Skip to main content

Advertisement

Log in

Association of Serum Bisphenol-A Concentration and Male Reproductive Function Among Exposed Workers

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Bisphenol-A (BPA) can alter endocrine function in animals, yet the relationship between human exposure to BPA and male reproductive function is not well understood. We collected serum samples from 281 male workers exposed to BPA and 278 controls. Serum BPA concentrations were analyzed by gas chromatography–mass spectrometry after derivatization. The serum levels of sex hormone-binding globulin (SHBG) and total testosterone (TT) were detected by radioimmunoassay and levels of inhibin B (INB) and androstenedione (AD) by enzyme-linked immunosorbent assay. We examined the association of BPA exposure and male sex hormone levels by multivariable linear regression. Both serum BPA concentrations and detection rates were greater in males exposed than those not exposed to BPA, but the two groups did not differ in levels of SHBG, TT, INB, or AD. Compared with exposure for ≤5 years, exposure for >5 years was associated with increased serum BPA and SHBG 1evels and decreased AD levels. Compared with undetectable BPA and BPA ≤ 18.75 ng/mL, BPA level >18.75 ng/mL was associated with low AD and high SHBG levels (P < 0.05). On adjusted multivariable regression, increased serum BPA level was associated with decreased mean serum AD level (0.18 ng/mL; 95 % confidence interval CI −0.22 to −0.13) and increased mean serum SHBG level (2.79 nmol/L; 95 % CI 2.11–3.46). Serum BPA levels were increased after occupational exposure. BPA exposure was negatively associated with serum AD level but positively associated with serum SHBG level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Asimakopoulos AG, Thomaidis NS, Koupparis MA (2012) Recent trends in biomonitoring of bisphenol A, 4-t-octylphenol, and 4-nonylphenol. Toxicol Lett 210:141–154

    Article  CAS  Google Scholar 

  • Caserta D, Bordi G, Ciardo F, Marci R, La Rocca C, Tait S et al (2013) The influence of endocrine disruptors in a selected population of infertile women. Gynecol Endocrinol 29:444–447

    Article  CAS  Google Scholar 

  • Crain DA, Noriega N, Vonier PM, Arnold SF, McLachlan JA, Guillette LJ Jr (1998) Cellular bioavailability of natural hormones and environmental contaminants as a function of serum and cytosolic binding factors. Toxicol Ind Health 14:261–273

    Article  CAS  Google Scholar 

  • Dechaud H, Ravard C, Claustrat F, de la Perriere AB, Pugeat M (1999) Xenoestrogen interaction with human sex hormone-binding globulin (hSHBG). Steroids 64:328–334

    Article  CAS  Google Scholar 

  • Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM et al (2009) Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev 30:293–342

    Article  CAS  Google Scholar 

  • Dodds EC, Lawson W (1938) Molecular structure in relation to oestrogenic activity. Compounds without a phenanthrerene nucleus. Proc R Soc Lond B Biol Sci 125:222–232

    Article  CAS  Google Scholar 

  • Ekman DR, Hartig PC, Cardon M, Skelton DM, Teng Q, Durhan EJ et al (2012) Metabolite profiling and a transcriptional activation assay provide direct evidence of androgen receptor antagonism by bisphenol A in fish. Environ Sci Technol 46:9673–9680

    Article  CAS  Google Scholar 

  • Galloway T, Cipelli R, Guralnik J, Ferrucci L, Bandinelli S, Corsi AM et al (2010) Daily bisphenol A excretion and associations with sex hormone concentrations: results from the InCHIANTI Adult Population Study. Environ Health Perspect 118:1603–1608

    Article  CAS  Google Scholar 

  • Geens T, Neels H, Covaci A (2009a) Sensitive and selective method for the determination of bisphenol-A and triclosan in serum and urine as pentafluorobenzoate-derivatives using GC-ECNI/MS. J Chromatogr B Analyt Technol Biomed Life Sci 877:4042–4046

    Article  CAS  Google Scholar 

  • Geens T, Roosens L, Neels H, Covaci A (2009b) Assessment of human exposure to bisphenol-A, triclosan and tetrabromobisphenol-A through indoor dust intake in Belgium. Chemosphere 76:755–760

