Skip to main content

Advertisement

Log in

Effects of restoration of the euthyroid state on epicardial adipose tissue and carotid intima media thickness in subclinical hypothyroid patients

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Epicardial adipose tissue (EAT) thickness is a novel cardiovascular risk indicator, whereas carotid intima media thickness (CIMT) is a known marker of subclinical atherosclerosis. The aim of this study was to measure EAT thickness and CIMT in subclinical hypothyroid (SCH) patients and to determine the effect of restoration of the euthyroid state on these variables. The study included 43 patients with SCH (mean age: 35.2 ± 10.7 years; F–M ratio: 42:1) and 30 healthy controls (mean age: 34.5 ± 8.2 years; F–M ratio: 25:5). EAT thickness and CIMT were measured via conventional echocardiography and ultrasonography. Among the patients, 23 were followed up with l-thyroxine replacement until restoration of the euthyroid state and re-evaluated 6 months after baseline. Basal EAT thickness was higher in the SCH patients than in the controls (3.2 ± 0.7 vs. 2.3 ± 0.3 mm—p < 0.0001), whereas CIMT was similar in both groups (0.50 ± 0.09 vs. 0.48 ± 0.04 mm). EAT thickness was correlated with CIMT in the patient group (r = 0.39, p = 0.01), but this correlation was not evident based on multivariate analysis when corrected for age and body mass index (r 2 = 0.47 and p = 0.0001 for the model). In the follow-up patient subgroup, both EAT thickness and CIMT decreased significantly following l-thyroxine treatment, when normal TSH levels were attained (3.4 ± 0.7 vs. 2.3 ± 0.5 mm—p = 0.007 and 0.51 ± 0.09 vs. 0.46 ± 0.07 mm—p = 0.01, respectively). EAT thickness was greater in the SCH patients than in controls, whereas CIMT was similar in both groups. Restoration of the euthyroid state with l-thyroxine treatment was associated with significant decreases in EAT thickness and CIMT in the group of patients that received l-thyroxine treatment and, as such, might reduce the cardiovascular risk associated with SCH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. A.R. Cappola, P.W. Ladenson, Hypothyroidism and atherosclerosis. J. Clin. Endocrinol. Metab. 88, 2438–2444 (2003)

    Article  CAS  PubMed  Google Scholar 

  2. A.E. Hak, H.A. Pols, T.J. Visser, H.A. Drexhage, A. Hofman, J.C. Witteman, Subclinical hypothyroidism is an independent risk factor for atherosclerosis and myocardial infarction in elderly women: the Rotterdam Study. Ann. Int. Med. 132, 270–278 (2000)

    Article  CAS  PubMed  Google Scholar 

  3. P.B. Fowler, J. Swale, H. Andrews, Hypercholesterolaemia in borderline hypothyroidism. Stage of premyxoedema. Lancet 2, 488–491 (1970)

    Article  CAS  PubMed  Google Scholar 

  4. B.U. Althaus, J.J. Staub, A. Ryff-De Lèche, A. Oberhänsli, H.B. Stähelin, LDL/HDL-changes in subclinical hypothyroidism: possible risk factors for coronary heart disease. Clin. Endocrinol. (Oxf) 28, 157–163 (1988)

    Article  CAS  Google Scholar 

  5. B. Müller, D.A. Tsakiris, C.B. Roth, M. Guglielmetti, J.J. Staub, G.A. Marbet, Haemostatic profile in hypothyroidism as potential risk factor for vascular or thrombotic disease. Eur. J. Clin. Invest. 31, 131–137 (2001)

    Article  PubMed  Google Scholar 

  6. K. Ojamaa, J.D. Klemperer, I. Klein, Acute effects of thyroid hormone on vascular smooth muscle. Thyroid 6, 505–512 (1996)

    Article  CAS  PubMed  Google Scholar 

  7. J. Földes, M. Istvánfy, M. Halmágyi, A. Váradi, A. Gara, O. Pártos, Hypothyroidism and the heart. Examination of left ventricular function in subclinical hypothyroidism. Acta. Med. Hung. 44, 337–347 (1987)

    PubMed  Google Scholar 

  8. J.M. Fernández-Real, A. López-Bermejo, A. Castro, R. Casamitjana, W. Ricart, Thyroid function is intrinsically linked to insulin sensitivity and endothelium-dependent vasodilation in healthy euthyroid subjects. J. Clin. Endocrinol. Metab. 91, 3337–3343 (2006)

    Article  PubMed  Google Scholar 

  9. N. Knudsen, P. Laurberg, L.B. Rasmussen, I. Bülow, H. Perrild, L. Ovesen, T. Jørgensen, Small differences in thyroid function may be important for body mass index and the occurrence of obesity in the population. J. Clin. Endocrinol. Metab. 90, 4019–4024 (2005)

