Skip to main content

Advertisement

Log in

Establishment of robust controls for the normalization of miRNA expression in neuroendocrine tumors of the ileum and pancreas

  • Endocrine Methods and Techniques
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

There is need to determine tissue-specific robust controls for normalization of microRNA expression to avoid false results and misinterpretation. The aim of this study was to evaluate the expression of different small RNAs in neuroendocrine tumors (NETs) and their suitability as normalizers in miRNA real-time PCR experiments. We investigated the expression of the nine small RNAs miR-93, miR-191, SNORD48, SNORD61, SNORD68, SNORD72, SNORD95, SNORD96a, and RNU6-2 in formalin-fixed, paraffin-embedded tissue samples of 25 ileal NETs by real-time PCR determining the most stable controls for expression normalization using four different algorithms. This analysis was expended to ten pancreatic NETs. Finally, five small RNAs were further tested as normalizers for miRNA-133a expression, which is known to be downregulated in metastases of ileal NETs, in ten matched pairs of ileal NETs and their metastases. Ranking of the expression results revealed the following order of stability from high to low: SNORD61 < SNORD95 < SNORD72 < SNORD96a < SNORD68 < miR-191 < miR-93 < RNU6-2 < SNORD48 for ileal NETs and SNORD95 < miR-93 < SNORD96a < SNORD61 < SNORD68 < SNORD72 < RNU6-2 < miR-191 < SNORD48 for pancreatic NETs. The determination of SNORD61 and SNORD95 for ileal NETs and SNORD95 and miR-93 for pancreatic NETs as good normalizers presents a useful tool for experiments involving the analysis of miRNA expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. E.G. Nikitina, L.N. Urazova, V.N. Stegny, MicroRNAs and human cancer. Exp. Oncol. 34(1), 2–8 (2012). doi:http://exp-oncology.com.ua/wp-content/uploads/2012/03/1110.pdf?upload

    CAS  PubMed  Google Scholar 

  2. B. Feng, T.T. Dong, L.L. Wang, H.M. Zhou, H.C. Zhao, F. Dong, M.H. Zheng, Colorectal cancer migration and invasion initiated by microRNA-106a. PLoS One 7(8), e43452 (2012). doi:10.1371/journal.pone.0043452

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. J. Yang, H. Lan, X. Huang, B. Liu, Y. Tong, MicroRNA-126 inhibits tumor cell growth and its expression level correlates with poor survival in non-small cell lung cancer patients. PLoS One 7(8), e42978 (2012). doi:10.1371/journal.pone.0042978

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. M.S. Zaman, V. Shahryari, G. Deng, S. Thamminana, S. Saini, S. Majid, I. Chang, H. Hirata, K. Ueno, S. Yamamura, K. Singh, Y. Tanaka, Z.L. Tabatabai, R. Dahiya, Up-regulation of microRNA-21 correlates with lower kidney cancer survival. PLoS One 7(2), e31060 (2012). doi:10.1371/journal.pone.0031060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. L. Ma, J. Teruya-Feldstein, R.A. Weinberg, Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449(7163), 682–688 (2007)

    Article  CAS  PubMed  Google Scholar 

  6. A. Schaefer, M. Jung, K. Miller, M. Lein, G. Kristiansen, A. Erbersdobler, K. Jung, Suitable reference genes for relative quantification of miRNA expression in prostate cancer. Exp. Mol. Med. 42(11), 749–758 (2010). doi:10.3858/emm.2010.42.076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. H.J. Peltier, G.J. Latham, Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA 14(5), 844–852 (2008). doi:10.1261/rna.939908

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. K. Ruebel, A.A. Leontovich, G.A. Stilling, S. Zhang, A. Righi, L. Jin, R.V. Lloyd, MicroRNA expression in ileal carcinoid tumors: downregulation of microRNA-133a with tumor progression. Mod. Pathol. 23(3), 367–375 (2010)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. M. Wu, M. Piccini, C.Y. Koh, K.S. Lam, A.K. Singh, Single cell microRNA analysis using microfluidic flow cytometry. PLoS One 8(1), e55044 (2013). doi:10.1371/journal.pone.0055044

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. E.M. Putz, D. Gotthardt, G. Hoermann, A. Csiszar, S. Wirth, A. Berger, E. Straka, D. Rigler, B. Wallner, A.M. Jamieson, W.F. Pickl, E.M. Zebedin-Brandl, M. Muller, T. Decker, V. Sexl, CDK8-mediated STAT1-S727 phosphorylation restrains NK cell cytotoxicity and tumor surveillance. Cell Rep. 4(3), 437–444 (2013). doi:10.1016/j.celrep.2013.07.012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. V. Manfe, E. Biskup, A. Willumsgaard, A.G. Skov, D. Palmieri, P. Gasparini, A. Lagana, A. Woetmann, N. Odum, C.M. Croce, R. Gniadecki, cMyc/miR-125b-5p signalling determines sensitivity to bortezomib in preclinical model of cutaneous T-cell lymphomas. PLoS One 8(3), e59390 (2013). doi:10.1371/journal.pone.0059390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. C.L. Andersen, J.L. Jensen, T.F. Orntoft, Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64(15), 5245–5250 (2004). doi:10.1158/0008-5472.CAN-04-0496

    Article  CAS  PubMed  Google Scholar 

  13. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F, Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3(7) (2002)

  14. M.W. Pfaffl, A. Tichopad, C. Prgomet, T.P. Neuvians, Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—Excel-based tool using pair-wise correlations. Biotechnol. Lett. 26(6), 509–515 (2004). doi:10.1023/b:bile.0000019559.84305.47

    Article  CAS  PubMed  Google Scholar 

  15. N. Silver, S. Best, J. Jiang, S.L. Thein, Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol. Biol. 7(1), 33 (2006)

    Article  PubMed Central  PubMed  Google Scholar 

  16. J. Song, Z. Bai, W. Han, J. Zhang, H. Meng, J. Bi, X. Ma, S. Han, Z. Zhang, Identification of suitable reference genes for qPCR analysis of serum microRNA in gastric cancer patients. Dig. Dis. Sci. 57(4), 897–904 (2012). doi:10.1007/s10620-011-1981-7

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sperveslage.

Additional information

Sperveslage and Hoffmeister have contributed equally to this manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 48 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sperveslage, J., Hoffmeister, M., Henopp, T. et al. Establishment of robust controls for the normalization of miRNA expression in neuroendocrine tumors of the ileum and pancreas. Endocrine 46, 226–230 (2014). https://doi.org/10.1007/s12020-014-0202-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-014-0202-5

Keywords

Navigation