Skip to main content

Advertisement

Log in

Clinical Features, Immunopathogenesis, and Therapeutic Strategies in Vitiligo

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

A Correction to this article was published on 06 August 2021

This article has been updated

Abstract

Vitiligo is an autoimmune disease of the skin characterized by epidermal melanocyte loss resulting in white patches, with an approximate prevalence of 0.5–2% worldwide. Several precipitating factors by chemical exposure and skin injury present commonly in patients with vitiligo. Although the diagnosis appears to be straightforward for the distinct clinical phenotype and specific histological features, vitiligo provides many challenges including chronicity, treatment resistance, frequent relapse, associated profound psychosocial effect, and negative impact on quality of life. Multiple mechanisms are involved in melanocyte disappearance, including genetics, environmental factors, and immune-mediated inflammation. Compelling evidence supports the melanocyte intrinsic abnormalities with poor adaptation to stressors leading to instability and release of danger signals, which will activate dendritic cells, natural killer cells, and innate lymphoid cells to initiate innate immunity, ultimately resulting in T-cell mediated adaptive immune response and melanocyte destruction. Importantly, the cross- talk between keratinocytes, melanocytes, and immune cells, such as interferon (IFN)-γ signaling pathway, builds inflammatory loops that give rise to the disease deterioration. Improved understanding of the immune pathogenesis of vitiligo has led to the development of new therapeutic options including Janus kinase (JAK) inhibitors targeting IFN-γ signaling pathways, which can effectively reverse depigmentation. Furthermore, definition of treatment goals and integration of comorbid diseases into vitiligo management have revolutionized the way vitiligo is treated. In this review, we highlight recent developments in vitiligo clinical aspects and immune pathogenesis. Our key objective is to raise awareness of the complexity of this disease, the potential of prospective therapy strategies, and the need for early and comprehensive management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

Abbreviations

4-TAP:

4-Tert-amylphenol

4-TBC:

4-Tert-butylcatechol

4-TBP:

4-Tert-butylphenol

BSA:

Body surface area

CLA:

Cutaneous lymphocyte antigen

CXCR3B:

CXCR3 isoform B

DAMPs:

Damage-associated molecular patterns

DiHS:

Drug-induced hypersensitivity syndrome

Foxp3:

Forkhead box P3

GWAS:

Genome-wide association studies

HCV:

Hepatitis C virus

HMGB1:

High-mobility group protein B1

HSP:

Heat shock protein

IFN:

Interferon

IL:

Interleukin

ILCs:

Innate lymphoid cells

JAK:

Janus kinase

MHC:

Major histocompatibility complex

NB-UVB:

Narrowband UVB

NK:

Natural killer

NLRs:

Nucleotide oligomerization domain (NOD)-like receptors

Nrf2:

Nuclear factor E2-related factor 2

PPD:

Para-phenylenediamine

PRP:

Platelet-rich plasma

RAGE:

Receptor for advanced glycation end products

RCTs:

Randomized controlled trials

ROS:

Reactive oxygen species

SA-VASI:

Self-Assessed Vitiligo Area Scoring Index

SA-VES:

Self-Assessment Vitiligo Extent Score

Tregs:

Regulatory T cells

TRM cells:

Resident memory T cells

VASI:

Vitiligo area scoring index

VES:

Vitiligo extent score

VETF:

Vitiligo European task force

VIDA:

Vitiligo disease activity

VIPs:

Vitiligo impact patient scales

References

  1. Frisoli ML, Essien K, Harris JE (2020) Vitiligo: mechanisms of pathogenesis and treatment. Annu Rev Immunol 38:621–648. https://doi.org/10.1146/annurev-immunol-100919-023531

    Article  CAS  PubMed  Google Scholar 

  2. Boniface K, Seneschal J, Picardo M, Taieb A (2018) Vitiligo: focus on clinical aspects, immunopathogenesis, and therapy. Clin Rev Allergy Immunol 54(1):52–67. https://doi.org/10.1007/s12016-017-8622-7

    Article  CAS  PubMed  Google Scholar 

  3. Ezzedine K, Lim HW, Suzuki T, Katayama I, Hamzavi I, Lan CC, Goh BK, Anbar T, Silva de Castro C, Lee AY, Parsad D, van Geel N, Le Poole IC, Oiso N, Benzekri L, Spritz R, Gauthier Y, Hann SK, Picardo M, Taieb A, Conference VGIC P (2012) Revised classification/nomenclature of vitiligo and related issues: the Vitiligo Global Issues Consensus Conference. Pigment Cell Melanoma Res 25(3):E1-13. https://doi.org/10.1111/j.1755-148X.2012.00997.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schmidt C (2020) Temprian therapeutics: developing a gene-based treatment for vitiligo. Nature. https://doi.org/10.1038/d41586-020-01808-5

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ezzedine K, Eleftheriadou V, Whitton M, van Geel N (2015) Vitiligo Lancet 386(9988):74–84. https://doi.org/10.1016/S0140-6736(14)60763-7

    Article  PubMed  Google Scholar 

  6. Frisoli ML, Harris JE (2017) Vitiligo: mechanistic insights lead to novel treatments. J Allergy Clin Immunol 140(3):654–662. https://doi.org/10.1016/j.jaci.2017.07.011

    Article  CAS  PubMed  Google Scholar 

  7. Cui T, Zhang W, Li S, Chen X, Chang Y, Yi X, Kang P, Yang Y, Chen J, Liu L, Jian Z, Li K, Wang G, Gao T, Song P, Li C (2019) Oxidative stress-induced HMGB1 release from melanocytes: a paracrine mechanism underlying the cutaneous inflammation in vitiligo. J Invest Dermatol 139 (10):2174–2184 e2174. https://doi.org/10.1016/j.jid.2019.03.1148