    Article  CAS  PubMed  Google Scholar 

  10. T. Reinehr, Obesity and thyroid function. Mol. Cell. Endocrinol. 316, 165–171 (2010)

    Article  CAS  PubMed  Google Scholar 

  11. M. Alevizaki, K. Saltiki, P. Voidonikola, E. Mantzou, C. Papamichael, K. Stamatelopoulos, Free thyroxine is an independent predictor of subcutaneous fat in euthyroid individuals. Eur. J. Endocrinol. 161, 459–465 (2009)

    Article  CAS  PubMed  Google Scholar 

  12. O. Tarcin, G.B. Abanonu, D. Yazici, O. Tarcin, Association of metabolic syndrome parameters with TT3 and FT3/FT4 ratio in obese Turkish population. Metab. Syndr. Relat. Disord. 10, 137–142 (2012)

    Article  CAS  PubMed  Google Scholar 

  13. A. Roos, S.J. Bakker, T.P. Links, R.O. Gans, B.H. Wolffenbuttel, Thyroid function is associated with components of the metabolic syndrome in euthyroid subjects. J. Clin. Endocrinol. Metab. 92, 491–496 (2007)

    Article  CAS  PubMed  Google Scholar 

  14. S. Mamiya, M. Hagiwara, S. Inoue, H. Hidaka, Thyroid hormones inhibit platelet function and myosin light chain kinase. J. Biol. Chem. 264, 8575–8579 (1989)

    CAS  PubMed  Google Scholar 

  15. K.M. Rexrode, V.J. Carey, C.H. Hennekens, E.E. Walters, G.A. Colditz, M.J. Stampfer, W.C. Willett, J.E. Manson, Abdominal adiposity and coronary heart disease in women. JAMA 280, 1843–1848 (1998)

    Article  CAS  PubMed  Google Scholar 

  16. J. Shirani, K. Berezowski, W.C. Roberts, Quantitative measurement of normal and excessive (cor adiposum) subepicardial adipose tissue, its clinical significance, and its effect on electrocardiographic QRS voltage. Am. J. Cardiol. 76, 414–418 (1995)

    Article  CAS  PubMed  Google Scholar 

  17. A.R. Baker, N.F. Silva, D.W. Quinn, A.L. Harte, D. Pagano, R.S. Bonser, S. Kumar, P.G. McTernan, Human epicardial adipose tissue expresses a pathogenic profile of adipocytokines in patients with cardiovascular disease. Cardiovasc. Diabetol. 5, 1 (2006)

    Article  PubMed Central  PubMed  Google Scholar 

  18. G. Iacobellis, D. Pistilli, M. Gucciardo, F. Leonetti, F. Miraldi, G. Brancaccio, P. Gallo, C.R. di Gioia, Adiponectin expression in human epicardial adipose tissue in vivo is lower in patients with coronary artery disease. Cytokine 29, 251–255 (2005)

    CAS  PubMed  Google Scholar 

  19. G. Iacobellis, F. Assael, M.C. Ribaudo, A. Zappaterreno, G. Alessi, U. Di Mario, F. Leonetti, Epicardial fat from echocardiography: a new method for visceral adipose tissue prediction. Obes. Res. 11, 304–310 (2003)

    Article  PubMed  Google Scholar 

  20. G. Iacobellis, A.M. Sharma, Epicardial adipose tissue as new cardio-metabolic risk marker and potential therapeutic target in the metabolic syndrome. Curr. Pharm. Des. 13, 2180–2184 (2007)

    Article  CAS  PubMed  Google Scholar 

  21. J.W. Jeong, M.H. Jeong, K.H. Yun, S.K. Oh, E.M. Park, Y.K. Kim, S.J. Rhee, E.M. Lee, J. Lee, N.J. Yoo, N.H. Kim, J.C. Park, Echocardiographic epicardial fat thickness and coronary artery disease. Circ. J. 71, 536–539 (2007)

    Article  PubMed  Google Scholar 

  22. R. Taguchi, J. Takasu, Y. Itani, R. Yamamoto, K. Yokoyama, S. Watanabe, Y. Masuda, Pericardial fat accumulation in men as a risk factor for coronary artery disease. Atherosclerosis 157, 203–209 (2001)

    Article  CAS  PubMed  Google Scholar 

  23. L. Korkmaz, S. Sahin, A.R. Akyuz, M. Ziyrek, I. Anaforoglu, M. Kose, H. Erkan, M.T. Ağaç, Z. Acar, Epicardial adipose tissue increased in patients with newly diagnosed subclinical hypothyroidism Med. Princ. Pract. 22, 42–46 (2013)

