Skip to main content

Advertisement

Log in

Changes in Binding of [123I]CLINDE, a High-Affinity Translocator Protein 18 kDa (TSPO) Selective Radioligand in a Rat Model of Traumatic Brain Injury

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

After traumatic brain injury (TBI), secondary injuries develop, including neuroinflammatory processes that contribute to long-lasting impairments. These secondary injuries represent potential targets for treatment and diagnostics. The translocator protein 18 kDa (TSPO) is expressed in activated microglia cells and upregulated in response to brain injury and therefore a potential biomarker of the neuroinflammatory processes. Second-generation radioligands of TSPO, such as [123I]CLINDE, have a higher signal-to-noise ratio as the prototype ligand PK11195. [123I]CLINDE has been employed in human studies using single-photon emission computed tomography to image the neuroinflammatory response after stroke. In this study, we used the same tracer in a rat model of TBI to determine changes in TSPO expression. Adult Sprague–Dawley rats were subjected to moderate controlled cortical impact injury and sacrificed at 6, 24, 72 h and 28 days post surgery. TSPO expression was assessed in brain sections employing [123I]CLINDE in vitro autoradiography. From 24 h to 28 days post surgery, injured animals exhibited a marked and time-dependent increase in [123I]CLINDE binding in the ipsilateral motor, somatosensory and parietal cortex, as well as in the hippocampus and thalamus. Interestingly, binding was also significantly elevated in the contralateral M1 motor cortex following TBI. Craniotomy without TBI caused a less marked increase in [123I]CLINDE binding, restricted to the ipsilateral hemisphere. Radioligand binding was consistent with an increase in TSPO mRNA expression and CD11b immunoreactivity at the contusion site. This study demonstrates the applicability of [123I]CLINDE for detailed regional and quantitative assessment of glial activity in experimental models of TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arlicot, N., Katsifis, A., Garreau, L., Mattner, F., Vergote, J., Duval, S., et al. (2008). Evaluation of CLINDE as potent translocator protein (18 kDa) SPECT radiotracer reflecting the degree of neuroinflammation in a rat model of microglial activation. European Journal of Nuclear Medicine and Molecular Imaging, 35(12), 2203–2211.

    Article  PubMed  Google Scholar 

  • Arlicot, N., Petit, E., Katsifis, A., Toutain, J., Divoux, D., Bodard, S., et al. (2010). Detection and quantification of remote microglial activation in rodent models of focal ischaemia using the TSPO radioligand CLINDE. European Journal of Nuclear Medicine and Molecular Imaging, 37(12), 2371–2380.

    Article  CAS  PubMed  Google Scholar 

  • Arlicot, N., Tronel, C., Bodard, S., Garreau, L., de la Crompe, B., Vandevelde, I., et al. (2014). Translocator protein (18 kDa) mapping with [125I]-CLINDE in the quinolinic acid rat model of excitotoxicity: A longitudinal comparison with microglial activation, astrogliosis, and neuronal death. Molecular Imaging, 13(2), 4–11.

    PubMed  Google Scholar 

  • Baldwin, S. A., Fugaccia, I., Brown, D. R., Brown, L. V., & Scheff, S. W. (1996). Blood-brain barrier breach following cortical contusion in the rat. Journal of Neurosurgery, 85(3), 476–481.

    Article  CAS  PubMed  Google Scholar 

  • Banati, R. B., Middleton, R. J., Chan, R., Hatty, C. R., Kam, W. W., Quin, C., et al. (2014). Positron emission tomography and functional characterization of a complete PBR/TSPO knockout. Nature Communications, 5, 5452.

    Article  PubMed  PubMed Central  Google Scholar 

  • Banati, R. B., Myers, R., & Kreutzberg, G. W. (1997). PK (‘peripheral benzodiazepine’)–binding sites in the CNS indicate early and discrete brain lesions: microautoradiographic detection of [3H]PK11195 binding to activated microglia. Journal of Neurocytology, 26(2), 77–82.

