Skip to main content

Advertisement

Log in

Interferon-alpha and the pathogenesis of myeloproliferative disorders

  • Review
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Interferon-alpha (IFN-α), a molecule with multiple biological actions, is widely used in the treatment of chronic myelogenous leukemia (CML) and the other myeloproliferative disorders. This glycoprotein belonging to the type I subfamily of interferons has been recombinantly manufactured and has been approved for the biotherapy of CML, now becoming the first line of treatment for CML patients in chronic phase who are not candidates for allogeneic hematopoietic stem cell or bone marrow transplantation. Interferon-alpha action involves binding to its cell membrane receptor and initiation of an intracellular signal transduction cascade. Two major pathways mediate the biologic actions of IFN-α. The JAK-STAT pathway leads to phosphorylation and activation of STAT1 and STAT2 molecules and transcription of genes like p21 and caspase-1 resulting in cycle arrest and apoptosis. The PKR (protein kinase ds RNA-induced) kinase phosphorylates and inhibits the eukaryotic initiator of translation eIF-2α leading again to apoptosis. The PKR kinase cascade also leads to activation of the transcription factor NF-κB. The relevance of this activation is unclear and it is possible that NF-κB has not had the opportunity to transcribe its target genes as it is a substrate of effector caspases and is maybe cleaved by them before exerting any transcription activity. Through the JAK-STAT and the PKR kinase pathways IFN-α is able to modify the proliferative and antiapoptotic actions of the constitutively activated kinase bcr-abl, the product of the t(9;22) translocation present in CML, and has therapeutic effects in this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giralt S, Kantarjian H, Talpaz M. Treatment of chronic myelogenous leukemia.Semin Oncol 1995;22: 396–404.

    CAS  PubMed  Google Scholar 

  2. Pfeffer LMet al. Biological properties of recombinant α-interferons: 40th anniversary of the discovery of interferons.Cancer Res 1998;58: 2489–2499.

    CAS  PubMed  Google Scholar 

  3. Weiss K. Safety profile of interferon-α therapy.Semin Oncol 1998;25(Suppl 1): 9–13.

    CAS  PubMed  Google Scholar 

  4. Pestka S. The human interferon-α species and hybrid proteins.Semin Oncol 1997;24(Suppl 9): 4–17.

    CAS  Google Scholar 

  5. Platanias LC, Fish EN. Signaling pathways activated by interferons.Exp Hematol 1999;27: 1583–1592.

    Article  CAS  PubMed  Google Scholar 

  6. Labdon JE, Gibson KD, Sun S, Pestka S. Some species of human leukocyte interferon are glycosylated.Arch Biochem Biophys 1984;232: 422–426.

    Article  CAS  PubMed  Google Scholar 

  7. Adolf GR, Kalsner I, Ahorn H, Maurer-Fogy I, Cantell K. Natural human interferon-alpha 2 is O-glycosylated.Biochem J 1991;276: 511–518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mogensen KE, Lewerenz M, Reboul J, Lutfalla G, Uze G. The type I interferon receptor: Structure, function, and evolution of a family business.J Interferon Cytokine Res 1999;19: 1069–1098.

    Article  CAS  PubMed  Google Scholar 

  9. Taniguchi T. Cytokine signaling through nonreceptor protein kinases.Science 1995;268: 251–255.

    Article  CAS  PubMed  Google Scholar 

  10. Ransohoff RM. Cellular responses to interferons and other cytokines: the JAK-STAT paradigm.New Engl J Med 1998;338: 616–618.

    Article  CAS  PubMed  Google Scholar 

  11. Chatterjee-Kishore M, van der Akker F, Stark GR. Association of STATs with relatives and friends.Trends Cell Biol 2000;10: 106–111.

    Article  CAS  PubMed  Google Scholar 

  12. Shuai K. The STAT family of proteins in cytokine signaling.Prog Biophys Mol Biol 1999;71: 405–422.

    Article  CAS  PubMed  Google Scholar 

  13. Sudol M. From Src Homology domains to other signaling modules: proposal of the ‘protein recognition code’.Oncogene 1998;17: 1469–1474.

    Article  CAS  PubMed  Google Scholar 

  14. Sawyer TK. Src Homology-2 domains: structure, mechanisms, and drug discovery.Biopoly 1998;47: 243–261.

    Article  CAS  Google Scholar 

  15. Schindler C. STATs as activators of apoptosis.Trends Cell Biol 1998;8: 97–98.

    Article  CAS  PubMed  Google Scholar 

  16. Pitha PMet al. Role of the interferon regulatory factors (IRFs) in virus-mediated signaling and regulation of cell growth.Biochimie 1998;80: 651–658.