  8. Mosenson JA, Zloza A, Nieland JD, Garrett-Mayer E, Eby JM, Huelsmann EJ, Kumar P, Denman CJ, Lacek AT, Kohlhapp FJ, Alamiri A, Hughes T, Bines SD, Kaufman HL, Overbeck A, Mehrotra S, Hernandez C, Nishimura MI, Guevara-Patino JA, Le Poole IC (2013) Mutant HSP70 reverses autoimmune depigmentation in vitiligo. Sci Transl Med 5 (174):174ra128. https://doi.org/10.1126/scitranslmed.3005127

  9. Tulic MK, Cavazza E, Cheli Y, Jacquel A, Luci C, Cardot-Leccia N, Hadhiri-Bzioueche H, Abbe P, Gesson M, Sormani L, Regazzetti C, Beranger GE, Lereverend C, Pons C, Khemis A, Ballotti R, Bertolotto C, Rocchi S, Passeron T (2019) Innate lymphocyte-induced CXCR3B-mediated melanocyte apoptosis is a potential initiator of T-cell autoreactivity in vitiligo. Nat Commun 10(1):2178. https://doi.org/10.1038/s41467-019-09963-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hadi A, Wang JF, Uppal P, Penn LA, Elbuluk N (2020) Comorbid diseases of vitiligo: a 10-year cross-sectional retrospective study of an urban US population. J Am Acad Dermatol 82(3):628–633. https://doi.org/10.1016/j.jaad.2019.07.036

    Article  PubMed  Google Scholar 

  11. Han F, Ren H, Tang M, Zhu Y, Guan H (2020) Clinical reasoning: a 47-year-old man with rapidly progressive ataxia and vitiligo. Neurology 94(15):e1664–e1669. https://doi.org/10.1212/WNL.0000000000009242

    Article  PubMed  Google Scholar 

  12. Vachiramon V, Onprasert W, Harnchoowong S, Chanprapaph K (2017) Prevalence and clinical characteristics of itch in vitiligo and its clinical significance. Biomed Res Int 2017:5617838. https://doi.org/10.1155/2017/5617838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Linthorst Homan MW, Spuls PI, de Korte J, Bos JD, Sprangers MA, van der Veen JP (2009) The burden of vitiligo: patient characteristics associated with quality of life. J Am Acad Dermatol 61(3):411–420. https://doi.org/10.1016/j.jaad.2009.03.022

    Article  PubMed  Google Scholar 

  14. Cupertino F, Niemeyer-Corbellini JP, Ramos ESM (2017) Psychosomatic aspects of vitiligo. Clin Dermatol 35(3):292–297. https://doi.org/10.1016/j.clindermatol.2017.01.001

    Article  PubMed  Google Scholar 

  15. Chen D, Tuan H, Zhou EY, Liu D, Zhao Y (2019) Quality of life of adult vitiligo patients using camouflage: a survey in a Chinese vitiligo community. PLoS One 14(1):e0210581. https://doi.org/10.1371/journal.pone.0210581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen CY, Wang WM, Chung CH, Tsao CH, Chien WC, Hung CT (2020) Increased risk of psychiatric disorders in adult patients with vitiligo: a nationwide, population-based cohort study in Taiwan. J Dermatol 47(5):470–475. https://doi.org/10.1111/1346-8138.15290

    Article  PubMed  Google Scholar 

  17. Wang G, Qiu D, Yang H, Liu W (2018) The prevalence and odds of depression in patients with vitiligo: a meta-analysis. J Eur Acad Dermatol Venereol 32(8):1343–1351. https://doi.org/10.1111/jdv.14739

    Article  CAS  PubMed  Google Scholar 

  18. Kussainova A, Kassym L, Akhmetova A, Glushkova N, Sabirov U, Adilgozhina S, Tuleutayeva R, Semenova Y (2020) Vitiligo and anxiety: a systematic review and meta-analysis. PLoS One 15(11):e0241445. https://doi.org/10.1371/journal.pone.0241445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ucuz I, Altunisik N, Sener S, Turkmen D, Kavuran NA, Marsak M, Colak C (2020) Quality of life, emotion dysregulation, attention deficit and psychiatric comorbidity in children and adolescents with vitiligo. Clin Exp Dermatol. https://doi.org/10.1111/ced.14196

    Article  PubMed  Google Scholar 

  20. Patel KR, Singam V, Rastogi S, Lee HH, Silverberg NB, Silverberg JI (2019) Association of vitiligo with hospitalization for mental health disorders in US adults. J Eur Acad Dermatol Venereol 33(1):191–197. https://doi.org/10.1111/jdv.15255

    Article  CAS  PubMed  Google Scholar 

  21. Hamidizadeh N, Ranjbar S, Ghanizadeh A, Parvizi MM, Jafari P, Handjani F (2020) Evaluating prevalence of depression, anxiety and hopelessness in patients with vitiligo on an Iranian population. Health Qual Life Outcomes 18(1):20. https://doi.org/10.1186/s12955-020-1278-7

    Article  PubMed  PubMed Central  Google Scholar 

  22. Maria Alexandra Stanescu A, Totan A, Mircescu D, Diaconescu S, Gabriel Bratu O, Fekete L, Laszlo Fekete G, Boda D, Cristina Diaconu C (2020) Assessment of suicidal behavior in dermatology (review). Exp Ther Med 20(1):73–77. https://doi.org/10.3892/etm.2019.8145

    Article  PubMed  Google Scholar 

  23. Amer AA, McHepange UO, Gao XH, Hong Y, Qi R, Wu Y, Cai Y, Zhai J, Chen HD (2015) Hidden victims of childhood vitiligo: impact on parents’ mental health and quality of life. Acta Derm Venereol 95(3):322–325. https://doi.org/10.2340/00015555-1940

