Skip to main content

Advertisement

Log in

The SIRT2 Polymorphism rs10410544 and Risk of Alzheimer’s Disease: A Meta-analysis

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Previous studies have reported an association between human sirtuins’ single-nucleotide polymorphisms (SNPs) and Alzheimer’s disease (AD) susceptibility in the apolipoprotein E (APOE) ε4-negative population, although the findings are inconsistent. To obtain a more precise estimation of this relationship, we conducted a meta-analysis to assess the association between the rs10410544 C/T polymorphism of SIRT2 and the risk of AD with APOE ε4 status. We searched all relevant PubMed publications and included three studies in our meta-analysis involving a total of 1,794 patients and 2,054 control subjects. Odds ratios (ORs) with 95 % confidence intervals (CIs) were employed to evaluate the association of the SIRT2 SNP with AD susceptibility, and we analyzed the extracted data stratified by the APOE ε4-carrying status. Overall, the results show that the SIRT2 SNP is associated with human AD risk in the comparison models (T vs. C: OR 1.140, 95 % CI 1.034–1.258; TC vs. CC: OR 1.178, 95 % CI 1.019–1.361; TT + TC vs. CC: OR 1.197, 95 % CI 1.043–1.373). In the stratified analyses, the European population had a significantly increased risk of AD (T vs. C: OR 1.110, 95 % CI 1.002–1.229), and we also observed a significant association in the APOE ε4-negative population (T vs. C: OR 1.165, 95 % CI 1.025–1.324; TT + TC vs. CC: OR 1.222, 95 % CI 1.022–1.461). This meta-analysis indicates that the presence of the SIRT2 SNP with APOE ε4-negative status contributes to the development of AD in humans Epidemiological studies of larger sample sizes are warranted to confirm this hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ballard, C., Gauthier, S., Corbett, A., Brayne, C., Aarsland, D., & Jones, E. (2011). Alzheimer’s disease. Lancet, 377(9770), 1019–1031. doi:10.1016/S0140-6736(10)61349-9.

    Article  PubMed  Google Scholar 

  • Barker, W. W., Luis, C. A., Kashuba, A., Luis, M., Harwood, D. G., Loewenstein, D., et al. (2002). Relative frequencies of Alzheimer disease, Lewy body, vascular and frontotemporal dementia, and hippocampal sclerosis in the State of Florida Brain Bank. Alzheimer Disease and Associated Disorders, 16(4), 203–212.

    Article  PubMed  Google Scholar 

  • Bertram, L., & Tanzi, R. E. (2008). Thirty years of Alzheimer’s disease genetics: The implications of systematic meta-analyses. Nature Reviews Neuroscience, 9(10), 768–778. doi:10.1038/nrn2494.

    Article  CAS  PubMed  Google Scholar 

  • Calnan, D. R., & Brunet, A. (2008). The FoxO code. Oncogene, 27(16), 2276–2288. doi:10.1038/onc.2008.21.

    Article  CAS  PubMed  Google Scholar 

  • Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G. W., et al. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science, 261(5123), 921–923.

    Article  CAS  PubMed  Google Scholar 

  • Crean, S., Ward, A., Mercaldi, C. J., Collins, J. M., Cook, M. N., Baker, N. L., et al. (2011). Apolipoprotein E epsilon4 prevalence in Alzheimer’s disease patients varies across global populations: a systematic literature review and meta-analysis. Dementia and Geriatric Cognitive Disorders, 31(1), 20–30. doi:10.1159/000321984.

    Article  CAS  PubMed  Google Scholar 

  • Crow, J. F. (1988). Eighty years ago: the beginnings of population genetics. Genetics, 119(3), 473–476.

    CAS  PubMed Central  PubMed  Google Scholar 

  • DerSimonian, R., & Laird, N. (1986). Meta-analysis in clinical trials. Controlled Clinical Trials, 7(3), 177–188.

    Article  CAS  PubMed  Google Scholar 

  • Ferri, C. P., Prince, M., Brayne, C., Brodaty, H., Fratiglioni, L., Ganguli, M., et al. (2005). Global prevalence of dementia: a Delphi consensus study. Lancet, 366(9503), 2112–2117. doi:10.1016/S0140-6736(05)67889-0.