    Article  CAS  PubMed  Google Scholar 

  17. Marie' I, Durbin JE, Levy DE. Differential viral induction of distinct interferon-α genes by positive feedback through interferon regulatory factor-7.EMBO J 1998;17: 6660–6669.

    Article  CAS  PubMed  Google Scholar 

  18. Matikainen S, Lehtonen A, Sareneva T, Julkunen I. Regulation of IRF and STAT gene expression by retinoic acid.Leuk Lymphoma 1998;30: 63–71.

    Article  CAS  PubMed  Google Scholar 

  19. Brown CE, Lechner T, Howe L, Workman JL. The many HATs of transcription coactivators.Trends Biochem Sci 2000;25: 15–19.

    Article  CAS  PubMed  Google Scholar 

  20. Thornberry NA. The caspase family of cysteine proteases.Br Med Bull 1997;53: 478–490.

    Article  CAS  PubMed  Google Scholar 

  21. Cohen GM. Caspases: the executioners of apoptosis.Biochem J 1997;326: 1–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Weinberg RA. The retinoblastoma protein and cell cycle control.Cell 1995;81: 323–330.

    Article  CAS  PubMed  Google Scholar 

  23. Hilton DJ. Negative regulators of cytokine signal transduction.Cell Mol Life Sci 1999;55: 1568–1577.

    Article  CAS  PubMed  Google Scholar 

  24. Uddin S, Gardziola C, Dangat A, Yi T, Platanias LC. Interaction of the c-cbl proto- oncogene product with the Tyk-2 protein tyrosine kinase.Biochem Biophys Res Commun 1996;225: 833–838.

    Article  CAS  PubMed  Google Scholar 

  25. Feller SMet al. Physiological signals and oncogenesis mediated through Crk family adapter proteins.J Cell Physiol 1998;177: 535–552.

    Article  CAS  PubMed  Google Scholar 

  26. Ahmad S, Alsayed YM, Drukers BJ, Platanias LC. The type I interferon receptor mediates tyrosine phosphorylation of the CrkL adaptor protein.J Biol Chem 1997;272: 29991–29994.

    Article  CAS  PubMed  Google Scholar 

  27. Cook S, Rubinfeld B, Albert I, McCormick F. RapV12 antagonizes Ras-dependent activation of ERK1 and ERK2 by LPA and EGF in Rat-1 fibroblasts.EMBO J 1993;12: 3475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tan S-L, Katze MG. The emerging role of the interferon-induced PKR protein kinase as an apoptotic effector: A new face of death?J Interferon Cytokine Res 1999;19: 543–554.

    Article  CAS  PubMed  Google Scholar 

  29. Clemens MJet al. Regulation of the interferon-inducible eIF-2α protein kinase by small RNAs.Biochimie 1994;76: 770–778.

    Article  CAS  PubMed  Google Scholar 

  30. De Haro C, Mendez R, Santoyo J. The eIF-2α kinases and the control of protein synthesis.FASEB J 1996;10: 1378–1387.

    Article  PubMed  Google Scholar 

  31. Kimball SR. Eukaryotic initiation factor eIF2.Int J Biochem Cell Biol 1999;31: 25–29.

    Article  CAS  PubMed  Google Scholar 

  32. Alcazar A, Bazan E, Rivera J, Salinas M. Phosphorylation of initiation factor 2α subunit and apoptosis in Ca++ ionophore-treated cultured neuronal cells.Neurosci Lett 1995;201: 215–218.

    Article  CAS  PubMed  Google Scholar 

  33. Clemens MJ, Elia A. The double-stranded DNA-dependent protein kinase PKR: structure and function.J Interferon Cytokine Res 1997;17: 503–524.

    Article  CAS  PubMed  Google Scholar 

  34. Williams BRG. PKR; a sentinel kinase for cellular stress.Oncogene 1999;18: 6112–6120.

    Article  CAS  PubMed  Google Scholar 

  35. Mercurio F, Manning AM. Multiple signals converging on NF-κB.Curr Opin Cell Biol 1999;11: 226–232.

    Article  CAS  PubMed  Google Scholar 

  36. Khwaja A. Akt is more than just a bad kinase.Nature 1999;401: 33–34.

    Article  CAS  PubMed  Google Scholar 

  37. Foo SY, Nolan GP. NF-κB to the rescue, RELs, apoptosis and cellular transformation.Trends Genet 1999;15: 229–235.

    Article  CAS  PubMed  Google Scholar 

  38. Hassa PO, Hottinger MO. A role of poly(ADP-ribose) polymerase in the NF-κB transcriptional activation.Biol Chem 1999;380: 953–959.

