Skip to main content

Advertisement

Log in

Association between bisphenol A and abnormal free thyroxine level in men

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Bisphenol A (BPA) is a chemical that is used in a variety of consumer products, and exposure to BPA is widespread among the general population. Recent studies have suggested that BPA may affect the thyroid and related pathways. However, human studies are still limited. The aim of this study was to determine the relationship between BPA exposure and thyroid function. We obtained survey data and blood samples from The Thai National Health Examination Survey IV 2009, a nationally representative cross-sectional survey using a multistage, stratified sampling of the Thai population. A total of 2,340 subjects aged 18–94 years were sampled for the present study. Serum BPA, TSH, FT4, and related covariates were measured. BPA was log-transformed prior to analysis. BPA was detected in 52.8 % of serum samples with a median concentration of 0.33 (range 0–66.91) ng/mL. We excluded subjects who tested positive for thyroid autoantibody and then stratified the remaining subjects by gender; the analysis showed a significantly negative correlation between serum BPA and FT4 levels in males (r = −0.14, P < 0.001). In contrast, no association was observed in females. BPA was not associated with TSH in either gender. This gender-related discrepancy is possibly related to androgen-related differences in the metabolism of BPA. Our preliminary results provide evidence of a negative association between BPA and FT4 levels. Additional detailed studies are needed to investigate the temporal relationship and potential public health implications of such an association.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. A.M. Calafat, X. Ye, L.Y. Wong, J.A. Reidy, L.L. Needham, Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003-2004. Environ. Health Perspect. 116(1), 39–44 (2008)

    Article  PubMed  CAS  Google Scholar 

  2. G.A. Csanady, H.R. Oberste-Frielinghaus, B. Semder, C. Baur, K.T. Schneider, J.G. Filser, Distribution and unspecific protein binding of the xenoestrogens bisphenol A and daidzein. Arch. Toxicol. 76(5–6), 299–305 (2002)

    PubMed  CAS  Google Scholar 

  3. M.F. Fernandez, J.P. Arrebola, J. Taoufiki, A. Navalon, O. Ballesteros, R. Pulgar, J.L. Vilchez, N. Olea, Bisphenol-A and chlorinated derivatives in adipose tissue of women. Reprod. Toxicol. 24(2), 259–264 (2007)

    Article  PubMed  CAS  Google Scholar 

  4. Y. Ikezuki, O. Tsutsumi, Y. Takai, Y. Kamei, Y. Taketani, Determination of bisphenol A concentrations in human biological fluids reveals significant early prenatal exposure. Hum. Reprod. 17(11), 2839–2841 (2002)

    Article  PubMed  CAS  Google Scholar 

  5. G. Schonfelder, W. Wittfoht, H. Hopp, C.E. Talsness, M. Paul, I. Chahoud, Parent bisphenol A accumulation in the human maternal-fetal-placental unit. Environ. Health Perspect. 110(11), A703–A707 (2002)

    Article  PubMed  Google Scholar 

  6. B.S. Rubin, Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects. J. Steroid Biochem. Mol. Biol. 127(1–2), 27–34 (2011)

    Article  PubMed  CAS  Google Scholar 

  7. K. Moriyama, T. Tagami, T. Akamizu, T. Usui, M. Saijo, N. Kanamoto, Y. Hataya, A. Shimatsu, H. Kuzuya, K. Nakao, Thyroid hormone action is disrupted by bisphenol A as an antagonist. J. Clin. Endocrinol. Metab. 87(11), 5185–5190 (2002)

    Article  PubMed  CAS  Google Scholar 

  8. H. Sun, O.X. Shen, X.R. Wang, L. Zhou, S.Q. Zhen, X.D. Chen, Anti-thyroid hormone activity of bisphenol A, tetrabromobisphenol A and tetrachlorobisphenol A in an improved reporter gene assay. Toxicol. In Vitro 23(5), 950–954 (2009)

    Article  PubMed  CAS  Google Scholar 

  9. R.T. Zoeller, R. Bansal, C. Parris, Bisphenol-A, an environmental contaminant that acts as a thyroid hormone receptor antagonist in vitro, increases serum thyroxine, and alters RC3/neurogranin expression in the developing rat brain. Endocrinology 146(2), 607–612 (2005)

    Article  PubMed  CAS  Google Scholar 

  10. S. Iwamuro, M. Sakakibara, M. Terao, A. Ozawa, C. Kurobe, T. Shigeura, M. Kato, S. Kikuyama, Teratogenic and anti-metamorphic effects of bisphenol A on embryonic and larval Xenopus laevis. Gen. Comp. Endocrinol. 133(2), 189–198 (2003)