    Article  PubMed  Google Scholar 

  24. Tsadik AG, Teklemedhin MZ, Mehari Atey T, Gidey MT, Desta DM (2020) Public knowledge and attitudes towards vitiligo: a survey in Mekelle City. Northern Ethiopia Dermatol Res Pract 2020:3495165. https://doi.org/10.1155/2020/3495165

    Article  PubMed  Google Scholar 

  25. Bae JM, Kim JE, Lee RW, Ju HJ, Han JH, Lee JH, Woo YR, Lee JH, Bang CH, Park CJ, Ezzedine K, Kim M (2020) Beyond the quality of life: a call for patients’ own willingness to pay in chronic skin disease to assess psychosocial burden: a multi-center, cross-sectional prospective survey. J Am Acad Dermatol. https://doi.org/10.1016/j.jaad.2020.09.088

    Article  PubMed  Google Scholar 

  26. Zhang Y, Cai Y, Shi M, Jiang S, Cui S, Wu Y, Gao XH, Chen HD (2016) The prevalence of vitiligo: a meta-analysis. PLoS One 11(9):e0163806. https://doi.org/10.1371/journal.pone.0163806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang X, Du J, Wang T, Zhou C, Shen Y, Ding X, Tian S, Liu Y, Peng G, Xue S, Zhou J, Wang R, Meng X, Pei G, Bai Y, Liu Q, Li H, Zhang J (2013) Prevalence and clinical profile of vitiligo in China: a community-based study in six cities. Acta Derm Venereol 93(1):62–65. https://doi.org/10.2340/00015555-1397

    Article  PubMed  Google Scholar 

  28. Abdel-Hafez K, Abdel-Aty MA, Hofny ER (2003) Prevalence of skin diseases in rural areas of Assiut Governorate. Upper Egypt Int J Dermatol 42(11):887–892. https://doi.org/10.1046/j.1365-4362.2003.01936.x

    Article  PubMed  Google Scholar 

  29. Lu T, Gao T, Wang A, Jin Y, Li Q, Li C (2007) Vitiligo prevalence study in Shaanxi Province. China Int J Dermatol 46(1):47–51. https://doi.org/10.1111/j.1365-4632.2006.02848.x

    Article  PubMed  Google Scholar 

  30. Nicolaidou E, Mastraftsi S, Tzanetakou V, Rigopoulos D (2019) Childhood vitiligo. Am J Clin Dermatol 20(4):515–526. https://doi.org/10.1007/s40257-019-00430-0

    Article  PubMed  Google Scholar 

  31. Jin Y, Roberts GHL, Ferrara TM, Ben S, van Geel N, Wolkerstorfer A, Ezzedine K, Siebert J, Neff CP, Palmer BE, Santorico SA, Spritz RA (2019) Early-onset autoimmune vitiligo associated with an enhancer variant haplotype that upregulates class II HLA expression. Nat Commun 10(1):391. https://doi.org/10.1038/s41467-019-08337-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jin Y, Santorico SA, Spritz RA (2020) Pediatric to adult shift in vitiligo onset suggests altered environmental triggering. J Invest Dermatol 140 (1):241–243 e244. https://doi.org/10.1016/j.jid.2019.06.131

  33. Oliver EA, Schwartz L, Warren LH (1939) Occupational leukoderma. JAMA 113:927–928

    Article  Google Scholar 

  34. Harris JE (2017) Chemical-induced vitiligo. Dermatol Clin 35(2):151–161. https://doi.org/10.1016/j.det.2016.11.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. James O, Mayes RW, Stevenson CJ (1977) Occupational vitiligo induced by p-tert-butylphenol, a systemic disease? Lancet 2(8050):1217–1219. https://doi.org/10.1016/s0140-6736(77)90451-2

    Article  CAS  PubMed  Google Scholar 

  36. Shakshouk H, Lehman JS (2020) Chemical-associated vitiligo. Mayo Clin Proc 95(6):1105–1106. https://doi.org/10.1016/j.mayocp.2020.02.012

    Article  PubMed  Google Scholar 

  37. Taieb A, Picardo M (2009) Clinical practice. vitiligo. N Engl J Med 360 (2):160–169. https://doi.org/10.1056/NEJMcp0804388

  38. Mavilia L, Mercuri SR (2014) Koebner’s phenomenon induced vitiligo following Nd:YAG laser epilation treatment in a woman with a past history of a Sutton nevus. Dermatol Ther 27(6):355–356. https://doi.org/10.1111/dth.12151

    Article  PubMed  Google Scholar 

  39. Verma SB (2009) Vitiligo precipitated by striae: a little known entity. J Eur Acad Dermatol Venereol 23(3):357–358. https://doi.org/10.1111/j.1468-3083.2008.02844.x

    Article  CAS  PubMed  Google Scholar 

  40. Eun SH, Lee JH, Kim GM, Kim KH, Bae JM (2019) Vitiligo at a keloid scar: a possible case of koebner phenomenon. J Dermatol 46(1):e28–e29. https://doi.org/10.1111/1346-8138.14514

    Article  PubMed  Google Scholar 

  41. Zhuang T, Yi X, Chen J, Kang P, Chen X, Chen J, Cui T, Chang Y, Ye Z, Ni Q, Wang Y, Du P, Li B, Liu L, Jian Z, Li K, Gao T, Li S, Li C (2020) Intracellular virus sensor MDA5 exacerbates vitiligo by inducing the secretion of chemokines in keratinocytes under virus invasion. Cell Death Dis 11(6):453. https://doi.org/10.1038/s41419-020-2665-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yamamoto T, Nishioka K (2000) Vitiligo vulgaris associated with hepatitis C virus. J Dermatol 27(6):416–417. https://doi.org/10.1111/j.1346-8138.2000.tb02196.x