    Article  CAS  PubMed  Google Scholar 

  39. D'Amours D, Desnoyers S, D'Silva I, Poirier GG. Poly (ADP-ribosyl)ation reactions in the regulation of nuclear functions.Biochem J 1999;342: 249–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Levkau B, Scatena M, Giachelli CM, Ross R, Raines EW. Apoptosis overrides survival signals through a caspasemediated dominant-negative NF-κB loop.Nature Cell Biol 1999;1: 227–233.

    Article  CAS  PubMed  Google Scholar 

  41. Hu W-H, Johnson H, Shu H-B. Tumor Necrosis Factorrelated apoptosis-inducing Ligand Receptors Signal NF-κB and JNK activation and apoptosis through distinct pathways.J Biol Chem 1999;274: 30603–30610.

    Article  CAS  PubMed  Google Scholar 

  42. Miller LK, Kaiser WJ, Seshagiri S. Baculovirus regulation of apoptosis.Semin Virol 1998;8: 445–452.

    Article  CAS  Google Scholar 

  43. Lee SB, Esteban M. The interferon-induced double-stranded RNA-activated protein kinase induces apoptosis.Virol 1994;199: 491–496.

    Article  CAS  Google Scholar 

  44. Williams BRG. The role of the dsRNA-activated kinase, PKR, in signal transduction.Semin Virol 1995;6: 191–202.

    Article  CAS  Google Scholar 

  45. Wong A H-Tet al. Physical association between STAT1 and the interferon-inducible protein kinase PKR and implications for interferon and double-stranded RNA signaling pathways.EMBO J 1997;16: 1291–1304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Warmuth M, Danhauser-Riedl S, Hallek M. Molecular pathogenesis of chronic myeloid leukemia: implications for new therapeutic strategies.Ann Hematol 1999;78: 49–64.

    Article  CAS  PubMed  Google Scholar 

  47. Van Etten RA. Cycling, stressed-out and nervous: cellular functions of c-abl.Trends Cell Biol 1999;9: 179–186.

    Article  PubMed  Google Scholar 

  48. Faderl Set al. The biology of chronic myeloid leukemia.New Engl J Med 1999;341: 164–172.

    Article  CAS  PubMed  Google Scholar 

  49. Cortez D, Stoica G, Pierce JH, Pendergast AM. The BCRABL tyrosine kinase inhibits apoptosis by activating a Rasdependent signaling pathway.Oncogene 1996;13: 2589–2594.

    CAS  PubMed  Google Scholar 

  50. Raitano AB, Halpern JR, Hambuch TM, Sawyers CL. The Bcr-Abl leukemia oncogene activates Jun kinase and requires Jun for transformation.Proc Natl Acad Sci USA 1995;92: 11746–11750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ilaria RL, Van Etten RA. P210 and P190BCR/ABL induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members.J Biol Chem 1996;271: 31704–31710.

    Article  CAS  PubMed  Google Scholar 

  52. Shuai K, Halpern J, ten Hoeve J, Rao X, Sawyers CL. Constitutive activation of STAT5 by the BCR-ABL oncogene in chronic myelogenous leukemia.Oncogene 1996;13: 247–254.

    CAS  PubMed  Google Scholar 

  53. Buday L, Downward J. Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor.Cell 1993;73: 611–620.

    Article  CAS  PubMed  Google Scholar 

  54. Pendergast AMet al. BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein.Cell 1993;73: 175–185.

    Article  Google Scholar 

  55. Cardone MHet al. Regulation of cell death protease caspase-9by phosphorylation.Science 1998;282: 1318–1321.

    Article  CAS  PubMed  Google Scholar 

  56. Voutsadakis IA. Apoptosis and the pathogenesis of lymphoma.Acta Oncol in press.

  57. Uemura Net al. The BCR/ABL oncogene alters interaction of the adapter proteins CRKL and CRK with cellular proteins.Leukemia 1997;11: 376–385.

    Article  CAS  PubMed  Google Scholar 

  58. Nichols GWet al. Identification of CRKL as the constitutively phosphorylated 39-kD tyrosine phosphoprotein in chronic myelogenous leukemia cells.Blood 1994;84: 2912–2918.

    Article  CAS  PubMed  Google Scholar 

  59. ten Hoeve J, Arlinghaus RB, Guo JQ, Heisterkamp N, Groffen J. Tyrosine phosphorylation of CRKL in Philadelphia+leukemia.Blood 1994;84: 1731–1736.

    Article  PubMed  Google Scholar 

  60. Oda Tet al. Crkl is the major tyrosine-phosphorylated protein in neutrophils from patients with chronic myelogenous leukemia.J Biol Chem 1994;269: 22925–22928.

    Article  CAS  PubMed  Google Scholar 

  61. ten Hoeve Jet al. Cellular interactions of CRKL, an SH2-SH3 adaptor protein.Cancer Res 1994;54: 2563–2567.

