Skip to main content

Advertisement

Log in

AAV-mediated Local Delivery of Interferon-β for the Treatment of Retinoblastoma in Preclinical Models

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Interferon-β (IFN-β) has been found to have anti-tumor properties against a variety of malignancies through different mechanisms. However, clinical trials involving systemic administration of IFN-β have been hampered by secondary toxicity and the short half-life of IFN-β in the circulation. In order to circumvent these limitations, we have developed an adeno-associated viral (AAV) vector gene-therapy approach to deliver IFN-β to tumors. In this study, we tested the efficacy of AAV-mediated local delivery of IFN-β for the treatment of retinoblastoma in preclinical models. Retinoblastoma is an ideal candidate for gene-therapy-based anti-cancer treatment because target cell transduction and, therefore, IFN-β delivery can be contained within the ocular environment, thereby minimizing systemic toxicity. We report here that retinoblastoma cell lines exhibit pleiotropic responses to IFN-β consistent with previous studies on a variety of tumor cell lines. Intravitreal injection of AAV-IFN-β resulted in efficient retinal infection and sustained IFN-β production in the eye with minimal systemic exposure. Vector spread outside of the eye was not detected. Using our orthotopic xenograft model of retinoblastoma, we found that intravitreal injection of AAV-IFN-β had a potent anti-tumor effect in vivo. These data suggest that AAV-mediated delivery of IFN-β may provide a complementary approach to systemic chemotherapy which is the standard of care for retinoblastoma around the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ali, R. R., Reichel, M. B., De Alwis, M., Kanuga, N., Kinnon, C., Levinsky, R. J., et al. (1998). Adeno-associated virus gene transfer to mouse retina. Human Gene Therapy, 9(1), 81–86.

    Article  PubMed  CAS  Google Scholar 

  • Ali, R. R., Reichel, M. B., Thrasher, A. J., Levinsky, R. J., Kinnon, C., Kanuga, N., et al. (1996). Gene transfer into the mouse retina mediated by an adeno-associated viral vector. Human Molecular Genetics, 5(5), 591–594.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, J., Maguire, A. M., Cideciyan, A. V., Schnell, M., Glover, E., Anand, V., et al. (1999). Stable transgene expression in rod photoreceptors after recombinant adeno-associated virus-mediated gene transfer to monkey retina. Proceedings of the National Academy of Sciences of the USA, 96(17), 9920–9925.

    Article  PubMed  CAS  Google Scholar 

  • Campochiaro, P. A. (2002). Gene therapy for retinal and choroidal diseases. Expert Opinion on Biological Therapy, 2, 537–544.

    Article  PubMed  CAS  Google Scholar 

  • Chevez-Barrios, P., Chintagumpala, M., Mieler, W., Paysse, E., Boniuk, M., Kozinetz, C., et al. (2005). Response of retinoblastoma with vitreous tumor seeding to adenovirus-mediated delivery of thymidine kinase followed by ganciclovir. Journal of Clinical Oncology, 23(31), 7927–7935.

    Article  PubMed  CAS  Google Scholar 

  • Chevez-Barrios, P., Hurwitz, M. Y., Louie, K., Marcus, K. T., Holcombe, V. N., Schafer, P., et al. (2000). Metastatic and nonmetastatic models of retinoblastoma. American Journal of Pathology, 157(4), 1405–1412.

    PubMed  CAS  Google Scholar 

  • Choi, E. A., Lei, H., Maron, D. J., Mick, R., Barsoum, J., Yu, Q. C., et al. (2004). Combined 5-fluorouracil/systemic interferon-beta gene therapy results in long-term survival in mice with established colorectal liver metastases. Clinical Cancer Research, 10, 1535–1544.

    Article  PubMed  CAS  Google Scholar 

  • Coppin, C., Porzsolt, F., Awa, A., Kumpf, J., Coldman, A., & Wilt, T. (2005). Immunotherapy for advanced renal cell cancer. Cochrane Database of Systematic Reviews, (1), CD001425.

  • Davidoff, A. M., Gray, J. T., Ng, C. Y., Zhang, Y., Zhou, J., Spence, Y., et al. (2005). Comparison of the ability of adeno-associated viral vectors pseudotyped with serotype 2, 5, and 8 capsid proteins to mediate efficient transduction of the liver in murine and nonhuman primate models. Molecular Therapy, 11(6), 875–888.