    Article  CAS  PubMed  Google Scholar 

  43. Tsuboi H, Yonemoto K, Katsuoka K (2006) Vitiligo with inflammatory raised borders with hepatitis C virus infection. J Dermatol 33(8):577–578. https://doi.org/10.1111/j.1346-8138.2006.00135.x

    Article  PubMed  Google Scholar 

  44. Dunlap R, Wu S, Wilmer E, Cho E, Li WQ, Lajevardi N, Qureshi A (2017) Pigmentation traits, sun exposure, and risk of incident vitiligo in women. J Invest Dermatol 137(6):1234–1239. https://doi.org/10.1016/j.jid.2017.02.004

    Article  CAS  PubMed  Google Scholar 

  45. Vrijman C, Hosseinpour D, Bakker JG, Wolkerstorfer A, Bos JD, van der Veen JP, Luiten RM (2013) Provoking factors, including chemicals, in Dutch patients with vitiligo. Br J Dermatol 168(5):1003–1011. https://doi.org/10.1111/bjd.12162

    Article  CAS  PubMed  Google Scholar 

  46. Paolino G, Bearzi P, Mercuri SR (2020) Onset of vitiligo in a patient with acquired secondary hypogonadism under treatment with testosterone gel 2%: inside the pathogenesis. An Bras Dermatol 95(5):661–662. https://doi.org/10.1016/j.abd.2020.02.010

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kedward AL, Gawkrodger DJ (2008) Congenital stable symmetrical type vitiligo in a patient whose mother developed vitiligo during pregnancy. Eur J Dermatol 18(3):353. https://doi.org/10.1684/ejd.2008.0413

    Article  PubMed  Google Scholar 

  48. Schallreuter KU, Rokos H (2007) From the bench to the bedside: proton pump inhibitors can worsen vitiligo. Br J Dermatol 156(6):1371–1373. https://doi.org/10.1111/j.1365-2133.2007.07870.x

    Article  CAS  PubMed  Google Scholar 

  49. Chiang PH, Ng CY, Kuo TT, Hui RC, Chen CB, Lu CW, Chung WH (2020) Case of vitiligo universalis as a sequela of drug-induced hypersensitivity syndrome. J Dermatol. https://doi.org/10.1111/1346-8138.15562

    Article  PubMed  Google Scholar 

  50. Morita C, Yanase T, Shiohara T, Aoyama Y (2018) Aggressive treatment in paediatric or young patients with drug-induced hypersensitivity syndrome (DiHS)/drug reaction with eosinophilia and systemic symptoms (DRESS) is associated with future development of type III polyglandular autoimmune syndrome BMJ Case Rep2018. https://doi.org/10.1136/bcr-2018-225528

  51. Bergqvist C, Ezzedine K (2020) Vitiligo: a review. Dermatology:1–22. https://doi.org/10.1159/000506103

  52. van Geel N, Grine L, De Wispelaere P, Mertens D, Prinsen CAC, Speeckaert R (2019) Clinical visible signs of disease activity in vitiligo: a systematic review and meta-analysis. J Eur Acad Dermatol Venereol 33(9):1667–1675. https://doi.org/10.1111/jdv.15604

    Article  PubMed  Google Scholar 

  53. Zhang L, Chen S, Kang Y, Wang X, Yan F, Jiang M, Wang Q, Liu Z, Zhang C, Xiang L (2020) Association of clinical markers with disease progression in patients with vitiligo from China. JAMA Dermatol 156(3):288–295. https://doi.org/10.1001/jamadermatol.2019.4483

    Article  PubMed  PubMed Central  Google Scholar 

  54. Benzekri L, Gauthier Y (2017) Clinical markers of vitiligo activity. J Am Acad Dermatol 76(5):856–862. https://doi.org/10.1016/j.jaad.2016.12.040

    Article  PubMed  Google Scholar 

  55. Aboul-Fettouh N, Hinojosa J, Tovar-Garza A, Pandya AG (2017) The majority of patients presenting with vitiligo have a clinical sign of activity. J Am Acad Dermatol 77(4):774–775. https://doi.org/10.1016/j.jaad.2017.05.027

    Article  PubMed  Google Scholar 

  56. van Geel N, Passeron T, Wolkerstorfer A, Speeckaert R, Ezzedine K (2020) Reliability and validity of the Vitiligo Signs of Activity Score (VSAS). Br J Dermatol 183(5):883–890. https://doi.org/10.1111/bjd.18950

    Article  PubMed  PubMed Central  Google Scholar 

  57. Jha AK, Sonthalia S, Lallas A (2018) Dermoscopy as an evolving tool to assess vitiligo activity. J Am Acad Dermatol 78(5):1017–1019. https://doi.org/10.1016/j.jaad.2017.12.009

    Article  PubMed  Google Scholar 

  58. Kumar Jha A, Sonthalia S, Lallas A, Chaudhary RKP (2018) Dermoscopy in vitiligo: diagnosis and beyond. Int J Dermatol 57(1):50–54. https://doi.org/10.1111/ijd.13795

    Article  PubMed  Google Scholar 

  59. Vaccari S, Barisani A, Lacava R, D’Antuono A, Gaspari V, Gurioli C, Patrizi A (2020) Genital vitiligo with reticular pigmentation in a male patient. Clin Exp Dermatol 45(5):590–591. https://doi.org/10.1111/ced.14151

    Article  CAS  PubMed  Google Scholar 

  60. Benzekri L, Hmamouchi I, Gauthier Y (2015) Possible patterns of epidermal melanocyte disappearance in nonsegmental vitiligo: a clinicopathological study. Br J Dermatol 172(2):331–336. https://doi.org/10.1111/bjd.13160