    Article  Google Scholar 

  24. M. Asik, S. Sahin, F. Ozkul, I. Anaforoglu, S. Ayhan, S. Karagol, F. Gunes, E. Algun, Evaluation of epicardial fat tissue thickness in patients with Hashimoto thyroiditis. Clin. Endocrinol. (Oxf) 79, 571–576 (2013)

    Article  CAS  Google Scholar 

  25. M.D. Cabral, P.F. Teixeira, N.A. Silva, F.F. Morais, D.V. Soares, E. Salles, J.M. Henriques, S.P. Leite, C.A. Montenegro, M. Vaisman, Normal flow-mediated vasodilatation of the brachial artery and carotid artery intima-media thickness in subclinical hypothyroidism. Braz. J. Med. Biol. Res. 42, 426–432 (2009)

    Article  CAS  PubMed  Google Scholar 

  26. V.N. Valentina, B. Marijan, D. Chedo, K. Branka, Subclinical hypothyroidism and risk to carotid atherosclerosis. Arq. Bras. Endocrinol. Metabol. 55, 475–480 (2011)

    Article  PubMed  Google Scholar 

  27. F. Monzani, N. Caraccio, M. Kozàkowà, A. Dardano, F. Vittone, A. Virdis, S. Taddei, C. Palombo, E. Ferrannini, Effect of levothyroxine replacement on lipid profile and intima-media thickness in subclinical hypothyroidism: a double-blind, placebo-controlled study. J. Clin. Endocrinol. Metab. 89, 2099–2106 (2004)

    Article  CAS  PubMed  Google Scholar 

  28. A. Poli, E. Tremoli, A. Colombo, M. Sirtori, P. Pignoli, R. Paoletti, Ultrasonographic measurement of the common carotid artery wall thickness in hypercholesterolemic patients. A new model for the quantitation and follow-up of preclinical atherosclerosis in living human subjects. Atherosclerosis 70, 253–261 (1988)

    Article  CAS  PubMed  Google Scholar 

  29. L. Tian, J. Ni, T. Guo, J. Liu, Y. Dang, Q. Guo, L. Zhang, TSH stimulates the proliferation of vascular smooth muscle cells. Endocrine 46, 651–658 (2014)

  30. A. Haribabu, V.S. Reddy, Ch. Pallavi, A.R. Bitla, A. Sachan, P. Pullaiah, V. Suresh, P.V. Rao, M.M. Suchitra, Evaluation of protein oxidation and its association with lipid peroxidation and thyrotropin levels in overt and subclinical hypothyroidism. Endocrine 44, 152–157 (2013)

    Article  CAS  PubMed  Google Scholar 

  31. Y.T. Yu, C.T. Ho, H.S. Hsu, C.I. Li, L.E. Davidson, C.S. Liu, T.C. Li, C.M. Shih, C.C. Lin, W.Y. Lin, Subclinical hypothyroidism is associated with elevated high-sensitive C-reactive protein among adult Taiwanese. Endocrine 44, 716–722 (2013)

    Article  CAS  PubMed  Google Scholar 

  32. G. Vitale, M. Galderisi, G.A. Lupoli, A. Celentano, I. Pietropaolo, N. Parenti, O. De Divitiis, G. Lupoli, Left ventricular myocardial impairment in subclinical hypothyroidism assessed by a new ultrasound tool: pulsed tissue Doppler. J. Clin. Endocrinol. Metab. 87, 4350–4355 (2002)

    Article  CAS  PubMed  Google Scholar 

  33. J. Westerink, Y. van der Graaf, D.R. Faber, F.L. Visseren, SMART study group.: The relation between thyroid-stimulating hormone and measures of adiposity in patients with manifest vascular disease. Eur. J. Clin. Invest. 41, 159–166 (2011)

    Article  CAS  PubMed  Google Scholar 

  34. G. Iacobellis, M.C. Ribaudo, F. Assael, E. Vecci, C. Tiberti, A. Zappaterreno, U. Di Mario, F. Leonetti, Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk. J. Clin. Endocrinol. Metab. 88, 5163–5168 (2003)

    Article  CAS  PubMed  Google Scholar 

  35. H. Aydın, A. Toprak, O. Deyneli, D. Yazici, O. Tarcın, S. Sancak, D. Yavuz, S. Akalin, Epicardial fat tissue thickness correlates with endothelial dysfunction and other cardiovascular risk factors in patients with metabolic syndrome. Metab. Syndr. Relat. Disorders 8, 229–234 (2010)