    Article  PubMed  CAS  Google Scholar 

  • Dejneka, N. S., Rex, T. S., & Bennett, J. (2003). Gene therapy and animal models for retinal disease. Developments in Ophthalmology, 37, 188–198.

    Article  PubMed  CAS  Google Scholar 

  • Der, S. D., Zhou, A., Williams, B. R., & Silverman, R. H. (1998). Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proceedings of the National Academy of Sciences of the USA, 95(26), 15623–15628.

    Article  PubMed  CAS  Google Scholar 

  • Dickson, P. V., Hagedorn, N. L., Hamner, J. B., Fraga, C. H., Ng, C. Y., Stewart, C. F., et al. (2007). Interferon beta-mediated vessel stabilization improves delivery and efficacy of systemically administered topotecan in a murine neuroblastoma model. Journal of Pediatric Surgery, 42(1), 160–165. discussion 165.

    Article  PubMed  Google Scholar 

  • Dinculescu, A., Glushakova, L., Min, S. H., & Hauswirth, W. W. (2005). Adeno-associated virus-vectored gene therapy for retinal disease. Human Gene Therapy, 16(6), 649–663.

    Article  PubMed  CAS  Google Scholar 

  • Dranoff, G. (2004). Cytokines in cancer pathogenesis and cancer therapy. Nature Reviews Cancer, 4(1), 11–22.

    Article  PubMed  CAS  Google Scholar 

  • Dudus, L., Anand, V., Acland, G. M., Chen, S. J., Wilson, J. M., Fisher, K. J., et al. (1999). Persistent transgene product in retina, optic nerve and brain after intraocular injection of rAAV. Vision Research, 39(15), 2545–2553.

    Article  PubMed  CAS  Google Scholar 

  • Dyer, M. A., & Cepko, C. L. (2000). p57(Kip2) regulates progenitor cell proliferation and amacrine interneuron development in the mouse retina. Development, 127(16), 3593–3605.

    PubMed  CAS  Google Scholar 

  • Dyer, M. A., & Cepko, C. L. (2001). p27Kip1 and p57Kip2 regulate proliferation in distinct retinal progenitor cell populations. Journal of Neuroscience, 21, 4259–4271.

    PubMed  CAS  Google Scholar 

  • Einhorn, S., & Grander, D. (1996). Why do so many cancer patients fail to respond to interferon therapy? Journal of Interferon and Cytokine Research, 16(4), 275–281.

    Article  PubMed  CAS  Google Scholar 

  • Einhorn, S., & Strander, H. (1993). Interferon treatment of human malignancies–a short review. Medical Oncology and Tumor Pharmacotherapy, 10(1–2), 25–29.

    PubMed  CAS  Google Scholar 

  • Fish, E. N., Uddin, S., Korkmaz, M., Majchrzak, B., Druker, B. J., & Platanias, L. C. (1999). Activation of a CrkL-stat5 signaling complex by type I interferons. Journal of Biological Chemistry, 274(2), 571–573.

    Article  PubMed  CAS  Google Scholar 

  • Folliot, S., Briot, D., Conrath, H., Provost, N., Cherel, Y., Moullier, P., et al. (2003). Sustained tetracycline-regulated transgene expression in vivo in rat retinal ganglion cells using a single type 2 adeno-associated viral vector. Journal of Gene Medicine, 5(6), 493–501.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, A. D. (2002). Updated meta analysis finds that interferon-alpha improves progression-free and overall survival in low-grade non-Hodgkin's lymphoma when administered with chemotherapy that contains anthracycline or mitoxantrone. Clinical Lymphoma, 3, 82–84.

    PubMed  Google Scholar 

  • Greil, J., Gramatzki, M., Burger, R., Marschalek, R., Peltner, M., Trautmann, U., et al. (1994). The acute lymphoblastic leukaemia cell line SEM with t(4;11) chromosomal rearrangement is biphenotypic and responsive to interleukin-7. British Journal Haematology, 86(2), 275–283.

    Article  CAS  Google Scholar 

  • Guy, J., Qi, X., Muzyczka, N., & Hauswirth, W. W. (1999). Reporter expression persists 1 year after adeno-associated virus-mediated gene transfer to the optic nerve. Archives of Ophthalmology, 117(7), 929–937.

