Skip to main content
Log in

Transplantation of placenta-derived mesenchymal stem cells in type 2 diabetes: a pilot study

  • Research Article
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSC) have been used in clinical trials for severe diabetes, a chronic disease with high morbidity and mortality. Bone marrow is the traditional source of human MSC, but human term placenta appears to be an alternative and more readily available source. Here, the therapeutic effect of human placenta-derived MSC (PD-MSC) was studied in type 2 diabetes patients with longer duration, islet cell dysfunction, high insulin doses as well as poor glycemic control in order to evaluate the safety, efficacy and feasibility of PDMSC treatment in type 2 diabetes (T2D). Ten patients with T2D received three intravenous infusions of PDSC, with one month interval of infusion. The total number of PDSC for each patient was (1.22–1.51) × 106/kg, with an average of 1.35 × 106/kg. All of the patients were followed up after therapy for at least 3 months. A daily mean dose of insulin used in 10 patients was decreased from 63.7±18.7 to 34.7±13.4 IU (P<0.01), and the C-peptide level was increased from 4.1 ±3.7 ng/mL to 5.6 ±3.8 ng/mL (P<0.05) respectively after therapy. In 4 of 10 responders their insulin doses reduced more than 50% after infusion. The mean levels of insulin and C-peptide at each time point in a total of 10 patients was higher after treatment (P<0.05). No fever, chills, liver damage and other side effects were reported. The renal function and cardiac function were improved after infusion. The results obtained from this pilot clinical trial indicate that transplantation of PD-MSC represents a simple, safe and effective therapeutic approach for T2D patients with islet cell dysfunction. Further large-scale, randomized and well-controlled clinical studies will be required to substantiate these observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang W, Lu J, Weng J P, Jia W, Ji L, Xiao J, Shan Z, Liu J, Tian H, Ji Q, Zhu D, Ge J, Lin L, Chen L, Guo X, Zhao Z, Li Q, Zhou Z, Shan G, He J. Prevalence of diabetes among men and women in China. N Engl J Med, 2010, 362(12): 1090–1101

    Article  PubMed  CAS  Google Scholar 

  2. Hu D, Sun L, Fu P, Xie J, Lu J, Zhou J, Yu D, Whelton P K, He J, Gu D. Prevalence and risk factors for type 2 diabetes mellitus in the Chinese adult population: the InterASIA Study. Diabetes Res Clin Pract, 2009, 84(3): 288–295

    Article  PubMed  CAS  Google Scholar 

  3. Kobayashi N, Yuasa T, Okitsu T. Regenerative medicine for diabetes mellitus. Cell Transplant, 2009, 18(5): 491–496

    PubMed  Google Scholar 

  4. Li G, Zhang P, Wang J, Gregg EW, Yang W, Gong Q, Li H, Li H, Jiang Y, An Y, Shuai Y, Zhang B, Zhang J, Thompson TJ, Gerzoff RB, Roglic G, Hu Y, Bennett PH. The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study: a 20-year follow-up study. Lancet, 2008; 24:371 (9626):1783–1789

    Article  Google Scholar 

  5. Ciceri F, Piemonti L. Bone marrow and pancreatic islet: an old story with new perspectives. Cell Transplant, 2010 Aug 17

  6. Kodama S, Kühtreiber W, Fujimura S, Dale E A, Faustman D L. Islet regeneration during the reversal of autoimmune diabetes in NOD mice. Science, 2003, 302(5648): 1223–1227

    Article  PubMed  CAS  Google Scholar 

  7. Pittenger M F, Mackay A M, Beck S C, Jaiswal R K, Douglas R, Mosca J D, Moorman M A, Simonetti D W, Craig S, Marshak D R. Multilineage potential of adult human mesenchymal stem cells. Science, 1999, 284(5411): 143–147

    Article  PubMed  CAS  Google Scholar 

  8. Deans R J, Moseley A B. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol, 2000, 28(8): 875–884

    Article  PubMed  CAS  Google Scholar 

  9. Gronthos S, Franklin D M, Leddy H A, Robey P G, Storms R W, Gimble J M. Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol, 2001, 189(1): 54–63

    Article  PubMed  CAS  Google Scholar 

  10. Erices A, Conget P, Minguell J J. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol, 2000, 109(1): 235–242

    Article  PubMed  CAS  Google Scholar 

  11. Lu L L, Liu Y J, Yang S G, Zhao Q J, Wang X, Gong W, Han Z B, Xu Z S, Lu Y X, Liu D, Chen Z Z, Han Z C. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica, 2006, 91(8): 1017–1026

    PubMed  CAS  Google Scholar 

  12. In’ t Anker P S, Scherjon S A, Kleijburg-van der Keur C, de Groot-Swings G M, Claas F H, Fibbe W E, Kanhai H H. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells, 2004, 22(7): 1338–1345