    Article  CAS  PubMed  Google Scholar 

  61. Speeckaert R, Speeckaert M, De Schepper S, van Geel N (2017) Biomarkers of disease activity in vitiligo: a systematic review. Autoimmun Rev 16(9):937–945. https://doi.org/10.1016/j.autrev.2017.07.005

    Article  CAS  PubMed  Google Scholar 

  62. Galadari E, Mehregan AH, Hashimoto K (1993) Ultrastructural study of vitiligo. Int J Dermatol 32(4):269–271. https://doi.org/10.1111/ijd.1993.32.4.269

    Article  CAS  PubMed  Google Scholar 

  63. Boukhedouni N, Martins C, Darrigade AS, Drullion C, Rambert J, Barrault C, Garnier J, Jacquemin C, Thiolat D, Lucchese F, Morel F, Ezzedine K, Taieb A, Bernard FX, Seneschal J, Boniface K (2020) Type-1 cytokines regulate MMP-9 production and E-cadherin disruption to promote melanocyte loss in vitiligo. JCI Insight 5 (11). https://doi.org/10.1172/jci.insight.133772

  64. Yadav AK, Singh P, Khunger N (2016) Clinicopathologic analysis of stable and unstable vitiligo: a study of 66 cases. Am J Dermatopathol 38(8):608–613. https://doi.org/10.1097/DAD.0000000000000539

    Article  PubMed  Google Scholar 

  65. Saleem MD, Oussedik E, Picardo M, Schoch JJ (2019) Acquired disorders with hypopigmentation: a clinical approach to diagnosis and treatment. J Am Acad Dermatol 80 (5):1233–1250 e1210. https://doi.org/10.1016/j.jaad.2018.07.070

  66. Bae JM, Eun SH, Kim YH, Park JH, Hann SK (2019) Excimer stamp test distinguishing between nevus depigmentosus and segmental vitiligo. Pigment Cell Melanoma Res 32(6):864–865. https://doi.org/10.1111/pcmr.12814

    Article  PubMed  Google Scholar 

  67. Al-Refu K (2019) Dermoscopy is a new diagnostic tool in diagnosis of common hypopigmented macular disease: a descriptive study. Dermatol Reports 11(1):7916. https://doi.org/10.4081/dr.2018.7916

    Article  PubMed  Google Scholar 

  68. van Geel N, Vandenhaute S, Speeckaert R, Brochez L, Mollet I, De Cooman L, Lambert J (2011) Prognostic value and clinical significance of halo naevi regarding vitiligo. Br J Dermatol 164(4):743–749. https://doi.org/10.1111/j.1365-2133.2010.10154.x

    Article  PubMed  Google Scholar 

  69. Ezzedine K, Diallo A, Leaute-Labreze C, Seneschal J, Mossalayi D, AlGhamdi K, Prey S, Bouchtnei S, Cario-Andre M, Boralevi F, Jouary T, Taieb A (2012) Halo nevi association in nonsegmental vitiligo affects age at onset and depigmentation pattern. Arch Dermatol 148(4):497–502. https://doi.org/10.1001/archdermatol.2011.351

    Article  PubMed  Google Scholar 

  70. Taieb A, Alomar A, Bohm M, Dell’anna ML, De Pase A, Eleftheriadou V, Ezzedine K, Gauthier Y, Gawkrodger DJ, Jouary T, Leone G, Moretti S, Nieuweboer-Krobotova L, Olsson MJ, Parsad D, Passeron T, Tanew A, van der Veen W, van Geel N, Whitton M, Wolkerstorfer A, Picardo M, Vitiligo European Task F, European Academy of D, Venereology, Union Europe enne des Me decins Spe c, (2013) Guidelines for the management of vitiligo: the European Dermatology Forum consensus. Br J Dermatol 168(1):5–19. https://doi.org/10.1111/j.1365-2133.2012.11197.x

    Article  CAS  PubMed  Google Scholar 

  71. Cohen BE, Manga P, Lin K, Elbuluk N (2020) Vitiligo and melanoma-associated vitiligo: understanding their similarities and differences. Am J Clin Dermatol 21(5):669–680. https://doi.org/10.1007/s40257-020-00524-0

    Article  PubMed  Google Scholar 

  72. Uenami T, Hosono Y, Ishijima M, Kanazu M, Akazawa Y, Yano Y, Mori M, Yamaguchi T, Yokota S (2017) Vitiligo in a patient with lung adenocarcinoma treated with nivolumab: a case report. Lung Cancer 109:42–44. https://doi.org/10.1016/j.lungcan.2017.04.019

    Article  PubMed  Google Scholar 

  73. Nardin C, Jeand’heur A, Bouiller K, Valnet-Rabier MB, Dresco F, Castagna J, Mareschal A, Carlet C, Nerich V, Limat S, Puzenat E, Aubin F (2020) Vitiligo under anti-programmed cell death-1 therapy is associated with increased survival in melanoma patients. J Am Acad Dermatol 82(3):770–772. https://doi.org/10.1016/j.jaad.2019.11.017

    Article  PubMed  Google Scholar 

  74. Larsabal M, Marti A, Jacquemin C, Rambert J, Thiolat D, Dousset L, Taieb A, Dutriaux C, Prey S, Boniface K, Seneschal J (2017) Vitiligo-like lesions occurring in patients receiving anti-programmed cell death-1 therapies are clinically and biologically distinct from vitiligo. J Am Acad Dermatol 76(5):863–870. https://doi.org/10.1016/j.jaad.2016.10.044

    Article  PubMed  Google Scholar 

  75. Taieb A, Picardo M, Members V (2007) The definition and assessment of vitiligo: a consensus report of the Vitiligo European Task Force. Pigment Cell Res 20(1):27–35. https://doi.org/10.1111/j.1600-0749.2006.00355.x