    Article  PubMed Central  PubMed  Google Scholar 

  • Frye, R. A. (2000). Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochemical and Biophysical Research Communications, 273(2), 793–798. doi:10.1006/bbrc. 2000.3000.

    Article  CAS  PubMed  Google Scholar 

  • Goate, A., Chartier-Harlin, M. C., Mullan, M., Brown, J., Crawford, F., Fidani, L., et al. (1991). Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature, 349(6311), 704–706. doi:10.1038/349704a0.

    Article  CAS  PubMed  Google Scholar 

  • Gregoire, G., Derderian, F., & Le Lorier, J. (1995). Selecting the language of the publications included in a meta-analysis: Is there a Tower of Babel bias? Journal of Clinical Epidemiology, 48(1), 159–163.

    Article  CAS  PubMed  Google Scholar 

  • Harold, D., Abraham, R., Hollingworth, P., Sims, R., Gerrish, A., Hamshere, M. L., et al. (2009). Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nature Genetics, 41(10), 1088–1093. doi:10.1038/ng.440.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hollingworth, P., Harold, D., Sims, R., Gerrish, A., Lambert, J. C., Carrasquillo, M. M., et al. (2011). Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nature Genetics, 43(5), 429–435. doi:10.1038/ng.803.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jungerius, B. J., van Laere, A. S., Te Pas, M. F., van Oost, B. A., Andersson, L., & Groenen, M. A. (2004). The IGF2-intron3-G3072A substitution explains a major imprinted QTL effect on backfat thickness in a Meishan x European white pig intercross. Genetical Research, 84(2), 95–101.

    Article  CAS  PubMed  Google Scholar 

  • Knoll, A., Putnova, L., Dvorak, J., & Cepica, S. (2000). A NciI PCR-RFLP within intron 2 of the porcine insulin-like growth factor 2 (IGF2) gene. Animal Genetics, 31(2), 150–151.

    Article  CAS  PubMed  Google Scholar 

  • Lambert, J. C., Heath, S., Even, G., Campion, D., Sleegers, K., Hiltunen, M., et al. (2009). Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nature Genetics, 41(10), 1094–1099. doi:10.1038/ng.439.

    Article  CAS  PubMed  Google Scholar 

  • Li, W., Zhang, B., Tang, J., Cao, Q., Wu, Y., Wu, C., et al. (2007). Sirtuin 2, a mammalian homolog of yeast silent information regulator-2 longevity regulator, is an oligodendroglial protein that decelerates cell differentiation through deacetylating alpha-tubulin. Journal of Neuroscience, 27(10), 2606–2616. doi:10.1523/JNEUROSCI.4181-06.2007.

    Article  PubMed  Google Scholar 

  • Liu, G. L., Jiang, S. W., Xiong, Y. Z., Zheng, R., & Qu, Y. C. (2003). Association of PCR-RFLP polymorphisms of IGF2 gene with fat deposit related traits in pig resource family. Yi Chuan Xue Bao, 30(12), 1107–1112.

    CAS  PubMed  Google Scholar 

  • Mantel, N., & Haenszel, W. (1959). Statistical aspects of the analysis of data from retrospective studies of disease. Journal of the National Cancer Institute, 22(4), 719–748.

    CAS  PubMed  Google Scholar 

  • Maxwell, M. M., Tomkinson, E. M., Nobles, J., Wizeman, J. W., Amore, A. M., Quinti, L., et al. (2011). The Sirtuin 2 microtubule deacetylase is an abundant neuronal protein that accumulates in the aging CNS. Human Molecular Genetics, 20(20), 3986–3996. doi:10.1093/hmg/ddr326.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moher, D., Fortin, P., Jadad, A. R., Juni, P., Klassen, T., Le Lorier, J., et al. (1996). Completeness of reporting of trials published in languages other than English: implications for conduct and reporting of systematic reviews. Lancet, 347(8998), 363–366.