    PubMed  CAS  Google Scholar 

  • Hayden, B. H., Murray, T. G., Scott, I. U., Cicciarelli, N., Hernandez, E., Feuer, W., et al. (2000). Subconjunctival carboplatin in retinoblastoma: impact of tumor burden and dose schedule. Archives of Ophthalmology, 118(11), 1549–1554.

    PubMed  CAS  Google Scholar 

  • Hendren, S. K., Prabakaran, I., Buerk, D. G., Karakousis, G., Feldman, M., Spitz, F., et al. (2004). Interferon-beta gene therapy improves survival in an immunocompetent mouse model of carcinomatosis. Surgery, 135, 427–436.

    Article  PubMed  Google Scholar 

  • Hurwitz, M. Y., Marcus, K. T., Chevez-Barrios, P., Louie, K., Aguilar-Cordova, E., & Hurwitz, R. L. (1999). Suicide gene therapy for treatment of retinoblastoma in a murine model. Human Gene Therapy, 10(3), 441–448.

    Article  PubMed  CAS  Google Scholar 

  • Kirkwood, J. (2002). Cancer immunotherapy: The interferon-alpha experience. Seminars in Oncology, 29(3 Suppl 7), 18–26.

    Article  PubMed  CAS  Google Scholar 

  • Kirkwood, J. M., & Tarhini, A. A. (2003). Adjuvant high-dose interferon-alpha therapy for high-risk melanoma. Forum (Genova), 13(2), 127–140. quiz 187–188.

    Google Scholar 

  • Laurie, N. A., Gray, J. K., Zhang, J., Leggas, M., Relling, M., Egorin, M., et al. (2005). Topotecan combination chemotherapy in two new rodent models of retinoblastoma. Clinical Cancer Research, 11(20), 7569–7578.

    Article  PubMed  CAS  Google Scholar 

  • Li, S., Tokuyama, T., Yamamoto, J., Koide, M., Yokota, N., & Namba, H. (2005). Potent bystander effect in suicide gene therapy using neural stem cells transduced with herpes simplex virus thymidine kinase gene. Oncology, 69(6), 503–508.

    Article  PubMed  CAS  Google Scholar 

  • Liang, F. Q., Aleman, T. S., Dejneka, N. S., Dudus, L., Fisher, K. J., Maguire, A. M., et al. (2001). Long-term protection of retinal structure but not function using RAAV.CNTF in animal models of retinitis pigmentosa. Molecular Therapy, 4(5), 461–472.

    Article  PubMed  CAS  Google Scholar 

  • Ludwig, H. (2004). Supportive therapies in the management of myeloma. Oncology (Williston Park), 18, 295–296, 298.

    Google Scholar 

  • Lu, W., Fidler, I. J., & Dong, Z. (1999). Eradication of primary murine fibrosarcomas and induction of systemic immunity by adenovirus-mediated interferon beta gene therapy. Cancer Research, 59, 5202–5208.

    PubMed  CAS  Google Scholar 

  • McFall, R. C., Sery, T. W., & Makadon, M. (1977). Characterization of a new continuous cell line derived from a human retinoblastoma. Cancer Research, 37(4), 1003–1010.

    PubMed  CAS  Google Scholar 

  • Murray, T. G., Cicciarelli, N., O’Brien, J. M., Hernandez, E., Mueller, R. L., Smith, B. J., et al. (1997). Subconjunctival carboplatin therapy and cryotherapy in the treatment of transgenic murine retinoblastoma. Archives of Ophthalmology, 115(10), 1286–1290.

    PubMed  CAS  Google Scholar 

  • Nathwani, A. C., Davidoff, A., Hanawa, H., Zhou, J. F., Vanin, E. F., & Nienhuis, A. W. (2001). Factors influencing in vivo transduction by recombinant adeno-associated viral vectors expressing the human factor IX cDNA. Blood, 97(5), 1258–1265.

    Article  PubMed  CAS  Google Scholar 

  • Naumova, A., & Sapienza, C. (1994). The genetics of retinoblastoma, revisited. American Journal of Human Genetics, 54(2), 264–273.

    PubMed  CAS  Google Scholar 

  • Pfeffer, L. M., Dinarello, C. A., Herberman, R. B., Williams, B. R., Borden, E. C., Bordens, R., et al. (1998). Biological properties of recombinant alpha-interferons: 40th anniversary of the discovery of interferons. Cancer Research, 58(12), 2489–2499.