    Article  PubMed  Google Scholar 

  76. Gawkrodger DJ, Ormerod AD, Shaw L, Mauri-Sole I, Whitton ME, Watts MJ, Anstey AV, Ingham J, Young K, Therapy G, Audit Subcommittee BAoD, Clinical Standards Department RCoPoL, Cochrane Skin G, Vitiligo S (2008) Guideline for the diagnosis and management of vitiligo. Br J Dermatol 159(5):1051–1076. https://doi.org/10.1111/j.1365-2133.2008.08881.x

    Article  Google Scholar 

  77. Mogawer RM, Mostafa WZ, Elmasry MF (2020) Comparative analysis of the body surface area calculation method used in vitiligo extent score vs the hand unit method used in vitiligo area severity index. J Cosmet Dermatol. https://doi.org/10.1111/jocd.13311

    Article  PubMed  Google Scholar 

  78. Badran AY, Gomaa AS, El-Mahdy RI, El Zohne RA, Kamal DT, Abou-Taleb DAE (2020) Serum level of S100B in vitiligo patients: is it a marker of disease activity? Australas J Dermatol. https://doi.org/10.1111/ajd.13462

    Article  PubMed  Google Scholar 

  79. Rosmarin D, Pandya AG, Lebwohl M, Grimes P, Hamzavi I, Gottlieb AB, Butler K, Kuo F, Sun K, Ji T, Howell MD, Harris JE (2020) Ruxolitinib cream for treatment of vitiligo: a randomised, controlled, phase 2 trial. Lancet 396(10244):110–120. https://doi.org/10.1016/S0140-6736(20)30609-7

    Article  CAS  PubMed  Google Scholar 

  80. van Geel N, Uitentuis SE, Zuidgeest M, Wolkerstorfer A, Bekkenk MW, Moock C, Van Goethem C, Verlaeckt E, Smet C, Grine L, Speeckaert R (2020) Validation of a Patient Global Assessment for extent, severity and impact to define the severity strata for the Self Assessment Vitiligo Extent Score (SA-VES). J Eur Acad Dermatol Venereol. https://doi.org/10.1111/jdv.16562

    Article  PubMed  PubMed Central  Google Scholar 

  81. van Geel N, Lommerts JE, Bekkenk MW, Prinsen CA, Eleftheriadou V, Taieb A, Picardo M, Ezzedine K, Wolkerstorfer A, Speeckaert R, international Vitiligo Score Working G, (2017) Development and validation of a patient-reported outcome measure in vitiligo: The Self Assessment Vitiligo Extent Score (SA-VES). J Am Acad Dermatol 76(3):464–471. https://doi.org/10.1016/j.jaad.2016.09.034

    Article  PubMed  Google Scholar 

  82. Komen L, van der Kraaij GE, van der Veen JP, de Rie MA, Wolkerstorfer A (2015) The validity, reliability and acceptability of the SAVASI; a new self-assessment score in vitiligo. J Eur Acad Dermatol Venereol 29(11):2145–2151. https://doi.org/10.1111/jdv.13161

    Article  CAS  PubMed  Google Scholar 

  83. van Geel N, Wolkerstorfer A, Ezzedine K, Pandya AG, Bekkenk M, Grine L, Van Belle S, Lommerts JE, Hamzavi I, Harris JE, Eleftheriadou V, Esmat S, Kang HY, Kumarasinghe P, Lan CE, Parsad D, Raboobee N, Flora Xiang L, Suzuki T, Prinsen CA, Taieb A, Picardo M, Speeckaert R, participants of the Rome International VVISW (2019) Validation of a physician global assessment tool for vitiligo extent: results of an international vitiligo expert meeting. Pigment Cell Melanoma Res 32(5):728–733. https://doi.org/10.1111/pcmr.12784

    Article  Google Scholar 

  84. Eleftheriadou V, Hamzavi I, Pandya AG, Grimes P, Harris JE, Huggins RH, Lim HW, Elbuluk N, Bhatia B, Tovar-Garza A, Nahhas AF, Braunberger T, Ezzedine K (2019) International Initiative for Outcomes (INFO) for vitiligo: workshops with patients with vitiligo on repigmentation. Br J Dermatol 180(3):574–579. https://doi.org/10.1111/bjd.17013

    Article  CAS  PubMed  Google Scholar 

  85. van Geel N, Hamzavi I, Kohli I, Wolkerstorfer A, Lim HW, Bae JM, Lui H, Harris JE, Pandya AG, Thng Tien Guan S, Abdallah M, Esmat S, Seneschal J, Speeckaert R, Grine L, Kang HY, Raboobee N, Xiang LF, Bekkenk M, Picardo M, Taieb A (2020) Standardizing serial photography for assessing and monitoring vitiligo: a core set of international recommendations for essential clinical and technical specifications. J Am Acad Dermatol 83(6):1639–1646. https://doi.org/10.1016/j.jaad.2019.10.055

    Article  PubMed  Google Scholar 

  86. Fan KC, Yang TH, Huang YC (2018) Vitiligo and thyroid disease: a systematic review and meta-analysis. Eur J Dermatol 28(6):750–763. https://doi.org/10.1684/ejd.2018.3449

    Article  CAS  PubMed  Google Scholar 

  87. Strassner JP, Rashighi M, Ahmed Refat M, Richmond JM, Harris JE (2017) Suction blistering the lesional skin of vitiligo patients reveals useful biomarkers of disease activity. J Am Acad Dermatol 76 (5):847–855 e845. https://doi.org/10.1016/j.jaad.2016.12.021

  88. Marie J, Kovacs D, Pain C, Jouary T, Cota C, Vergier B, Picardo M, Taieb A, Ezzedine K, Cario-Andre M (2014) Inflammasome activation and vitiligo/nonsegmental vitiligo progression. Br J Dermatol 170(4):816–823. https://doi.org/10.1111/bjd.12691