    Article  Google Scholar 

  13. Zheng C L, Yang S G, Guo Z X, Liao W, Zhang L, Yang R, Han Z C. Human multipotent mesenchymal stromal cells from fetal lung expressing pluripotent markers and differentiating into cell types of three germ layers. Cell Transplant, 2009, 18(10): 1093–1109

    Article  PubMed  Google Scholar 

  14. Chen K, Wang D, Du W T, Han Z B, Ren H, Chi Y, Yang S G, Zhu D, Bayard F, Han ZC. Human umbilical cord mesenchymal stem cells hUC-MSCs exert immunosuppressive activities through a PGE2-dependent mechanism. Clin Immunol, 2010, 135(3): 448–458

    Article  PubMed  CAS  Google Scholar 

  15. Wang D, Chen K, Du W T, Han Z B, Ren H, Chi Y, Yang S G, Bayard F, Zhu D, Han Z C. CD14+ monocytes promote the immunosuppressive effect of human umbilical cord matrix stem cells. Exp Cell Res, 2010, 316(15): 2414–2423

    Article  PubMed  CAS  Google Scholar 

  16. Liao W B, Xie J, Zhong J, Liu Y J, Du L, Zhou B, Xu J, Liu P X, Yang S G, Wang J M, Han Z B, Han Z C. Therapeutic effect of human umbilical cord multipotent mesenchymal stromal cells in a rat model of stroke. Transplantation, 2009, 87(3): 350–359

    Article  PubMed  Google Scholar 

  17. Zhao Q J, Ren H Y, Li X Y, Chen Z, Zhang X Y, Gong W, Liu Y J, Pang T X, Han Z C. Differentiation of Human umbilical cord mesenchymal stem cells into low immunogenic hepatocyte-like cells. Cytotherapy, 2009, 11(4): 414–426

    Article  PubMed  CAS  Google Scholar 

  18. Wu K H, Mo X M, Zhou B, Lu S H, Yang S G, Liu Y L, Han Z C. Cardiac potential of stem cells from whole human umbilical cord tissue. J Cell Biochem, 2009, 107(5): 926–932

    Article  PubMed  CAS  Google Scholar 

  19. Garcia-Olmo D, Herreros D, Pascual I, Pascual J A, Del-Valle E, Zorrilla J, De-La-Quintana P, Garcia-Arranz M, Pascual M. Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase II clinical trial. Dis Colon Rectum, 2009, 52(1): 79–86

    Article  PubMed  Google Scholar 

  20. Hare J M, Traverse J H, Henry T D, Dib N, Strumpf R K, Schulman S P, Gerstenblith G, DeMaria A N, Denktas A E, Gammon R S, Hermiller J B Jr, Reisman M A, Schaer G L, Sherman W. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol, 2009, 54(24): 2277–2286

    Article  PubMed  CAS  Google Scholar 

  21. Horwitz E M, Prockop D J, Fitzpatrick L A, Koo WW, Gordon P L, Neel M, Sussman M, Orchard P, Marx J C, Pyeritz R E, Brenner M K. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med, 1999, 5(3): 309–313

    Article  PubMed  CAS  Google Scholar 

  22. Kebriaei P, Isola L, Bahceci E, Holland K, Rowley S, McGuirk J, Devetten M, Jansen J, Herzig R, Schuster M, Monroy R, Uberti J. Adult human mesenchymal stem cells added to corticosteroid therapy for the treatment of acute graft-versus-host disease. Biol Blood Marrow Transplant, 2009, 15(7): 804–811

    Article  PubMed  CAS  Google Scholar 

  23. Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, Lanino E, Sundberg B, Bernardo ME, Remberger M, Dini G, Egeler R M, Bacigalupo A, Fibbe W, Ringdén O. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet, 2008, 371(9624): 1579–1586

    Article  PubMed  Google Scholar 

  24. Le Blanc K, Rasmusson I, Sundberg B, Götherström C, Hassan M, Uzunel M, Ringdén O. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet, 2004, 363(9419): 1439–1441

    Article  PubMed  Google Scholar 

  25. Lee P H, Kim JW, Bang O Y, Ahn Y H, Joo I S, Huh K. Autologous mesenchymal stem cell therapy delays the progression of neurological deficits in patients with multiple system atrophy. Clin Pharmacol Ther, 2008, 83(5): 723–730

    Article  PubMed  CAS  Google Scholar 

  26. Bhansali A, Upreti V, Khandelwal N, Marwaha N, Gupta V, Sachdeva N, Sharma R R, Saluja K, Dutta P, Walia R, Minz R, Bhadada S, Das S, Ramakrishnan S. Efficacy of autologous bone marrow-derived stem cell transplantation in patients with type 2 diabetes mellitus. Stem Cells Dev, 2009, 18(10): 1407–1416

    Article  PubMed  CAS  Google Scholar 

  27. Lin G, Wang G, Liu G, Yang L J, Chang L J, Lue T F, Lin C S. Treatment of type 1 diabetes with adipose tissue-derived stem cells expressing pancreatic duodenal homeobox 1. Stem Cells Dev, 2009, 18(10): 1399–1406

