Skip to main content

Advertisement

Log in

Pregnancy-associated plasma protein (PAPP)-A expressed in the mammary gland controls epithelial cell proliferation and differentiation

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Lactation is an important event in all-mammalian species. To investigate the role of pregnancy-associated plasma protein (PAPP)-A in lactogenesis, we determined (i) PAPP-A expression in mouse mammary glands and (ii) the biological functions of PAPP-A in mammary epithelial cells. PAPP-A mRNA level was low during early mid pregnancy and increased during mid-late pregnancy, and then slightly decreased during lactation. Cell proliferation signals, but not differentiation, increased PAPP-A mRNA expression in HC11 mammary epithelial cells. Treatment of recombinant PAPP-A protein stimulated HC11 cell proliferation and suppressed the expression of β-casein mRNA, which is one of the milk proteins and cell differentiation marker. Surprisingly, in forcing expression experiment, PAPP-A increased β-casein mRNA expression. Our data suggest that PAPP-A has different roles on intracellular expressing and extracellular treatment to mammary epithelial cells. Taken together, in early pregnancy, circulating PAPP-A protein might be supplied from other organs and stimulates mammary gland growth. In contrast, during mid-late pregnancy, local PAPP-A expression begins and enhances cell differentiation within mammary epithelial cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K. Joshi, J.T. Ellis, C.M. Hughes, P. Monaghan, A.M. Neville, Cellular proliferation in the rat mammary gland during pregnancy and lactation. Lab. Invest. 54, 52–61 (1986)

    PubMed  CAS  Google Scholar 

  2. S.R. Wellings, K.B. DeOme, D.R. Pitelka, Electron microscopy of milk secretion in the mammary gland of the C3H/Crg1 mouse; I, Cytomorphology of the prelactating and the lactating gland. J. Natl Cancer Inst. 25, 393–421 (1960)

    PubMed  CAS  Google Scholar 

  3. T.M. Lin, S.P. Halbert, W.N. Spellacy, Measurement of pregnancy-associated plasma proteins during human gestation. J. Clin. Invest. 54, 576–582 (1974)

    Article  PubMed  CAS  Google Scholar 

  4. J. Massé, Y. Giguère, A. Kharfi, J. Girouard, J.C. Forest, Pathophysiology and maternal biologic markers of preeclampsia. Endocrine 19, 113–125 (2002)

    Article  PubMed  Google Scholar 

  5. G.C. Smith, E.J. Stenhouse, J.A. Crossley, D.A. Aitken, A.D. Cameron et al., Early pregnancy levels of pregnancy-associated plasma protein a and the risk of intrauterine growth restriction, premature birth, preeclampsia, and stillbirth. J. Clin. Endocrinol. Metab. 87, 1762–1767 (2002)

    Article  PubMed  CAS  Google Scholar 

  6. L.K. Proctor, M. Toal, S. Keating, D. Chitayat, N. Okun et al., Placental size and the prediction of severe early-onset intrauterine growth restriction in women with low pregnancy-associated plasma protein-A. Ultrasound Obstet. Gynecol. 34, 274–282 (2009)

    Article  PubMed  CAS  Google Scholar 

  7. A. Bayes-Genis, C.A. Conover, M.T. Overgaard, K.R. Bailey, M. Christiansen et al., Pregnancy-associated plasma protein A as a marker of acute coronary syndromes. N. Engl. J. Med. 345, 1022–1029 (2001)

    Article  PubMed  CAS  Google Scholar 

  8. M.T. Overgaard, E.S. Sorensen, D. Stachowiak, H.B. Boldt, L. Kristensen et al., Complex of pregnancy-associated plasma protein-A and the proform of eosinophil major basic protein. Disulfide structure and carbohydrate attachment. J. Biol. Chem. 278, 2106–2117 (2003)

    Article  PubMed  CAS  Google Scholar 

  9. P. Monget, S. Mazerbourg, T. Delpuech, M.C. Maurel, S. Manière et al., Pregnancy-associated plasma protein-A is involved in insulin-like growth factor binding protein-2 (IGFBP-2) proteolytic degradation in bovine and porcine preovulatory follicles: identification of cleavage site and characterization of IGFBP-2 degradation. Biol. Reprod. 68, 77–86 (2003)

    Article  PubMed  CAS  Google Scholar 

  10. J.B. Lawrence, C. Oxvig, M.T. Overgaard, L. Sottrup-Jensen, G.J. Gleich et al., The insulin-like growth factor (IGF)-dependent IGF binding protein-4 protease secreted by human fibroblasts is pregnancy-associated plasma protein-A. Proc. Natl Acad. Sci. USA 96, 3149–3153 (1999)

    Article  PubMed  CAS  Google Scholar 

  11. L.S. Laursen, M.T. Overgaard, R. Soe, H.B. Boldt, L. Sottrup-Jensen et al., Pregnancy-associated plasma protein-A (PAPP-A) cleaves insulin-like growth factor binding protein (IGFBP)-5 independent of IGF: implications for the mechanism of IGFBP-4 proteolysis by PAPP-A. FEBS Lett. 504, 36–40 (2001)

