Proc. Natl. Acad. Sci. U S A 103(42), 15675–15680 (2006)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. V. Gilsanz, H.H. Hu, S. Kajimura, Relevance of brown adipose tissue in infancy and adolescence. Pediatr. Res. 73(1), 3–9 (2013)

    Article  PubMed Central  PubMed  Google Scholar 

  56. J.M. Heaton, The distribution of brown adipose tissue in the human. J. Anat. 112(Pt 1), 35–39 (1972)

    PubMed Central  CAS  PubMed  Google Scholar 

  57. J. Nedergaard, T. Bengtsson, B. Cannon, Three years with adult human brown adipose tissue. Ann. N. Y. Acad. Sci. 1212, E20–E36 (2010)

    Article  PubMed  Google Scholar 

  58. B.B. Lowell, B.M. Spiegelman, Towards a molecular understanding of adaptive thermogenesis. Nature. 404(6778), 652–660 (2000)

    CAS  PubMed  Google Scholar 

  59. P. Bostrom et al., A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 481(7382), 463–468 (2012)

    Article  PubMed Central  PubMed  Google Scholar 

  60. E. Canalis, A.N. Economides, E. Gazzerro, Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr. Rev. 24(2), 218–235 (2003)

    Article  CAS  PubMed  Google Scholar 

  61. A. Voss-Andreae et al., Role of the central melanocortin circuitry in adaptive thermogenesis of brown adipose tissue. Endocrinology. 148(4), 1550–1560 (2007)

    Article  CAS  PubMed  Google Scholar 

  62. A.N. Verty, A.M. Allen, B.J. Oldfield, The endogenous actions of hypothalamic peptides on brown adipose tissue thermogenesis in the rat. Endocrinology. 151(9), 4236–4246 (2010)

    Article  CAS  PubMed  Google Scholar 

  63. J.F. Tobin, A.J. Celeste, Bone morphogenetic proteins and growth differentiation factors as drug targets in cardiovascular and metabolic disease. Drug Discov. Today. 11(9–10), 405–411 (2006)

    Article  CAS  PubMed  Google Scholar 

  64. I.S. Farooqi et al., Leptin regulates striatal regions and human eating behavior. Science. 317(5843), 1355 (2007)

    Article  CAS  PubMed  Google Scholar 

  65. D. Cota et al., Hypothalamic mTOR signaling regulates food intake. Science. 312(5775), 927–930 (2006)

    Article  CAS  PubMed  Google Scholar 

  66. H. Mori et al., Critical role for hypothalamic mTOR activity in energy balance. Cell Metab. 9(4), 362–374 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. E.C. Villanueva et al., Complex regulation of mammalian target of rapamycin complex 1 in the basomedial hypothalamus by leptin and nutritional status. Endocrinology. 150(10), 4541–4551 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. D. Benjamin et al., Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat. Rev. Drug Discov. 10(11), 868–880 (2011)

    Article  CAS  PubMed  Google Scholar 

  69. A. Koncarevic et al., A novel therapeutic approach to treating obesity through modulation of TGFbeta signaling. Endocrinology. 153(7), 3133–3146 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. C. Zhang et al., Inhibition of myostatin protects against diet-induced obesity by enhancing fatty acid oxidation and promoting a brown adipose phenotype in mice. Diabetologia. 55(1), 183–193 (2012)

    Article  CAS  PubMed  Google Scholar 

  71. B. Fournier et al., Blockade of the activin receptor IIb activates functional brown adipogenesis and thermogenesis by inducing mitochondrial oxidative metabolism. Mol. Cell. Biol. 32(14), 2871–2879 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. A.C. McPherron et al., Increasing muscle mass to improve metabolism. Adipocyte. 2(2), 92–98 (2013)

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

Authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Vats.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, S., Duraisamy, A.J., Bayen, S. et al. Role of BMP7 in appetite regulation, adipogenesis, and energy expenditure. Endocrine 48, 405–409 (2015). https://doi.org/10.1007/s12020-014-0406-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-014-0406-8

Keywords

Navigation