    Article  CAS  PubMed  Google Scholar 

  • Baskaya, M. K., Rao, A. M., Dogan, A., Donaldson, D., & Dempsey, R. J. (1997). The biphasic opening of the blood–brain barrier in the cortex and hippocampus after traumatic brain injury in rats. Neuroscience Letters, 226(1), 33–36.

    Article  CAS  PubMed  Google Scholar 

  • Benarroch, E. E. (2013). Microglia: Multiple roles in surveillance, circuit shaping, and response to injury. Neurology, 81(12), 1079–1088.

    Article  PubMed  Google Scholar 

  • Blennow, K., Hardy, J., & Zetterberg, H. (2012). The neuropathology and neurobiology of traumatic brain injury. Neuron, 76(5), 886–899.

    Article  CAS  PubMed  Google Scholar 

  • Burda, J. E., & Sofroniew, M. V. (2014). Reactive gliosis and the multicellular response to CNS damage and disease. Neuron, 81(2), 229–248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao, T., Thomas, T. C., Ziebell, J. M., Pauly, J. R., & Lifshitz, J. (2012). Morphological and genetic activation of microglia after diffuse traumatic brain injury in the rat. Neuroscience, 225, 65–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, M. K., & Guilarte, T. R. (2008). Translocator protein 18 kDa (TSPO): Molecular sensor of brain injury and repair. Pharmacology & Therapeutics, 118(1), 1–17.

    Article  CAS  Google Scholar 

  • Cole, J. T., Yarnell, A., Kean, W. S., Gold, E., Lewis, B., Ren, M., et al. (2011). Craniotomy: True sham for traumatic brain injury, or a sham of a sham? Journal of Neurotrauma, 28(3), 359–369.

    Article  PubMed  PubMed Central  Google Scholar 

  • Collste, K., Forsberg, A., Varrone, A., Amini, N., Aeinehband, S., Yakushev, I., et al. (2015). Test-retest reproducibility of [11C]PBR28 binding to TSPO in healthy control subjects. European Journal of Nuclear Medicine and Molecular Imaging, 43(1), 173–183.

    Article  PubMed  Google Scholar 

  • Coughlin, J. M., Wang, Y., Munro, C. A., Ma, S., Yue, C., Chen, S., et al. (2015). Neuroinflammation and brain atrophy in former NFL players: An in vivo multimodal imaging pilot study. Neurobiology of Disease, 74, 58–65.

    Article  PubMed  PubMed Central  Google Scholar 

  • Donat, C. K., Schuhmann, M. U., Voigt, C., Nieber, K., Deuther-Conrad, W., & Brust, Peter. (2008). Time-dependent alterations of cholinergic markers after experimental traumatic brain injury. Brain Research, 1246, 167–177.

    Article  CAS  PubMed  Google Scholar 

  • Donat, C. K., Schuhmann, M. U., Voigt, C., Nieber, K., Schliebs, R., & Brust, P. (2007). Alterations of acetylcholinesterase activity after traumatic brain injury in rats. Brain Injury, 21(10), 1031–1037.

    Article  PubMed  Google Scholar 

  • Faden, A. I., Wu, J., Stoica, B. A., & Loane, D. J. (2016). Progressive inflammatory-mediated neurodegeneration after traumatic brain or spinal cord injury. British Journal of Pharmacology, 173(4), 681– 691.

    Article  CAS  PubMed  Google Scholar 

  • Feng, L., Svarer, C., Thomsen, G., de Nijs, R., Larsen, V. A., Jensen, P., et al. (2014). In vivo quantification of cerebral translocator protein binding in humans using 6-chloro-2-(4′-123I-iodophenyl)-3-(N, N-diethyl)-imidazo[1,2-a]pyridine-3-acetamide SPECT. Journal of Nuclear Medicine, 55(12), 1966–1972.

    Article  CAS  PubMed  Google Scholar 

  • Folkersma, H., Boellaard, R., Yaqub, M., Kloet, R. W., Windhorst, A. D., Lammertsma, A. A., et al. (2011a). Widespread and prolonged increase in (R)-11C-PK11195 binding after traumatic brain injury. Journal of Nuclear Medicine, 52(8), 1235–1239.