    Article  PubMed  CAS  Google Scholar 

  12. I. Varela-Nieto, M. Hartl, I. Gorospe, Y. León, Anti-apoptotic actions of insulin-like growth factors: lessons from development and implications in neoplastic cell transformation. Curr. Pharm. Des. 13, 687–703 (2007)

    Article  PubMed  CAS  Google Scholar 

  13. A.M. Arafat, M.O. Weickert, J. Frystyk, J. Spranger, C. Schöfl et al., The role of insulin-like growth factor (IGF) binding protein-2 in the insulin-mediated decrease in IGF-I bioactivity. J. Clin. Endocrinol. Metab. 94, 5093–5101 (2009)

    Article  PubMed  CAS  Google Scholar 

  14. K.A. Woods, F. Dastot, M.A. Preece, A.J. Clark, M.C. Postel-Vinay et al., Phenotype: genotype relationships in growth hormone insensitivity syndrome. J. Clin. Endocrinol. Metab. 82, 3529–3535 (1997)

    Article  PubMed  CAS  Google Scholar 

  15. G. Bonapace, D. Concolino, S. Formicola, P. Strisciuglio, A novel mutation in a patient with insulin-like growth factor 1 (IGF1) deficiency. J. Med. Genet. 40, 913–917 (2003)

    Article  PubMed  CAS  Google Scholar 

  16. M.J. Walenkamp, M. Karperien, A.M. Pereira, Y. Hilhorst-Hofstee, J. van Doorn et al., Homozygous and heterozygous expression of a novel insulin-like growth factor-I mutation. J. Clin. Endocrinol. Metab. 90, 2855–2864 (2005)

    Article  PubMed  CAS  Google Scholar 

  17. M.J. Walenkamp, J.M. Wit, Genetic disorders in the GH IGF-I axis in mouse and man. Eur. J. Endocrinol. 157(Suppl 1), S15–S26 (2007)

    Article  PubMed  CAS  Google Scholar 

  18. I. Netchine, S. Azzi, M. Houang, D. Seurin, L. Perin et al., Partial primary deficiency of insulin-like growth factor (IGF)-I activity associated with IGF1 mutation demonstrates its critical role in growth and brain development. J. Clin. Endocrinol. Metab. 94, 3913–3921 (2009)

    Article  PubMed  CAS  Google Scholar 

  19. M. Ross, G.L. Francis, L. Szabo, J.C. Wallace, F.J. Ballard, Insulin-like growth factor (IGF)-binding proteins inhibit the biological activities of IGF-1 and IGF-2 but not des-(1–3)-IGF-1. Biochem. J. 258, 267–272 (1989)

    PubMed  CAS  Google Scholar 

  20. C.A. Conover, L.K. Bale, M.T. Overgaard, E.W. Johnstone, U.H. Laursen et al., Metalloproteinase pregnancy-associated plasma protein A is a critical growth regulatory factor during fetal development. Development 131, 1187–1194 (2004)

    Article  PubMed  CAS  Google Scholar 

  21. D. Phang, M. Rehage, B. Bonafede, D. Hou, W. Xing et al., Inactivation of insulin-like-growth factors diminished the anabolic effects of pregnancy-associated plasma protein-A (PAPP-A) on bone in mice. Growth Horm. IGF Res. 20, 192–200 (2010)

    Article  PubMed  CAS  Google Scholar 

  22. X. Qin, J.E. Wergedal, M. Rehage, K. Tran, J. Newton et al., Pregnancy-associated plasma protein-A increases osteoblast proliferation in vitro and bone formation in vivo. Endocrinology 147, 5653–5661 (2006)

    Article  PubMed  CAS  Google Scholar 

  23. M.S. Sheppard, R.M. Bala, Growth hormone secretion during pregnancy: altered effects of growth hormone releasing factor and insulin-like growth factor-I in vitro. Horm. Res. 27, 205–210 (1987)

    Article  PubMed  CAS  Google Scholar 

  24. S.G. Bonnette, D.L. Hadsell, Targeted disruption of the IGF-I receptor gene decreases cellular proliferation in mammary terminal end buds. Endocrinology 142, 4937–4945 (2001)

    Article  PubMed  CAS  Google Scholar 

  25. D.J. Flint, E. Tonner, G.J. Allan, Insulin-like growth factor binding proteins: IGF-dependent and -independent effects in the mammary gland. J. Mammary Gland Biol. Neoplasia 5, 65–73 (2000)

    Article  PubMed  CAS  Google Scholar 

  26. H. Chander, M. Halpern, L. Resnick-Silverman, J.J. Manfredi, D. Germain, Skp2B overexpression alters a prohibitin-p53 axis and the transcription of PAPP-A, the protease of insulin-like growth factor binding protein 4. PLoS ONE 6, e22456 (2011)