    PubMed  CAS  Google Scholar 

  • Qin, X. Q., Tao, N., Dergay, A., Moy, P., Fawell, S., Davis, A., et al. (1998). Interferon-beta gene therapy inhibits tumor formation and causes regression of established tumors in immune-deficient mice. Proceedings of the National Academy of Sciences of the USA, 95, 14411–14416.

    Article  PubMed  CAS  Google Scholar 

  • Ries, L. A. G., Smith, M. A., Gurney, J. G., Linet, M., Tamra, T., Young, J. L., & Bunin, G. (1999). Cancer incidence and survival among children and adolescents: United States SEER Program 1975–1995. Bethesda, MD, NIH Pub. No. 99-4649.

  • Rodriguez-Galindo, C., Wilson, M. W., Haik, B. G., Merchant, T. E., Billups, C. A., Shah, N., et al. (2003). Treatment of intraocular retinoblastoma with vincristine and carboplatin. Journal of Clinical Oncology, 21(10), 2019–2025.

    Article  PubMed  CAS  Google Scholar 

  • Rohatiner, A. Z., Gregory, W. M., Peterson, B., Borden, E., Solal-Celigny, P., Hagenbeek, A., et al. (2005). Meta-analysis to evaluate the role of interferon in follicular lymphoma. Journal of Clinical Oncology, 23, 2215–2223.

    Article  PubMed  CAS  Google Scholar 

  • Rolling, F. (2004). Recombinant AAV-mediated gene transfer to the retina: Gene therapy perspectives. Gene Therapy, 11(Suppl 1), S26–S32.

    Article  PubMed  CAS  Google Scholar 

  • Sondak, V. K. (2002). How does interferon work? Does it even matter? Cancer, 95(5), 947–949.

    Article  PubMed  Google Scholar 

  • Surace, E. M., & Auricchio, A. (2003). Adeno-associated viral vectors for retinal gene transfer. Progress in Retinal and Eye Research, 22, 705–719.

    Article  PubMed  CAS  Google Scholar 

  • Van Quill, K. R., Dioguardi, P. K., Tong, C. T., Gilbert, J. A., Aaberg, T. M., Jr., Grossniklaus, H. E., et al. (2005). Subconjunctival carboplatin in fibrin sealant in the treatment of transgenic murine retinoblastoma. Ophthalmology, 112(6), 1151–1158.

    Article  PubMed  Google Scholar 

  • Voutsadakis, I. A. (2000). Interferon-alpha and the pathogenesis of myeloproliferative disorders. Medical Oncology, 17, 249–257.

    Article  PubMed  CAS  Google Scholar 

  • Wadhwa, P. D., Zielske, S. P., Roth, J. C., Ballas, C. B., Bowman, J. E., & Gerson, S. L. (2002). Cancer gene therapy: Scientific basis. Annual Review of Medicine, 53, 437–452.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, J., Mizuno, M., & Wakabayashi, T. (2004). Interferon-beta gene therapy for cancer: Basic research to clinical application. Cancer Science, 95, 858–865.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, C. C., Dyer, M. A., Uchikawa, M., Kondoh, H., Lagutin, O. V., & Oliver, G. (2002). Six3-mediated auto repression and eye development requires its interaction with members of the Groucho-related family of co-repressors. Development, 129(12), 2835–2849.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. John Gray and the staff of the Vector Core Facility at St. Jude Children’s Research Hospital for their assistance with pseudotyped AAV. This study was supported by the Alliance for Cancer Gene Therapy (AMD), Grant No. T32-CA070089 from the National Cancer Institute, Grants (to M.A.D.) from the National Institutes of Health (EY04867), Cancer Center Support from the National Cancer Institute (CA21766), the American Cancer Society Research to Prevent Blindness (RSG-06-03-01), and by the American Lebanese Syrian Associated Charities. M.A.D. is a Pew Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Dyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shih, CS., Laurie, N., Holzmacher, J. et al. AAV-mediated Local Delivery of Interferon-β for the Treatment of Retinoblastoma in Preclinical Models. Neuromol Med 11, 43–52 (2009). https://doi.org/10.1007/s12017-009-8059-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-009-8059-0

Keywords

Navigation