Skip to main content

Advertisement

Log in

Identification of Suitable Reference Genes for qPCR Analysis of Serum microRNA in Gastric Cancer Patients

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Circulating microRNA expression profiles may be promising biomarkers for diagnosis and assessment of the prognosis of cancer patients. Quantitative polymerase chain reaction (qPCR) is a sensitive technique for estimating expression levels of circulating microRNAs. However, there is no current consensus on the reference genes for qPCR analysis of circulating microRNAs.

Aims

In this study we tried to identify suitable reference genes for qPCR analysis of serum microRNA in gastric cancer patients and healthy individuals.

Methods

Six microRNAs (let-7a, miR-16, miR-93, miR-103, miR-192, and miR-451) and RNU6B were chosen as candidate reference genes on the basis of the literature. Expression levels of these candidates were analyzed by qPCR in serum samples from 40 gastric cancer patients and 20 healthy volunteers. The geNorm, Normfinder, bestkeeper, and comparative delta-Ct method algorithms were used to select the most suitable reference gene from the seven candidates. This was then validated by normalizing the expression levels of serum miR-21 across all gastric cancer patients and healthy volunteers.

Results

The algorithms revealed miR-16 and miR-93 were the most stably expressed reference genes, with stability values of 1.778 and 2.213, respectively, for serum microRNA analysis across all the patients and healthy controls. The effect of different normalization strategies was compared; when normalized to the serum volume there were no significant differences between patients and controls. However, when the data were normalized to miR-93, miR-16, or miR-93 and miR-16 combined, significant differences were detected.

Conclusions

Our results demonstrated that reference gene choice for qPCR data analysis has a great effect on the study outcome, and that it is necessary to choose a suitable reference for reliable expression data. We recommend miR-16 and miR-93 as suitable reference genes for serum miRNA analysis for gastric cancer patients and healthy controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Esquela-Kerscher A, Slack FJ. Oncomirs: microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–269.

    Article  PubMed  CAS  Google Scholar 

  2. Small EM, Frost RJ, Olson EN. MicroRNAs add a new dimension to cardiovascular disease. Circulation. 2010;121:1022–1032.

    Article  PubMed  Google Scholar 

  3. Kolfschoten IG, Roggli E, Nesca V, Regazzi R. Role and therapeutic potential of microRNAs in diabetes. Diabetes Obes Metab. 2009;11:118–129.

    Article  PubMed  CAS  Google Scholar 

  4. Ng EK, Chong WW, Jin H, et al. Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut. 2009;58:1375–1381.

    Article  PubMed  CAS  Google Scholar 

  5. Ueda T, Volinia S, Okumura H, et al. Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol. 2010;11:136–146.

    Article  PubMed  CAS  Google Scholar 

  6. Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18:997–1006.

    Article  PubMed  CAS  Google Scholar 

  7. Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 2008;105:10513–10518.

    Article  PubMed  CAS  Google Scholar 

  8. Kosaka N, Iguchi H, Ochiya T. Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci. 2010;101:2087–2092.

    Article  PubMed  CAS  Google Scholar 

  9. Lawrie CH, Gal S, Dunlop HM, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol. 2008;141:672–675.

    Article  PubMed  Google Scholar 

  10. Tsujiura M, Ichikawa D, Komatsu S, et al. Circulating microRNAs in plasma of patients with gastric cancers. Br J Cancer. 2010;102:1174–1179.

    Article  PubMed  CAS  Google Scholar 

  11. Liu R, Zhang C, Hu Z, et al. A five-microRNA signature identified from genome-wide serum microRNA expression profiling serves as a fingerprint for gastric cancer diagnosis. Eur J Cancer. 2011;47:784–791.

    Article  PubMed  CAS  Google Scholar 

  12. Asaga S, Kuo C, Nguyen T, et al. Direct serum assay for microRNA-21 concentrations in early and advanced breast cancer. Clin Chem. 2011;57:84–91.

    Article  PubMed  CAS  Google Scholar 

  13. Kanemaru H, Fukushima S, Yamashita J, et al. The circulating microRNA-221 level in patients with malignant melanoma as a new tumor marker. J Dermatol Sci. 2011;61:187–193.

    Article  PubMed  CAS  Google Scholar 

  14. Kreth S, Heyn J, Grau S, et al. Identification of valid endogenous control genes for determining gene expression in human glioma. Neuro Oncol. 2010;12:570–579.