    Article  PubMed  Google Scholar 

  • Folkersma, H., Foster Dingley, J. C., van Berckel, B. N., Rozemuller, A., Boellaard, R., Huisman, M. C., et al. (2011b). Increased cerebral (R)-[11C]-PK11195 uptake and glutamate release in a rat model of traumatic brain injury: A longitudinal pilot study. Journal of Neuroinflammation, 8, 67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grossman, E. J., & Inglese, M. (2016). The role of thalamic damage in mild traumatic brain injury. Journal of Neurotrauma, 33(2), 163–167.

    Article  PubMed  Google Scholar 

  • Grossman, R., Shohami, E., Alexandrovich, A., Yatsiv, I., Kloog, Y., & Biegon, A. (2003). Increase in peripheral benzodiazepine receptors and loss of glutamate NMDA receptors in a mouse model of closed head injury: A quantitative autoradiographic study. Neuroimage, 20(4), 1971–1981.

    Article  CAS  PubMed  Google Scholar 

  • Guseva, M. V., Hopkins, D. M., Scheff, S. W., & Pauly, J. R. (2008). Dietary choline supplementation improves behavioral, histological, and neurochemical outcomes in a rat model of traumatic brain injury. Journal of Neurotrauma, 25(8), 975–983.

    Article  PubMed  PubMed Central  Google Scholar 

  • Härtig, W., Michalski, D., Seeger, G., Voigt, C., Donat, C. K., Dulin, J., et al. (2013). Impact of 5-lipoxygenase inhibitors on the spatiotemporal distribution of inflammatory cells and neuronal COX-2 expression following experimental traumatic brain injury in rats. Brain Research, 1498, 69–84.

    Article  PubMed  Google Scholar 

  • Herz, J., Reitmeir, R., Hagen, S. I., Reinboth, B. S., Guo, Z., Zechariah, A., et al. (2012). Intracerebroventricularly delivered VEGF promotes contralesional corticorubral plasticity after focal cerebral ischemia via mechanisms involving anti-inflammatory actions. Neurobiology of Disease, 45(3), 1077–1085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaremko, L., Jaremko, M., Giller, K., Becker, S., & Zweckstetter, M. (2014). Structure of the mitochondrial translocator protein in complex with a diagnostic ligand. Science, 343(6177), 1363–1366.

    Article  CAS  PubMed  Google Scholar 

  • Jensen, P., Feng, L., Law, I., Svarer, C., Knudsen, G. M., Mikkelsen, J. D., et al. (2015a). TSPO imaging in glioblastoma multiforme: A direct comparison between 123I-CLINDE SPECT, 18F-FET PET, and gadolinium-enhanced MR imaging. Journal of Nuclear Medicine, 56(9), 1386–1390.

    Article  CAS  PubMed  Google Scholar 

  • Jensen, P., Kondziella, D., Thomsen, G., Dyssegaard, A., Svarer, C., & Pinborg, L. H. (2015b). Anti-NMDAR encephalitis: Demonstration of neuroinflammation and the effect of immunotherapy. Neurology, 84(8), 859.

    Article  PubMed  Google Scholar 

  • Kelso, M. L., Scheff, S. W., Pauly, J. R., & Loftin, C. D. (2009). Effects of genetic deficiency of cyclooxygenase-1 or cyclooxygenase-2 on functional and histological outcomes following traumatic brain injury in mice. BMC Neuroscience, 10, 108.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuhlmann, A. C., & Guilarte, T. R. (2000). Cellular and subcellular localization of peripheral benzodiazepine receptors after trimethyltin neurotoxicity. Journal of Neurochemistry, 74(4), 1694–1704.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, A., Alvarez-Croda, D. M., Stoica, B. A., Faden, A. I., & Loane, D. J. (2015). Microglial/macrophage polarization dynamics following traumatic brain injury. Journal of Neurotrauma.