    Article  PubMed  CAS  Google Scholar 

  28. Liu M, Han Z C. Mesenchymal stem cells: biology and clinical potential in type 1 diabetes therapy. J Cell Mol Med, 2008, 12(4): 1155–1168

    Article  PubMed  CAS  Google Scholar 

  29. Santana A, Enseñat-Waser R, Arribas M I, Reig J A, Roche E. Insulin-producing cells derived from stem cells: recent progress and future directions. J Cell Mol Med, 2006, 10(4): 866–883

    Article  PubMed  CAS  Google Scholar 

  30. Wang H S, Shyu J F, Shen WS, Hsu H C, Chi T C, Chen C P, Huang S W, Shyr Y M, Tang K T, Chen T H. Transplantation of insulin producing cells derived from umbilical cord stromal mesenchymal stem cells to treat NOD mice. Cell Transplant, 2010 Aug 18

  31. Zhang Y, Dou Z. Transdifferentiation of bone marrow mesenchymal stem cell into islet cells to treat diabetes mellitus. J Cell Biol, 2007, 29: 1–5

    Google Scholar 

  32. Brooke G, Rossetti T, Pelekanos R, Ilic N, Murray P, Hancock S, Antonenas V, Huang G, Gottlieb D, Bradstock K, Atkinson K. Manufacturing of human placenta-derived mesenchymal stem cells for clinical trials. Br J Haematol, 2009, 144(4): 571–579

    Article  PubMed  Google Scholar 

  33. Tran T C, Kimura K, Nagano M, Yamashita T, Ohneda K, Sugimori H, Sato F, Sakakibara Y, Hamada H, Yoshikawa H, Hoang S N, Ohneda O. Identification of human placenta-derived mesenchymal stem cells involved in re-endothelialization. J Cell Physiol, 2011, 226(1): 224–235

    Article  PubMed  CAS  Google Scholar 

  34. Fukuchi Y, Nakajima H, Sugiyama D, Hirose I, Kitamura T, Tsuji K. Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells, 2004, 22(5): 649–658

    Article  PubMed  CAS  Google Scholar 

  35. Hwang J H, Shim S S, Seok O S, Lee H Y, Woo S K, Kim B H, Song H R, Lee J K, Park Y K. Comparison of cytokine expression in mesenchymal stem cells from human placenta, cord blood, and bone marrow. J Korean Med Sci, 2009, 24(4): 547–554

    Article  PubMed  CAS  Google Scholar 

  36. Parolini O, Alviano F, Bagnara G P, Bilic G, Bühring H J, Evangelista M, Hennerbichler S, Liu B, Magatti M, Mao N, Miki T, Marongiu F, Nakajima H, Nikaido T, Portmann-Lanz C B, Sankar V, Soncini M, Stadler G, Surbek D, Takahashi T A, Redl H, Sakuragawa N, Wolbank S, Zeisberger S, Zisch A, Strom S C. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells, 2008, 26(2): 300–311

    Article  PubMed  Google Scholar 

  37. Dzierzak E, Robin C. Placenta as a source of hematopoietic stem cells. Trends Mol Med, 2010, 16(8): 361–367

    Article  PubMed  CAS  Google Scholar 

  38. Lee L K, Ueno M, Van Handel B, Mikkola H K. Placenta as a newly identified source of hematopoietic stem cells. Curr Opin Hematol, 2010, 17(4): 313–318

    Article  PubMed  Google Scholar 

  39. Evangelista M, Soncini M, Parolini O. Placenta-derived stem cells: new hope for cell therapy? Cytotechnology, 2008, 58(1): 33–42

    Article  PubMed  Google Scholar 

  40. Zhou J, Ma X J, Bao Y Q, Pan X P, Lu W, Hu C, Xiang K S, Jia W P. Study on prevalence of latent autoimmune diabetes in adults and its relationship with metabolic syndrome. Zhonghua Yi Xue Za Zhi, 2009, 89(18): 1250–1254

    PubMed  CAS  Google Scholar 

  41. Salem H K, Thiemermann C. Mesenchymal stromal cells: current understanding and clinical status. Stem Cells, 2010, 28(3):585–596

    PubMed  CAS  Google Scholar 

  42. Phinny D G, Prockop D J. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair-current views. Stem Cells, 2007, 25(11):2896–2902

    Article  Google Scholar 

  43. Horwitz E M, Prather W R. Cytokines as the major mechanism of mesenchymal stem cell clinical activity: expanding the spectrum of cell therapy. Isr Med Assoc J, 2009, 11(4): 209–211

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Chao Han.

Additional information

Ranhua JIANG, Zhibo HAN and Guangsheng ZHUO contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, R., Han, Z., Zhuo, G. et al. Transplantation of placenta-derived mesenchymal stem cells in type 2 diabetes: a pilot study. Front. Med. 5, 94–100 (2011). https://doi.org/10.1007/s11684-011-0116-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-011-0116-z

Keywords

Navigation