    Article  CAS  PubMed  Google Scholar 

  89. Tsai TY, Kuo CY, Huang YC (2019) Serum homocysteine, folate, and vitamin B12 levels in patients with vitiligo and their potential roles as disease activity biomarkers: a systematic review and meta-analysis. J Am Acad Dermatol 80 (3):646–654 e645. https://doi.org/10.1016/j.jaad.2018.08.029

  90. Singh S, Singh U, Pandey SS (2011) Increased level of serum homocysteine in vitiligo. J Clin Lab Anal 25(2):110–112. https://doi.org/10.1002/jcla.20442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Speeckaert R, Voet S, Hoste E, van Geel N (2017) S100B is a potential disease activity marker in nonsegmental vitiligo. J Invest Dermatol 137(7):1445–1453. https://doi.org/10.1016/j.jid.2017.01.033

    Article  CAS  PubMed  Google Scholar 

  92. Rahimi A, Hossein-Nataj H, Hajheydari Z, Aryanian Z, Shayannia A, Ajami A, Asgarian-Omran H (2019) Expression analysis of PD-1 and Tim-3 immune checkpoint receptors in patients with vitiligo; positive association with disease activity. Exp Dermatol 28(6):674–681. https://doi.org/10.1111/exd.13952

    Article  CAS  PubMed  Google Scholar 

  93. Zhang L, Kang Y, Chen S, Wang L, Jiang M, Xiang L (2019) Circulating CCL20: A potential biomarker for active vitiligo together with the number of Th1/17 cells. J Dermatol Sci 93(2):92–100. https://doi.org/10.1016/j.jdermsci.2018.12.005

    Article  CAS  PubMed  Google Scholar 

  94. Sawant NS, Vanjari NA, Khopkar U (2019) Gender differences in depression, coping, stigma, and quality of life in patients of vitiligo. Dermatol Res Pract 2019:6879412. https://doi.org/10.1155/2019/6879412

    Article  PubMed  PubMed Central  Google Scholar 

  95. Salzes C, Abadie S, Seneschal J, Whitton M, Meurant JM, Jouary T, Ballanger F, Boralevi F, Taieb A, Taieb C, Ezzedine K (2016) The vitiligo impact patient scale (vips): development and validation of a vitiligo burden assessment tool. J Invest Dermatol 136(1):52–58. https://doi.org/10.1038/JID.2015.398

    Article  CAS  PubMed  Google Scholar 

  96. Lilly E, Lu PD, Borovicka JH, Victorson D, Kwasny MJ, West DP, Kundu RV (2013) Development and validation of a vitiligo-specific quality-of-life instrument (VitiQoL). J Am Acad Dermatol 69(1):e11-18. https://doi.org/10.1016/j.jaad.2012.01.038

    Article  PubMed  Google Scholar 

  97. Roberts GHL, Paul S, Yorgov D, Santorico SA, Spritz RA (2019) Family clustering of autoimmune vitiligo results principally from polygenic inheritance of common risk alleles. Am J Hum Genet 105(2):364–372. https://doi.org/10.1016/j.ajhg.2019.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Alkhateeb A, Fain PR, Thody A, Bennett DC, Spritz RA (2003) Epidemiology of vitiligo and associated autoimmune diseases in Caucasian probands and their families. Pigment Cell Res 16(3):208–214. https://doi.org/10.1034/j.1600-0749.2003.00032.x

    Article  PubMed  Google Scholar 

  99. Spritz RA, Santorico SA (2020) The genetic basis of vitiligo. J Invest Dermatol. https://doi.org/10.1016/j.jid.2020.06.004

    Article  PubMed  Google Scholar 

  100. Roberts GHL, Santorico SA, Spritz RA (2020) Deep genotype imputation captures virtually all heritability of autoimmune vitiligo. Hum Mol Genet 29(5):859–863. https://doi.org/10.1093/hmg/ddaa005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Spritz RA, Andersen GH (2017) Genetics of vitiligo. Dermatol Clin 35(2):245–255. https://doi.org/10.1016/j.det.2016.11.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Passeron T, Ortonne JP (2005) Physiopathology and genetics of vitiligo. J Autoimmun 25(Suppl):63–68. https://doi.org/10.1016/j.jaut.2005.10.001

    Article  CAS  PubMed  Google Scholar 

  103. Yang CA, Chiang BL (2015) Inflammasomes and human autoimmunity: a comprehensive review. J Autoimmun 61:1–8. https://doi.org/10.1016/j.jaut.2015.05.001

    Article  CAS  PubMed  Google Scholar 

  104. Tarle RG, Silva de Castro CC, do Nascimento LM, Mira MT, (2015) Polymorphism of the E-cadherin gene CDH1 is associated with susceptibility to vitiligo. Exp Dermatol 24(4):300–302. https://doi.org/10.1111/exd.12641

    Article  CAS  PubMed  Google Scholar 

  105. Almasi-Nasrabadi M, Amoli MM, Robati RM, Rajabi F, Ghalamkarpour F, Gauthier Y (2019) CDH1 and DDR1 common variants confer risk to vitiligo and autoimmune comorbidities. Gene 700:17–22. https://doi.org/10.1016/j.gene.2019.03.026

    Article  CAS  PubMed  Google Scholar 

  106. Henning SW, Jaishankar D, Barse LW, Dellacecca ER, Lancki N, Webb K, Janusek L, Mathews HL, Price RN Jr, Le Poole IC (2020) The relationship between stress and vitiligo: evaluating perceived stress and electronic medical record data. PLoS One 15(1):e0227909. https://doi.org/10.1371/journal.pone.0227909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hariharan V, Klarquist J, Reust MJ, Koshoffer A, McKee MD, Boissy RE, Le Poole IC (2010) Monobenzyl ether of hydroquinone and 4-tertiary butyl phenol activate markedly different physiological responses in melanocytes: relevance to skin depigmentation. J Invest Dermatol 130(1):211–220. https://doi.org/10.1038/jid.2009.214