  • Lagraoui, M., Latoche, J. R., Cartwright, N. G., Sukumar, G., Dalgard, C. L., & Schaefer, B. C. (2012). Controlled cortical impact and craniotomy induce strikingly similar profiles of inflammatory gene expression, but with distinct kinetics. Frontiers in Neurology, 3, 155.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lavisse, S., Guillermier, M., Herard, A. S., Petit, F., Delahaye, M., Van Camp, N., et al. (2012). Reactive astrocytes overexpress TSPO and are detected by TSPO positron emission tomography imaging. The Journal of Neuroscience, 32(32), 10809–10818.

    Article  CAS  PubMed  Google Scholar 

  • Lavisse, S., Inoue, K., Jan, C., Peyronneau, M. A., Petit, F., Goutal, S., et al. (2015). [18F]DPA-714 PET imaging of translocator protein TSPO (18 kDa) in the normal and excitotoxically-lesioned nonhuman primate brain. European Journal of Nuclear Medicine and Molecular Imaging, 42(3), 478–494.

    Article  CAS  PubMed  Google Scholar 

  • Lemstra, A. W., Groen in't Woud, J. C., Hoozemans, J. J., van Haastert, E. S., Rozemuller, A. J., Eikelenboom, P., et al. (2007). Microglia activation in sepsis: A case-control study. Journal of Neuroinflammation, 4, 4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, Z., Li, Y., Zhang, R. L., Cui, Y., & Chopp, M. (2011). Bone marrow stromal cells promote skilled motor recovery and enhance contralesional axonal connections after ischemic stroke in adult mice. Stroke, 42(3), 740–744.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, G. J., Middleton, R. J., Hatty, C. R., Kam, W. W., Chan, R., Pham, T., et al. (2014). The 18 kDa translocator protein, microglia and neuroinflammation. Brain Pathology, 24(6), 631–653.

    Article  CAS  PubMed  Google Scholar 

  • Lozano, D., Gonzales-Portillo, G. S., Acosta, S., de la Pena, I., Tajiri, N., Kaneko, Y., et al. (2015). Neuroinflammatory responses to traumatic brain injury: Etiology, clinical consequences, and therapeutic opportunities. Neuropsychiatric Disease and Treatment, 11, 97–106.

    PubMed  PubMed Central  Google Scholar 

  • Madinier, A., Bertrand, N., Mossiat, C., Prigent-Tessier, A., Beley, A., Marie, C., et al. (2009). Microglial involvement in neuroplastic changes following focal brain ischemia in rats. PLoS ONE, 4(12), e8101.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maeda, J., Higuchi, M., Inaji, M., Ji, B., Haneda, E., Okauchi, T., et al. (2007). Phase-dependent roles of reactive microglia and astrocytes in nervous system injury as delineated by imaging of peripheral benzodiazepine receptor. Brain Research, 1157, 100–111.

    Article  CAS  PubMed  Google Scholar 

  • Martin, A., Boisgard, R., Theze, B., Van Camp, N., Kuhnast, B., Damont, A., et al. (2010). Evaluation of the PBR/TSPO radioligand [(18)F]DPA-714 in a rat model of focal cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 30(1), 230–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masel, B. E., & DeWitt, D. S. (2010). Traumatic brain injury: A disease process, not an event. Journal of Neurotrauma, 27(8), 1529–1540.

    Article  PubMed  Google Scholar 

  • Mattner, F., Bandin, D. L., Staykova, M., Berghofer, P., Gregoire, M. C., Ballantyne, P., et al. (2011). Evaluation of [123I]-CLINDE as a potent SPECT radiotracer to assess the degree of astroglia activation in cuprizone-induced neuroinflammation. European Journal of Nuclear Medicine and Molecular Imaging, 38(8), 1516–1528.

    Article  PubMed  Google Scholar 

  • Mattner, F., Katsifis, A., Staykova, M., Ballantyne, P., & Willenborg, D. O. (2005). Evaluation of a radiolabelled peripheral benzodiazepine receptor ligand in the central nervous system inflammation of experimental autoimmune encephalomyelitis: A possible probe for imaging multiple sclerosis. European Journal of Nuclear Medicine and Molecular Imaging, 32(5), 557–563.