    Article  CAS  PubMed  Google Scholar 

  • Naj, A. C., Jun, G., Beecham, G. W., Wang, L. S., Vardarajan, B. N., Buros, J., et al. (2011). Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nature Genetics, 43(5), 436–441. doi:10.1038/ng.801.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • North, B. J., Marshall, B. L., Borra, M. T., Denu, J. M., & Verdin, E. (2003). The human Sir2 ortholog, SIRT2, is an NAD + -dependent tubulin deacetylase. Molecular Cell, 11(2), 437–444.

    Article  CAS  PubMed  Google Scholar 

  • North, B. J., & Verdin, E. (2004). Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biology, 5(5), 224. doi:10.1186/gb-2004-5-5-224.

    Article  PubMed Central  PubMed  Google Scholar 

  • Polito, L., Kehoe, P. G., Davin, A., Benussi, L., Ghidoni, R., Binetti, G., et al. (2013). The SIRT2 polymorphism rs10410544 and risk of Alzheimer’s disease in two Caucasian case–control cohorts. Alzheimers Dement, 9(4), 392–399. doi:10.1016/j.jalz.2012.02.003.

    Article  PubMed  Google Scholar 

  • Polito, L., Kehoe, P. G., Forloni, G., & Albani, D. (2010). The molecular genetics of sirtuins: association with human longevity and age-related diseases. International Journal of Molecular Epidemiology and Genetics, 1(3), 214–225.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Porcelli, S., Salfi, R., Politis, A., Atti, A. R., Albani, D., Chierchia, A., et al. (2013). Association between Sirtuin 2 gene rs10410544 polymorphism and depression in Alzheimer’s disease in two independent European samples. Journal of Neural Transmission,. doi:10.1007/s00702-013-1045-6.

    PubMed  Google Scholar 

  • Serretti, A., Olgiati, P., & De Ronchi, D. (2007). Genetics of Alzheimer’s disease. A rapidly evolving field. Journal of Alzheimer’s Disease, 12(1), 73–92.

    CAS  PubMed  Google Scholar 

  • Seshadri, S., Fitzpatrick, A. L., Ikram, M. A., DeStefano, A. L., Gudnason, V., Boada, M., et al. (2010). Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA, 303(18), 1832–1840. doi:10.1001/jama.2010.574.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sundstrom, A., Nilsson, L. G., Cruts, M., Adolfsson, R., Van Broeckhoven, C., & Nyberg, L. (2007). Increased risk of dementia following mild head injury for carriers but not for non-carriers of the APOE epsilon4 allele. International Psychogeriatrics, 19(1), 159–165. doi:10.1017/S1041610206003498.

    Article  CAS  PubMed  Google Scholar 

  • Vaquero, A., Scher, M. B., Lee, D. H., Sutton, A., Cheng, H. L., Alt, F. W., et al. (2006). SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes and Development, 20(10), 1256–1261. doi:10.1101/gad.1412706.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xia, M., Yu, J. T., Miao, D., Lu, R. C., Zheng, X. P., & Tan, L. (2013). SIRT2 polymorphism rs10410544 is associated with Alzheimer’s disease in a Han Chinese population. Journal of the Neurological Sciences,. doi:10.1016/j.jns.2013.10.001.

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National High Technology Research and Development Program of China (863) (2012AA02A508), International Cooperation Program (2012DFA30470), National Natural Science Foundation of China (91229121, 81272792, 81172389, 81372709, 81302185, 81101901,81302184), Jiangsu Province’s Natural Science Foundation (BK2011847 and 20131019), Jiangsu Province’s Key Provincial Talents Program (RC2011051), Jiangsu Province’s Key Discipline of Medicine (XK201117), Jiangsu Provincial Special Program of Medical Science (BL2012028), and Program for Development of Innovative Research Team in the First Affiliated Hospital of NJMU, and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongping You.

Additional information

Wenjin Wei, Xiupeng Xu, and Hailin Li have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, W., Xu, X., Li, H. et al. The SIRT2 Polymorphism rs10410544 and Risk of Alzheimer’s Disease: A Meta-analysis. Neuromol Med 16, 448–456 (2014). https://doi.org/10.1007/s12017-014-8291-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-014-8291-0

Keywords

Navigation