    Article  CAS  Google Scholar 

  • Gregoraszczuk EL, Ptak A, Wrobel A (2011) The ability of hydroxylated estrogens (2-OH-E2 and 4-OH-E2) to increase of SHBG gene, protein expression and intracellular levels in MCF-7 cells line. Endocr Regul 45:125–130

    Article  CAS  Google Scholar 

  • Hanaoka T, Kawamura N, Hara K, Tsugane S (2002) Urinary bisphenol A and plasma hormone concentrations in male workers exposed to bisphenol A diglycidyl ether and mixed organic solvents. Occup Environ Med 59:625–628

    Article  CAS  Google Scholar 

  • Huang YQ, Wong CK, Zheng JS, Bouwman H, Barra R, Wahlstrom B et al (2012) Bisphenol A (BPA) in China: a review of sources, environmental levels, and potential human health impacts. Environ Int 42:91–99

    Article  CAS  Google Scholar 

  • Ikezuki Y, Tsutsumi O, Takai Y, Kamei Y, Taketani Y (2002) Determination of bisphenol A concentrations in human biological fluids reveals significant early prenatal exposure. Hum Reprod 17:2839–2841

    Article  CAS  Google Scholar 

  • Kuzbari O, Peterson CM, Franklin MR, Hathaway LB, Johnstone EB, Hammoud AO et al (2013) Comparative analysis of human CYP3A4 and rat CYP3A1 induction and relevant gene expression by bisphenol A and diethylstilbestrol: implications for toxicity testing paradigms. Reprod Toxicol 37:24–30

    Article  CAS  Google Scholar 

  • Lee HJ, Chattopadhyay S, Gong EY, Ahn RS, Lee K (2003) Antiandrogenic effects of bisphenol A and nonylphenol on the function of androgen receptor. Toxicol Sci 75:40–46

    Article  CAS  Google Scholar 

  • Li D, Zhou Z, Qing D, He Y, Wu T, Miao M et al (2010) Occupational exposure to bisphenol-A (BPA) and the risk of self-reported male sexual dysfunction. Hum Reprod 25:519–527

    Article  CAS  Google Scholar 

  • Li DK, Zhou Z, Miao M, He Y, Wang J, Ferber J et al (2011) Urine bisphenol-A (BPA) level in relation to semen quality. Fertil Steril 95(625–630):e1–e4

    Google Scholar 

  • Markey CM, Michaelson CL, Veson EC, Sonnenschein C, Soto AM (2001) The mouse uterotrophic assay: a reevaluation of its validity in assessing the estrogenicity of bisphenol A. Environ Health Perspect 109:55–60

    Article  CAS  Google Scholar 

  • Meeker JD, Ehrlich S, Toth TL, Wright DL, Calafat AM, Trisini AT et al (2010) Semen quality and sperm DNA damage in relation to urinary bisphenol A among men from an infertility clinic. Reprod Toxicol 30:532–539

    Article  CAS  Google Scholar 

  • Mendiola J, Jorgensen N, Andersson AM, Calafat AM, Ye XY, Redmon JB et al (2010) Are environmental levels of bisphenol A associated with reproductive function in fertile men? Environ Health Perspect 118:1286–1291

    Article  CAS  Google Scholar 

  • Mlynarcikova A, Kolena J, Fickova M, Scsukova S (2005) Alterations in steroid hormone production by porcine ovarian granulosa cells caused by bisphenol A and bisphenol A dimethacrylate. Mol Cell Endocrinol 244:57–62

    Article  CAS  Google Scholar 

  • Oehlmann J, Schulte-Oehlmann U, Kloas W, Jagnytsch O, Lutz I, Kusk KO et al (2009) A critical analysis of the biological impacts of plasticizers on wildlife. Philos Trans R Soc Lond B Biol Sci 364:2047–2062

    Article  CAS  Google Scholar 

  • Peretz J, Gupta RK, Singh J, Hernandez-Ochoa I, Flaws JA (2011) Bisphenol A impairs follicle growth, inhibits steroidogenesis, and downregulates rate-limiting enzymes in the estradiol biosynthesis pathway. Toxicol Sci 119:209–217

    Article  CAS  Google Scholar 

  • Richter CA, Birnbaum LS, Farabollini F, Newbold RR, Rubin BS, Talsness CE et al (2007) In vivo effects of bisphenol A in laboratory rodent studies. Reprod Toxicol 24:199–224

    Article  CAS  Google Scholar 

  • Rubin BS (2011) Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects. J Steroid Biochem Mol Biol 127:27–34