    Article  CAS  PubMed  Google Scholar 

  • Mattner, F., Mardon, K., & Katsifis, A. (2008). Pharmacological evaluation of [123I]-CLINDE: a radioiodinated imidazopyridine-3-acetamide for the study of peripheral benzodiazepine binding sites (PBBS). European Journal of Nuclear Medicine and Molecular Imaging, 35(4), 779–789.

    Article  CAS  PubMed  Google Scholar 

  • Miyazawa, N., Diksic, M., & Yamamoto, Y. (1995). Chronological study of peripheral benzodiazepine binding sites in the rat brain stab wounds using [3H] PK-11195 as a marker for gliosis. Acta Neurochirurgica (Wien), 137(3–4), 207–216.

    Article  CAS  Google Scholar 

  • Myers, R., Manjil, L. G., Frackowiak, R. S., & Cremer, J. E. (1991). [3H]PK 11195 and the localisation of secondary thalamic lesions following focal ischaemia in rat motor cortex. Neuroscience Letters, 133(1), 20–24.

    Article  CAS  PubMed  Google Scholar 

  • Norden, D. M., Muccigrosso, M. M., & Godbout, J. P. (2015). Microglial priming and enhanced reactivity to secondary insult in aging, and traumatic CNS injury, and neurodegenerative disease. Neuropharmacology, 96(Pt A), 29–41.

    Article  CAS  PubMed  Google Scholar 

  • Owen, D. R., Howell, O. W., Tang, S. P., Wells, L. A., Bennacef, I., Bergstrom, M., et al. (2010). Two binding sites for [3H]PBR28 in human brain: Implications for TSPO PET imaging of neuroinflammation. Journal of Cerebral Blood Flow and Metabolism, 30(9), 1608–1618.

    Article  PubMed  PubMed Central  Google Scholar 

  • Papadopoulos, V., & Lecanu, L. (2009). Translocator protein (18 kDa) TSPO: An emerging therapeutic target in neurotrauma. Experimental Neurology, 219(1), 53–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pappata, S., Levasseur, M., Gunn, R. N., Myers, R., Crouzel, C., Syrota, A., et al. (2000). Thalamic microglial activation in ischemic stroke detected in vivo by PET and [11C]PK11195. Neurology, 55(7), 1052–1054.

    Article  CAS  PubMed  Google Scholar 

  • Paxinos, G., & Watson, C. (1998). The rat brain in stereotaxic coordinates (4th ed.). San Diego: Academic Press.

    Google Scholar 

  • Raghavendra Rao, V. L., Dogan, A., Bowen, K. K., & Dempsey, R. J. (2000). Traumatic brain injury leads to increased expression of peripheral-type benzodiazepine receptors, neuronal death, and activation of astrocytes and microglia in rat thalamus. Experimental Neurology, 161(1), 102–114.

    Article  CAS  PubMed  Google Scholar 

  • Ramlackhansingh, A. F., Brooks, D. J., Greenwood, R. J., Bose, S. K., Turkheimer, F. E., Kinnunen, K. M., et al. (2011). Inflammation after trauma: Microglial activation and traumatic brain injury. Annals of Neurology, 70(3), 374–383.

    Article  PubMed  Google Scholar 

  • Robinson, A. P., White, T. M., & Mason, D. W. (1986). Macrophage heterogeneity in the rat as delineated by two monoclonal antibodies MRC OX-41 and MRC OX-42, the latter recognizing complement receptor type 3. Immunology, 57(2), 239–247.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative C(T) method. Nature Protocols, 3(6), 1101–1108.

    Article  CAS  PubMed  Google Scholar 

  • Schwarzmaier, S. M., & Plesnila, N. (2014). Contributions of the immune system to the pathophysiology of traumatic brain injury-evidence by intravital microscopy. Frontiers in Cellular Neuroscience, 8, 358.