    Article  PubMed  CAS  Google Scholar 

  27. T. Galbaugh, M.G. Cerrito, C.C. Jose, M.L. Cutler, EGF-induced activation of Akt results in mTOR-dependent p70S6 kinase phosphorylation and inhibition of HC11 cell lactogenic differentiation. BMC Cell Biol. 7, 34 (2006)

    Article  PubMed  Google Scholar 

  28. P. Accornero, S. Miretti, L.S. Cucuzza, E. Martignani, M. Baratta, Epidermal growth factor and hepatocyte growth factor cooperate to enhance cell proliferation, scatter, and invasion in murine mammary epithelial cells. J. Mol. Endocrinol. 44, 115–125 (2010)

    Article  PubMed  CAS  Google Scholar 

  29. R.K. Ball, A. Ziemiecki, C.A. Schönenberger, E. Reichmann, S.M. Redmond et al., v-myc alters the response of a cloned mouse mammary epithelial cell line to lactogenic hormones. Mol. Endocrinol. 2, 133–142 (1988)

    Article  PubMed  CAS  Google Scholar 

  30. K. Nagaoka, T. Tanaka, K. Imakawa, S. Sakai, Involvement of RNA binding proteins AUF1 in mammary gland differentiation. Exp. Cell Res. 313, 2937–2945 (2007)

    Article  PubMed  CAS  Google Scholar 

  31. T. Tanaka, S. Haneda, K. Imakawa, S. Sakai, K. Nagaoka, A microRNA, miR-101a, controls mammary gland development by regulating cyclooxygenase-2 expression. Differentiation 77, 181–187 (2008)

    Article  PubMed  Google Scholar 

  32. T.M. Lin, S.P. Halbert, Placental localization of human pregnancy-associated plasma proteins. Science 193, 1249–1252 (1976)

    Article  PubMed  CAS  Google Scholar 

  33. T.M. Lin, S.P. Halbert, D. Kiefer, Quantitative analysis of pregnancy-associated plasma proteins in human placenta. J. Clin. Invest. 57, 466–472 (1976)

    Article  PubMed  CAS  Google Scholar 

  34. T.M. Lin, S.P. Halbert, W.N. Spellacy, Relation of obstetric parameters to the concentrations of four pregnancy-associated plasma proteins at term in normal gestation. Am. J. Obstet. Gynecol. 125, 17–24 (1976)

    PubMed  CAS  Google Scholar 

  35. R. Smith, M.A. Thomson, W. Cooper, The relationship between changing values of pregnancy-associated plasma protein-A in late pregnancy and the onset of labour. Placenta 2, 143–148 (1981)

    Article  PubMed  CAS  Google Scholar 

  36. M.T. Overgaard, J. Haaning, H.B. Boldt, I.M. Olsen, L.S. Laursen, Expression of recombinant human pregnancy-associated plasma protein-A and identification of the proform of eosinophil major basic protein as its physiological inhibitor. J. Biol. Chem. 275, 31128–31133 (2000)

    Article  PubMed  CAS  Google Scholar 

  37. E.S. Henson, S.B. Gibson, Surviving cell death through epidermal growth factor (EGF) signal transduction pathways: implications for cancer therapy. Cell. Signal. 18, 2089–2097 (2006)

    Article  PubMed  CAS  Google Scholar 

  38. C.J. Watson, T.G. Burdon, Prolactin signal transduction mechanisms in the mammary gland: the role of the Jak/Stat pathway. Rev. Reprod. 1, 1–5 (1996)

    Article  PubMed  CAS  Google Scholar 

  39. P.J. Coffer, A. van Puijenbroek, B.M. Burgering, M. Klop-de Jonge, L. Koenderman et al., Insulin activates Stat3 independently of p21ras-ERK and PI-3K signal transduction. Oncogene 15, 2529–2539 (1997)

    Article  PubMed  CAS  Google Scholar 

  40. S.H. Shim, J.H. Hah, S.Y. Hwang, D.S. Heo, M.W. Sung, Dexamethasone treatment inhibits VEGF production via suppression of STAT3 in a head and neck cancer cell line. Oncol. Rep. 23, 1139–1143 (2010)

    PubMed  CAS  Google Scholar 

  41. G.J. Allan, J. Beattie, D.J. Flint, The role of IGFBP-5 in mammary gland development and involution. Domest. Anim. Endocrinol. 27, 257–266 (2004)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Nobuyuki Miyasaka and Dr. Yoshinori Nonomura for valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kentaro Nagaoka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakasato, M., Kohsaka, H., Mizutani, T. et al. Pregnancy-associated plasma protein (PAPP)-A expressed in the mammary gland controls epithelial cell proliferation and differentiation. Endocrine 43, 387–393 (2013). https://doi.org/10.1007/s12020-012-9766-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-012-9766-0

Keywords

Navigation