    Article  Google Scholar 

  36. G. Iacobellis, F. Leonetti, N. Singh, A. Sharma, Relationship of epicardial adipose tissue with atrial dimensions and diastolic function in morbidly obese subjects. Int. J. Cardiol. 115, 272–273 (2007)

    Article  PubMed  Google Scholar 

  37. N. Bettencourt, A.M. Toschke, D. Leite, J. Rocha, M. Carvalho, F. Sampaio, S. Xará, A. Leite-Moreira, E. Nagel, V. Gama, Epicardial adipose tissue is an independent predictor of coronary atherosclerotic burden. Int. J. Cardiol. 158, 26–32 (2012)

    Article  CAS  PubMed  Google Scholar 

  38. G. Iacobellis, D. Corradi, A.M. Sharma, Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat. Clin. Pract. Cardiovasc. Med. 2, 536–543 (2005)

    Article  PubMed  Google Scholar 

  39. S. Sarin, C. Wenger, A. Marwaha, A. Qureshi, B.D. Go, C.A. Woomert, K. Clark, L.A. Nassef, J. Shirani, Clinical significance of epicardial fat measured using cardiac multislice computed tomography. Am. J. Cardiol. 102, 767–771 (2008)

    Article  PubMed  Google Scholar 

  40. T. Mazurek, L. Zhang, A. Zalewski, J.D. Mannion, J.T. Diehl, H. Arafat, L. Sarov-Blat, S. O’Brien, E.A. Keiper, A.G. Johnson, J. Martin, B.J. Goldstein, Y. Shi, Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 108, 2460–2466 (2003)

    Article  PubMed  Google Scholar 

  41. P. Maurovich-Horvat, K. Kallianos, L.C. Engel, J. Szymonifka, C.S. Fox, U. Hofmann, Q.A. Truong, Influence of pericoronary adipose tissue on local coronary atherosclerosis as assessed by a novel MDCT volumetric method. Atherosclerosis 219, 151–157 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. R.P. Dullaart, R. de Vries, C. Roozendaal, A.C. Kobold, W.J. Sluiter, Carotid artery intima media thickness is inversely related to serum free thyroxine in euthyroid subjects. Clin. Endocrinol. (Oxf) 67, 668–673 (2007)

    Article  CAS  Google Scholar 

  43. M.M. Ciccone, E. Bilianou, A. Balbarini, M. Gesualdo, L. Ghiadoni, M. Metra, P. Palmiero, R. Pedrinelli, M. Salvetti, P. Scicchitano, A. Zito, S. Novo, A.V. Mattioli, Task force on: ‘Early markers of atherosclerosis: influence of age and sex. J. Cardiovasc. Med. (Hagerstown) 14, 757–766 (2013)

    Article  Google Scholar 

  44. P.J. Touboul, M.G. Hennerici, S. Meairs, H. Adams, P. Amarenco, N. Bornstein, L. Csiba, M. Desvarieux, S. Ebrahim, R. Hernandez Hernandez, M. Jaff, S. Kownator, T. Naqvi, P. Prati, T. Rundek, M. Sitzer, U. Schminke, J.C. Tardif, A. Taylor, E. Vicaut, K.S. Woo, Mannheim carotid intima-media thickness and plaque consensus (2004-2006-2011). An update on behalf of the advisory board of the 3rd, 4th and 5th watching the risk symposia, at the 13th, 15th and 20th European Stroke Conferences, Mannheim,Germany, 2004, Brussels, Belgium, 2006, and Hamburg, Germany, 2011. Cerebrovasc. Dis. 34, 290–296 (2012)

    Article  PubMed Central  PubMed  Google Scholar 

  45. T. Nagasaki, M. Inaba, Y. Henmi, Y. Kumeda, M. Ueda, H. Tahara, S. Sugiguchi, S. Fujiwara, M. Emoto, E. Ishimura, N. Onoda, T. Ishikawa, Y. Nishizawa, Decrease in carotid intima-media thickness in hypothyroid patients after normalization of thyroid function. Clin. Endocrinol. (Oxf) 59, 607–612 (2003)

    Article  CAS  Google Scholar 

  46. M. Adrees, J. Gibney, N. El-Saeity, G. Boran, Effects of 18 months of L-T4 replacement in women with subclinical hypothyroidism. Clin. Endocrinol. (Oxf) 71, 298–303 (2009)

    Article  CAS  Google Scholar 

Download references

Conflict of interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilek Yazıcı.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazıcı, D., Özben, B., Toprak, A. et al. Effects of restoration of the euthyroid state on epicardial adipose tissue and carotid intima media thickness in subclinical hypothyroid patients. Endocrine 48, 909–915 (2015). https://doi.org/10.1007/s12020-014-0372-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-014-0372-1

Keywords

Navigation