    Article  PubMed  PubMed Central  Google Scholar 

  • Scott, G., Hellyer, P. J., Ramlackhansingh, A. F., Brooks, D. J., Matthews, P. M., & Sharp, D. J. (2015). Thalamic inflammation after brain trauma is associated with thalamo-cortical white matter damage. Journal of Neuroinflammation, 12(1), 224.

    Article  PubMed  PubMed Central  Google Scholar 

  • Soustiel, J. F., Palzur, E., Vlodavsky, E., Veenman, L., & Gavish, M. (2008). The effect of oxygenation level on cerebral post-traumatic apoptotsis is modulated by the 18-kDa translocator protein (also known as peripheral-type benzodiazepine receptor) in a rat model of cortical contusion. Neuropathology and Applied Neurobiology, 34(4), 412–423.

    Article  CAS  PubMed  Google Scholar 

  • Stemper, B. D., & Pintar, F. A. (2014). Biomechanics of concussion. Progress in Neurological Surgery, 28, 14–27.

    Article  PubMed  Google Scholar 

  • Toth, M., Doorduin, J., Haggkvist, J., Varrone, A., Amini, N., Halldin, C., et al. (2015). Positron emission tomography studies with [11C]PBR28 in the healthy rodent brain: Validating SUV as an outcome measure of neuroinflammation. PLoS ONE, 10(5), e0125917.

    Article  PubMed  PubMed Central  Google Scholar 

  • Trapani, A., Palazzo, C., de Candia, M., Lasorsa, F. M., & Trapani, G. (2013). Targeting of the translocator protein 18 kDa (TSPO): A valuable approach for nuclear and optical imaging of activated microglia. Bioconjugate Chemistry, 24(9), 1415–1428.

    Article  CAS  PubMed  Google Scholar 

  • Venneti, S., Wagner, A. K., Wang, G., Slagel, S. L., Chen, X., Lopresti, B. J., et al. (2007). The high affinity peripheral benzodiazepine receptor ligand DAA1106 binds specifically to microglia in a rat model of traumatic brain injury: Implications for PET imaging. Experimental Neurology, 207(1), 118–127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Yue, X., Kiesewetter, D. O., Niu, G., Teng, G., & Chen, X. (2014). PET imaging of neuroinflammation in a rat traumatic brain injury model with radiolabeled TSPO ligand DPA-714. European Journal of Nuclear Medicine and Molecular Imaging, 41(7), 1440–1449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodcock, T., & Morganti-Kossmann, M. C. (2013). The role of markers of inflammation in traumatic brain injury. Frontiers in Neurology, 4, 18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, I., Inaji, M., Maeda, J., Okauchi, T., Nariai, T., Ohno, K., et al. (2010). Glial cell-mediated deterioration and repair of the nervous system after traumatic brain injury in a rat model as assessed by positron emission tomography. Journal of Neurotrauma, 27(8), 1463–1475.

    Article  PubMed  Google Scholar 

  • Yu, S., Kaneko, Y., Bae, E., Stahl, C. E., Wang, Y., van Loveren, H., et al. (2009). Severity of controlled cortical impact traumatic brain injury in rats and mice dictates degree of behavioral deficits. Brain Research, 1287, 157–163.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Tina Spalholz and the staff of MEZ Leipzig for excellent technical support and assistance in animal experiments and Felix Fischer for assistance in tissue sectioning. CLINDE was kindly supplied by Dr. Nicolas Arlicot, Université François Rabelais de Tours, France. This work was supported by Desirée and Niels Ydes Foundation, the Lundbeck Foundation and the Danish Strategic Research Council (project COGNITO). The research leading to these results was supported by the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement HEALTH-F2-2011-278850 (INMiND).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens D. Mikkelsen.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donat, C.K., Gaber, K., Meixensberger, J. et al. Changes in Binding of [123I]CLINDE, a High-Affinity Translocator Protein 18 kDa (TSPO) Selective Radioligand in a Rat Model of Traumatic Brain Injury. Neuromol Med 18, 158–169 (2016). https://doi.org/10.1007/s12017-016-8385-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-016-8385-y

Keywords

Navigation