    Article  PubMed  CAS  Google Scholar 

  15. Davoren PA, McNeill RE, Lowery AJ, et al. Identification of suitable endogenous control genes for microRNA gene expression analysis in human breast cancer. BMC Mol Biol. 2008;9:76.

    Article  PubMed  Google Scholar 

  16. Zhu HT, Dong QZ, Wang G et al. (2011) Identification of Suitable Reference Genes for qPCR Analysis of Circulating microRNAs in Hepatitis B Virus-Infected Patients. Mol Biotechnol. (Epub ahead of print). doi:10.1007/s12033-011-9414-6.

  17. McNeill RE, Miller N, Kerin MJ. Evaluation and validation of candidate endogenous control genes for real-time quantitative PCR studies of breast cancer. BMC Mol Biol. 2007;8:107.

    Article  PubMed  Google Scholar 

  18. Profiling of microRNA in blood serum/plasma. Guidelines for the miRCURY LNATM Universal RT microRNA PCR System. Available at: http://www.exiqon.com/. Accessed 11 July 2011.

  19. Andersen CL, Jensen JL, Orntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64:5245–5250.

    Article  PubMed  CAS  Google Scholar 

  20. Vandesompele J, De Preter K, Pattyn F et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002; 3: RESEARCH0034.

    Google Scholar 

  21. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett. 2004;26:509–515.

    Article  PubMed  CAS  Google Scholar 

  22. Thein SL, Silver N, Best S, Jiang J. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol Biol. 2006; 7.

  23. Chen C, Ridzon DA, Broomer AJ et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005; 33: e179.

    Google Scholar 

  24. Tang F, Hajkova P, Barton SC et al. MicroRNA expression profiling of single whole embryonic stem cells. Nucleic Acids Res. 2006; 34: e9.

    Google Scholar 

  25. Peltier HJ, Latham GJ. Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA. 2008;14:844–852.

    Article  PubMed  CAS  Google Scholar 

  26. Kroh EM, Parkin RK, Mitchell PS, Tewari M. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qPCR). Methods. 2010;50:298–301.

    Article  PubMed  CAS  Google Scholar 

  27. Chan SH, Wu CW, Li AF, et al. miR-21 microRNA expression in human gastric carcinomas and its clinical association. Anticancer Res. 2008;28:907–911.

    PubMed  Google Scholar 

  28. Si ML, Zhu S, Wu H, et al. miR-21-mediated tumor growth. Oncogene. 2007;26:2799–2803.

    Article  PubMed  CAS  Google Scholar 

  29. Zhang Z, Li Z, Gao C, et al. miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Invest. 2008;88:1358–1366.

    Article  PubMed  CAS  Google Scholar 

  30. Motoyama K, Inoue H, Mimori K, et al. Clinicopathological and prognostic significance of PDCD4 and microRNA-21 in human gastric cancer. Int J Oncol. 2010;36:1089–1095.

    PubMed  CAS  Google Scholar 

  31. Johnson SM, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 MicroRNA family. Cell. 2005;120:635–647.

    Article  PubMed  CAS  Google Scholar 

  32. Cimmino A, Calin GA, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA. 2005;102:13944–13949.

    Article  PubMed  CAS  Google Scholar 

  33. Petrocca F, Visone R, Onelli MR, et al. E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell. 2008;13:272–286.

    Article  PubMed  CAS  Google Scholar 

  34. Piccolo S, Martello G, Rosato A, et al. A MicroRNA targeting dicer for metastasis control. Cell. 2010;141:U1195–U1276.

    Article  Google Scholar 

  35. Ju JF, Song B, Wang Y, et al. miR-192 regulates dihydrofolate reductase and cellular proliferation through the p53-microRNA Circuit. Clin Cancer Res. 2008;14:8080–8086.

    Article  PubMed  Google Scholar 

  36. Bandres E, Bitarte N, Arias F, et al. microRNA-451 regulates macrophage migration inhibitory factor production and proliferation of gastrointestinal cancer cells. Clin Cancer Res. 2009;15:2281–2290.

    Article  PubMed  CAS  Google Scholar 

  37. Kiss T. Small nucleolar RNA-guided post-transcriptional modification of cellular RNAs. EMBO J. 2001;20:3617–3622.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

No benefits in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongtao Zhang.

Additional information

Jianning Song and Zhigang Bai contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, J., Bai, Z., Han, W. et al. Identification of Suitable Reference Genes for qPCR Analysis of Serum microRNA in Gastric Cancer Patients. Dig Dis Sci 57, 897–904 (2012). https://doi.org/10.1007/s10620-011-1981-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-011-1981-7

Keywords

Navigation