    Article  PubMed  CAS  Google Scholar 

  11. C. Seiwa, J. Nakahara, T. Komiyama, Y. Katsu, T. Iguchi, H. Asou, Bisphenol A exerts thyroid-hormone-like effects on mouse oligodendrocyte precursor cells. Neuroendocrinology 80(1), 21–30 (2004)

    Article  PubMed  CAS  Google Scholar 

  12. M. Kaneko, R. Okada, K. Yamamoto, M. Nakamura, G. Mosconi, A.M. Polzonetti-Magni, S. Kikuyama, Bisphenol A acts differently from and independently of thyroid hormone in suppressing thyrotropin release from the bullfrog pituitary. Gen. Comp. Endocrinol. 155(3), 574–580 (2008)

    Article  PubMed  CAS  Google Scholar 

  13. M. Song, Y.J. Kim, M.K. Song, H.S. Choi, Y.K. Park, J.C. Ryu, Identification of classifiers for increase or decrease of thyroid peroxidase activity in the FTC-238/hTPO recombinant cell line. Environ. Sci. Technol. 45(18), 7906–7914 (2011)

    Article  PubMed  CAS  Google Scholar 

  14. P. Nieminen, P. Lindstrom-Seppa, M. Juntunen, J. Asikainen, A.M. Mustonen, S.L. Karonen, H. Mussalo-Rauhamaa, J.V. Kukkonen, In vivo effects of bisphenol A on the polecat (Mustela putorius). J. Toxicol. Environ. Health A 65(13), 933–945 (2002)

    Article  PubMed  CAS  Google Scholar 

  15. P. Nieminen, P. Lindstrom-Seppa, A.M. Mustonen, H. Mussalo-Rauhamaa, J.V. Kukkonen, Bisphenol A affects endocrine physiology and biotransformation enzyme activities of the field vole (Microtus agrestis). Gen. Comp. Endocrinol. 126(2), 183–189 (2002)

    Article  PubMed  CAS  Google Scholar 

  16. X. Xu, Y. Liu, M. Sadamatsu, S. Tsutsumi, M. Akaike, H. Ushijima, N. Kato, Perinatal bisphenol A affects the behavior and SRC-1 expression of male pups but does not influence on the thyroid hormone receptors and its responsive gene. Neurosci. Res. 58(2), 149–155 (2007)

    Article  PubMed  CAS  Google Scholar 

  17. J.D. Meeker, K.K. Ferguson, Relationship between urinary phthalate and bisphenol A concentrations and serum thyroid measures in U.S. adults and adolescents from the National Health and Nutrition Examination Survey (NHANES) 2007–2008. Environ. Health Perspect. 119(10), 1396–1402 (2011)

    Article  PubMed  CAS  Google Scholar 

  18. J.D. Meeker, A.M. Calafat, R. Hauser, Urinary bisphenol A concentrations in relation to serum thyroid and reproductive hormone levels in men from an infertility clinic. Environ. Sci. Technol. 44(4), 1458–1463 (2010)

    Article  PubMed  CAS  Google Scholar 

  19. Z. Zhang, H. Alomirah, H.S. Cho, Y.F. Li, C. Liao, T.B. Minh, M.A. Mohd, H. Nakata, N. Ren, K. Kannan, Urinary bisphenol A concentrations and their implications for human exposure in several Asian countries. Environ. Sci. Technol. 45(16), 7044–7050 (2011)

    Article  PubMed  CAS  Google Scholar 

  20. W. Aekplakorn, S. Chariyalertsak, P. Kessomboon, R. Sangthong, R. Inthawong, P. Putwatana, S. Taneepanichskul, Prevalence and management of diabetes and metabolic risk factors in Thai adults: the Thai National Health Examination Survey IV, 2009. Diabetes Care 34(9), 1980–1985 (2011)

    Article  PubMed  Google Scholar 

  21. B. de Benoist, M. Andersson, I. Igli, B. Takkouche, H. Allen, Iodine Status Worldwide: WHO Global Database on Iodine Deficiency (WHO, Geneva, 2004)

    Google Scholar 

  22. W. Charoensiriwatana, P. Srijantr, P. Teeyapant, J. Wongvilairattana, Consuming iodine enriched eggs to solve the iodine deficiency endemic for remote areas in Thailand. Nutr. J. 9, 68 (2010)

    Article  PubMed  CAS  Google Scholar 

  23. S.S. Andra, K.C. Makris, Thyroid disrupting chemicals in plastic additives and thyroid health. J. Environ. Sci. Health C 30(2), 107–151 (2012)

    Article  CAS  Google Scholar 

  24. M.W. Elmlinger, W. Kuhnel, H.G. Lambrecht, M.B. Ranke, Reference intervals from birth to adulthood for serum thyroxine (T4), triiodothyronine (T3), free T3, free T4, thyroxine binding globulin (TBG) and thyrotropin (TSH). Clin. Chem. Lab. Med. 39(10), 973–979 (2001)