    CAS  PubMed  Google Scholar 

  62. Sattler M, Salgia R. Role of the adapter protein CRKL in signal transduction of normal hematopoietic and BCR/ABL-transformed cells.Leukemia 1998;12: 637–644.

    Article  CAS  PubMed  Google Scholar 

  63. Clark EA, Brugge JS. Integrins and signal transduction pathways: the road taken.Science 1995;268: 233–239.

    Article  CAS  PubMed  Google Scholar 

  64. Bhatia R, Verfaillie CM. The effect of interferon-α on beta-1 integrin mediated adhesion and growth regulation in chronic myelogenous leukemia.Leuk Lymphoma 1998;28: 241–254.

    Article  CAS  PubMed  Google Scholar 

  65. Peschel C, Aulitzky WE, Huber C. Influence of interferon-α on cytokine expression by the bone marrow microenvironment-impact on treatment of myeloproliferative disorders.Leuk Lymphoma 1996;22(Suppl 1): 129–134.

    Article  PubMed  Google Scholar 

  66. Sattler Met al. The proto-oncogene product p120CBL and the adaptor proteins CRKL and c-CRK link c-ABL, p190BCR/ABL and p210BCR/ABL to the phosphatidylinositol-3′ kinase pathway.Oncogene 1996;12: 839–846.

    CAS  PubMed  Google Scholar 

  67. Sillaber C, Gesbert F, Frank DA, Sattler M, Griffin JD. STAT5 activation contributes to growth and viability in Bcr/Abl-transformed cells.Blood 2000;95: 2118–2125.

    Article  CAS  PubMed  Google Scholar 

  68. Mundschau LJ, Faller DV. Endogenous inhibitors of the dsRNA-dependent eIF-2α protein kinase PKR in normal and ras-transformed cells.Biochimie 1994;76: 792–800.

    Article  CAS  PubMed  Google Scholar 

  69. Humphries MJ. Integrin cell adhesion receptors and the concept of agonism.Trends Pharmacol Sci 2000;21: 21–24.

    Article  Google Scholar 

  70. Schlaepfer DD, Hauck CR, Sieg DJ. Signaling through focal adhesion kinase.Prog Biophys Mol Biol 1999;71: 431–478.

    Article  Google Scholar 

  71. Hinshelwood S, Bench AJ, Green AR. Pathogenesis of polycythaemia vera.Blood Rev 1997;11: 224–232.

    Article  CAS  PubMed  Google Scholar 

  72. Silva Met al. Expression of bcl-x in erythroid precursors from patients with polycythemia vera.New Engl J Med 1998;338: 564–571.

    Article  CAS  PubMed  Google Scholar 

  73. Moliterno AR, Hankins WD, Spivak JL. Impaired expression of the thrombopoietin receptor by platelets from patients with polycythemia vera.New Engl J Med 1998;338: 572–580.

    Article  CAS  PubMed  Google Scholar 

  74. Horikawa Y, Matsumara I, Hashimoto K. Markedly reduced expression of platelet c-mpl receptor in essential thrombocythemia.Blood 1997;90: 4031–4038.

    Article  CAS  PubMed  Google Scholar 

  75. Tefferi A. Pathogenetic mechanisms in chronic myeloproliferative disorders: Polycythemia vera, essential thrombocythemia, agnogenic myeloid metaplasia, and chronic myelogenous leukemia.Semin Hematol 1999;36(Suppl 2): 3–8.

    CAS  PubMed  Google Scholar 

  76. Ward AC, Touw I, Yoshimura A. The Jak-stat pathway in normal and perturbed hematopoiesis.Blood 2000;95: 19–29.

    Article  CAS  PubMed  Google Scholar 

  77. Reilly JT. Idiopathic myelofibrosis: pathogenesis, natural history and management.Blood Rev 1997;11: 233–242.

    Article  CAS  PubMed  Google Scholar 

  78. Asimakopoulos FA, Green AR. Deletions of chromosome 20q and the pathogenesis of myeloproliferative disorders.Br J Haematol 1996;95: 219–226.

    Article  CAS  PubMed  Google Scholar 

  79. Gilbert HS. Long term treatment of myeloproliferative disease with interferon-α-2b.Cancer 1998;83: 1205–1213.

    Article  CAS  PubMed  Google Scholar 

  80. Elliott MA, Tefferi A. Interferon-α therapy in polycythemia vera and essential thrombocythemia.Semin Thromb Hemost 1997;23: 463–472.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to IA Voutsadakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voutsadakis, I. Interferon-alpha and the pathogenesis of myeloproliferative disorders. Med Oncol 17, 249–257 (2000). https://doi.org/10.1007/BF02782189

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02782189

Keywords

Navigation