    Article  CAS  Google Scholar 

  • Rubin BS, Soto AM (2009) Bisphenol A: perinatal exposure and body weight. Mol Cell Endocrinol 304:55–62

    Article  CAS  Google Scholar 

  • Sugiura-Ogasawara M, Ozaki Y, Sonta S, Makino T, Suzumori K (2005) Exposure to bisphenol A is associated with recurrent miscarriage. Hum Reprod 20:2325–2329

    Article  CAS  Google Scholar 

  • Takayanagi S, Tokunaga T, Liu X, Okada H, Matsushima A, Shimohigashi Y (2006) Endocrine disruptor bisphenol A strongly binds to human estrogen-related receptor gamma (ERRgamma) with high constitutive activity. Toxicol Lett 167:95–105

    Article  CAS  Google Scholar 

  • Takeuchi T, Tsutsumi O, Ikezuki Y, Takai Y, Taketani (2004) Positive relationship between androgen and the endocrine disruptor, bisphenol A, in normal women and women with ovarian dysfunction. Endocr J 51:165–169

    Article  CAS  Google Scholar 

  • Tollefsen KE, Ovrevik J, Stenersen J (2004) Binding of xenoestrogens to the sex steroid-binding protein in plasma from Arctic charr (Salvelinus alpinus L.). Comp Biochem Physiol C: Toxicol Pharmacol 139:127–133

    Google Scholar 

  • Toyama Y, Yuasa S (2004) Effects of neonatal administration of 17beta-estradiol, beta-estradiol 3-benzoate, or bisphenol A on mouse and rat spermatogenesis. Reprod Toxicol 19:181–188

    Article  CAS  Google Scholar 

  • Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV (2007) Human exposure to bisphenol A (BPA). Reprod Toxicol 24:139–177

    Article  CAS  Google Scholar 

  • Vandenberg LN, Chahoud I, Heindel JJ, Padmanabhan V, Paumgartten FJ, Schoenfelder G (2010) Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Environ Health Perspect 118:1055–1070

    Article  CAS  Google Scholar 

  • Wozniak AL, Bulayeva NN, Watson CS (2005) Xenoestrogens at picomolar to nanomolar concentrations trigger membrane estrogen receptor-alpha-mediated Ca2+ fluxes and prolactin release in GH3/B6 pituitary tumor cells. Environ Health Perspect 113:431–439

    Article  CAS  Google Scholar 

  • Wright-Walters M, Volz C, Talbott E, Davis D (2011) An updated weight of evidence approach to the aquatic hazard assessment of Bisphenol A and the derivation a new predicted no effect concentration (Pnec) using a nonparametric methodology. Sci Total Environ 409:676–685

    Article  CAS  Google Scholar 

  • Yamada H, Furuta I, Kato EH, Kataoka S, Usuki Y, Kobashi G et al (2002) Maternal serum and amniotic fluid bisphenol A concentrations in the early second trimester. Reprod Toxicol 16:735–739

    Article  CAS  Google Scholar 

  • Ye LP, Zhao BH, Hu GX, Chu YH, Ge RS (2011) Inhibition of human and rat testicular steroidogenic enzyme activities by bisphenol A. Toxicol Lett 207:137–142

    Article  CAS  Google Scholar 

  • Zhang XW, Chang H, Wiseman S, He YH, Higley E, Jones P et al (2011) Bisphenol A disrupts steroidogenesis in human H295R cells. Toxicol Sci 121:320–327

    Article  CAS  Google Scholar 

  • Zhou W, Liu J, Liao L, Han S (2008) Effect of bisphenol A on steroid hormone production in rat ovarian theca-interstitial and granulosa cells. Mol Cell Endocrinol 283:12–18

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to all of the volunteers for participating in the study. This work was supported by the Science and Technology Innovating Project of Guangdong Province Office of Education (Grant No. 2012KJCX0054) and the Medical Scientific Research Foundation of Guangdong Province, China (Grant No. A2013392).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kusheng Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, W., Wu, K., Wang, Y. et al. Association of Serum Bisphenol-A Concentration and Male Reproductive Function Among Exposed Workers. Arch Environ Contam Toxicol 68, 38–45 (2015). https://doi.org/10.1007/s00244-014-0078-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-014-0078-7

Keywords

Navigation