    Article  PubMed  CAS  Google Scholar 

  25. T. Bushnik, D. Haines, P. Levallois, J. Levesque, J. Van Oostdam, C. Viau, Lead and bisphenol A concentrations in the Canadian population. Health Rep. 21(3), 7–18 (2010)

    PubMed  Google Scholar 

  26. K. Kim, H. Park, W. Yang, J.H. Lee, Urinary concentrations of bisphenol A and triclosan and associations with demographic factors in the Korean population. Environ. Res. 111(8), 1280–1285 (2011)

    Article  PubMed  CAS  Google Scholar 

  27. A.G. Asimakopoulos, N.S. Thomaidis, M.A. Koupparis, Recent trends in biomonitoring of bisphenol A, 4-t-octylphenol, and 4-nonylphenol. Toxicol. Lett. 210(2), 141–154 (2012)

    Article  PubMed  CAS  Google Scholar 

  28. V.J. Pop, E.P. Brouwers, H.L. Vader, T. Vulsma, A.L. van Baar, J.J. de Vijlder, Maternal hypothyroxinaemia during early pregnancy and subsequent child development: a 3-year follow-up study. Clin. Endocrinol. (Oxf) 59(3), 282–288 (2003)

    Article  Google Scholar 

  29. P. Berbel, J.L. Mestre, A. Santamaria, I. Palazon, A. Franco, M. Graells, A. Gonzalez-Torga, G.M. de Escobar, Delayed neurobehavioral development in children born to pregnant women with mild hypothyroxinemia during the first month of gestation: the importance of early iodine supplementation. Thyroid 19(5), 511–519 (2009)

    Article  PubMed  CAS  Google Scholar 

  30. J. Henrichs, J.J. Bongers-Schokking, J.J. Schenk, A. Ghassabian, H.G. Schmidt, T.J. Visser, H. Hooijkaas, S.M. de Muinck Keizer-Schrama, A. Hofman, V.V. Jaddoe, W. Visser, E.A. Steegers, F.C. Verhulst, Y.B. de Rijke, H. Tiemeier, Maternal thyroid function during early pregnancy and cognitive functioning in early childhood: the generation R study. J. Clin. Endocrinol. Metab. 95(9), 4227–4234 (2010)

    Article  PubMed  CAS  Google Scholar 

  31. R.A. Heimeier, B. Das, D.R. Buchholz, Y.B. Shi, The xenoestrogen bisphenol A inhibits postembryonic vertebrate development by antagonizing gene regulation by thyroid hormone. Endocrinology 150(6), 2964–2973 (2009)

    Article  PubMed  CAS  Google Scholar 

  32. S. Kitamura, N. Jinno, S. Ohta, H. Kuroki, N. Fujimoto, Thyroid hormonal activity of the flame retardants tetrabromobisphenol A and tetrachlorobisphenol A. Biochem. Biophys. Res. Commun. 293(1), 554–559 (2002)

    Article  PubMed  CAS  Google Scholar 

  33. Z.G. Sheng, Y. Tang, Y.X. Liu, Y. Yuan, B.Q. Zhao, X.J. Chao, B.Z. Zhu, Low concentrations of bisphenol a suppress thyroid hormone receptor transcription through a non-genomic mechanism. Toxicol. Appl. Pharmacol. 259(1), 133–142 (2012)

    Article  PubMed  CAS  Google Scholar 

  34. W.K. Chan, K.M. Chan, Disruption of the hypothalamic-pituitary-thyroid axis in zebrafish embryo-larvae following waterborne exposure to BDE-47, TBBPA and BPA. Aquat. Toxicol. 108, 106–111 (2011)

    Article  PubMed  Google Scholar 

  35. Y. Wan, K. Choi, S. Kim, K. Ji, H. Chang, S. Wiseman, P.D. Jones, J.S. Khim, S. Park, J. Park, M.H. Lam, J.P. Giesy, Hydroxylated polybrominated diphenyl ethers and bisphenol A in pregnant women and their matching fetuses: placental transfer and potential risks. Environ. Sci. Technol. 44(13), 5233–5239 (2010)

    Article  PubMed  CAS  Google Scholar 

  36. M. Sugiura-Ogasawara, Y. Ozaki, S. Sonta, T. Makino, K. Suzumori, Exposure to bisphenol A is associated with recurrent miscarriage. Hum. Reprod. 20(8), 2325–2329 (2005)

    Article  PubMed  CAS  Google Scholar 

  37. F. Wang, J. Hua, M. Chen, Y. Xia, Q. Zhang, R. Zhao, W. Zhou, Z. Zhang, B. Wang, High urinary bisphenol A concentrations in workers and possible laboratory abnormalities. Occup. Environ. Med. 69(9), 679–684 (2012)

    Article  PubMed  CAS  Google Scholar 

  38. C. Viguie, S.H. Collet, V. Gayrard, N. Picard-Hagen, S. Puel, B.B. Roques, P.L. Toutain, M.Z. Lacroix, Maternal and fetal exposure to bisphenol a is associated with alterations of thyroid function in pregnant ewes and their newborn lambs. Endocrinology 154(1), 521–528 (2013)

    Article  PubMed  CAS  Google Scholar 

  39. J. Chevrier, R.B. Gunier, A. Bradman, N.T. Holland, A.M. Calafat, B. Eskenazi, K.G. Harley, Maternal urinary bisphenol A during pregnancy and maternal and neonatal thyroid function in the CHAMACOS study. Environ. Health Perspect. 121(1), 138–144 (2013)

    PubMed  Google Scholar 

  40. T. Takeuchi, O. Tsutsumi, Serum bisphenol a concentrations showed gender differences, possibly linked to androgen levels. Biochem. Biophys. Res. Commun. 291(1), 76–78 (2002)

    Article  PubMed  CAS  Google Scholar 

  41. T. Takeuchi, O. Tsutsumi, N. Nakamura, Y. Ikezuki, Y. Takai, T. Yano, Y. Taketani, Gender difference in serum bisphenol A levels may be caused by liver UDP-glucuronosyltransferase activity in rats. Biochem. Biophys. Res. Commun. 325(2), 549–554 (2004)

    Article  PubMed  CAS  Google Scholar 

  42. N. Shibata, J. Matsumoto, K. Nakada, A. Yuasa, H. Yokota, Male-specific suppression of hepatic microsomal UDP-glucuronosyl transferase activities toward sex hormones in the adult male rat administered bisphenol A. Biochem J. 368(Pt 3), 783–788 (2002)

    Article  PubMed  CAS  Google Scholar 

  43. G. Mastorakos, E.I. Karoutsou, M. Mizamtsidi, G. Creatsas, The menace of endocrine disruptors on thyroid hormone physiology and their impact on intrauterine development. Endocrine 31(3), 219–237 (2007)

    Article  PubMed  CAS  Google Scholar 

  44. M.D. Miller, K.M. Crofton, D.C. Rice, R.T. Zoeller, Thyroid-disrupting chemicals: interpreting upstream biomarkers of adverse outcomes. Environ. Health Perspect. 117(7), 1033–1041 (2009)

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

NHES IV was conducted by the National Health Examination Survey Office, Health Systems Research Institute, Thailand. The NHES IV study group includes: National Health Examination Survey Office: Wichai Aekplakorn, Rungkarn Inthawong, Jiraluck Nonthaluck, Supornsak Tipsukum, Yawarat Porrapakkham; Northern region: Suwat Chariyalertsak, Kanittha Thaikla (Chiang Mai University), Wongsa Laohasiriwong, Wanlop Jaidee, Sutthinan Srathonghon, Ratana Phanphanit, Jiraporn Suwanteerangkul, Kriangkai Srithanaviboonchai; North Eastern Region: Pattapong Kessomboon, Somdej Pinitsoontorn, Piyathida Kuhirunyaratn, Sauwanan Bumrerraj, Amornrat Rattanasiri, Suchad Paileeklee, Bangornsri Jindawong, Napaporn Krusun, Weerapong Seeupalat (Khon Kaen University); Southern region: Virasakdi Chongsuvivatwong, Rassamee Sangthong, Mafausis Dueravee (Prince of Songkla University); Central Region: Surasak Taneepanichskul, Somrat Lertmaharit, Vilai Chinveschakitvanich, Onuma Zongram, Nuchanad Hounnaklang, Sukarin Wimuktayon (Chulalongkorn University); Bangkok Region: Panwadee Putwatana, Chalermsri Nuntawan, Karn Chaladthanyagid (Mahidol University). The Thai National Health Examination Survey IV was supported financially by the Health System Research Institute; Bureau of Policy and Strategy, Ministry of Public Health; Thai Health Promotion Foundation; National Health Security Office, Thailand. The assays for TSH, TPOAb, and TgAb were partially supported by Roche Diagnostics Thailand.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wichai Aekplakorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sriphrapradang, C., Chailurkit, Lo., Aekplakorn, W. et al. Association between bisphenol A and abnormal free thyroxine level in men. Endocrine 44, 441–447 (2013). https://doi.org/10.1007/s12020-013-9889-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-013-9889-y

Keywords

Navigation