    Article  CAS  PubMed  Google Scholar 

  108. Vallerand IA, Lewinson RT, Parsons LM, Hardin J, Haber RM, Lowerison MW, Barnabe C, Patten SB (2019) Vitiligo and major depressive disorder: a bidirectional population-based cohort study. J Am Acad Dermatol 80(5):1371–1379. https://doi.org/10.1016/j.jaad.2018.11.047

    Article  PubMed  Google Scholar 

  109. Kroll TM, Bommiasamy H, Boissy RE, Hernandez C, Nickoloff BJ, Mestril R, Caroline Le Poole I (2005) 4-Tertiary butyl phenol exposure sensitizes human melanocytes to dendritic cell-mediated killing: relevance to vitiligo. J Invest Dermatol 124(4):798–806. https://doi.org/10.1111/j.0022-202X.2005.23653.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang Y, Li S, Li C (2019) Perspectives of new advances in the pathogenesis of vitiligo: from oxidative stress to autoimmunity. Med Sci Monit 25:1017–1023. https://doi.org/10.12659/MSM.914898

  111. Xie H, Zhou F, Liu L, Zhu G, Li Q, Li C, Gao T (2016) Vitiligo: how do oxidative stress-induced autoantigens trigger autoimmunity? J Dermatol Sci 81(1):3–9. https://doi.org/10.1016/j.jdermsci.2015.09.003

    Article  CAS  PubMed  Google Scholar 

  112. Yi X, Guo W, Shi Q, Yang Y, Zhang W, Chen X, Kang P, Chen J, Cui T, Ma J, Wang H, Guo S, Chang Y, Liu L, Jian Z, Wang L, Xiao Q, Li S, Gao T, Li C (2019) SIRT3-dependent mitochondrial dynamics remodeling contributes to oxidative stress-induced melanocyte degeneration in vitiligo. Theranostics 9(6):1614–1633. https://doi.org/10.7150/thno.30398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. He Y, Li S, Zhang W, Dai W, Cui T, Wang G, Gao T, Li C (2017) Dysregulated autophagy increased melanocyte sensitivity to H2O2-induced oxidative stress in vitiligo. Sci Rep 7:42394. https://doi.org/10.1038/srep42394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhang Y, Liu L, Jin L, Yi X, Dang E, Yang Y, Li C, Gao T (2014) Oxidative stress-induced calreticulin expression and translocation: new insights into the destruction of melanocytes. J Invest Dermatol 134(1):183–191. https://doi.org/10.1038/jid.2013.268

    Article  CAS  PubMed  Google Scholar 

  115. Jian Z, Li K, Song P, Zhu G, Zhu L, Cui T, Liu B, Tang L, Wang X, Wang G, Gao T, Li C (2014) Impaired activation of the Nrf2-ARE signaling pathway undermines H2O2-induced oxidative stress response: a possible mechanism for melanocyte degeneration in vitiligo. J Invest Dermatol 134(8):2221–2230. https://doi.org/10.1038/jid.2014.152

    Article  CAS  PubMed  Google Scholar 

  116. Boissy RE, Liu YY, Medrano EE, Nordlund JJ (1991) Structural aberration of the rough endoplasmic reticulum and melanosome compartmentalization in long-term cultures of melanocytes from vitiligo patients. J Invest Dermatol 97(3):395–404. https://doi.org/10.1111/1523-1747.ep12480976

    Article  CAS  PubMed  Google Scholar 

  117. Bickers DR, Athar M (2006) Oxidative stress in the pathogenesis of skin disease. J Invest Dermatol 126(12):2565–2575. https://doi.org/10.1038/sj.jid.5700340

    Article  CAS  PubMed  Google Scholar 

  118. Yuan X, Meng D, Cao P, Sun L, Pang Y, Li Y, Wang X, Luo Z, Zhang L, Liu G (2019) Identification of pathogenic genes and transcription factors in vitiligo. Dermatol Ther 32(5):e13025. https://doi.org/10.1111/dth.13025

    Article  PubMed  Google Scholar 

  119. Ahn Y, Seo J, Lee EJ, Kim JY, Park MY, Hwang S, Almurayshid A, Lim BJ, Yu JW, Oh SH (2020) ATP-P2X7-induced inflammasome activation contributes to melanocyte death and CD8+ T-cell trafficking to the skin in vitiligo. J Invest Dermatol 140 (9):1794–1804 e1794. https://doi.org/10.1016/j.jid.2019.12.035

  120. Li S, Kang P, Zhang W, Jian Z, Zhang Q, Yi X, Guo S, Guo W, Shi Q, Li B, He Y, Song P, Liu L, Li K, Wang G, Gao T, Li C (2020) Activated NLR family pyrin domain containing 3 (NLRP3) inflammasome in keratinocytes promotes cutaneous T-cell response in patients with vitiligo. J Allergy Clin Immunol 145(2):632–645. https://doi.org/10.1016/j.jaci.2019.10.036

    Article  CAS  PubMed  Google Scholar 

  121. Henning SW, Fernandez MF, Mahon JP, Duff R, Azarafrooz F, Guevara-Patino JA, Rademaker AW, Salzman AL, Le Poole IC (2018) HSP70iQ435A-encoding DNA repigments vitiligo lesions in sinclair swine. J Invest Dermatol 138(12):2531–2539. https://doi.org/10.1016/j.jid.2018.06.186

    Article  CAS  PubMed  Google Scholar 

  122. Wang CQ, Cruz-Inigo AE, Fuentes-Duculan J, Moussai D, Gulati N, Sullivan-Whalen M, Gilleaudeau P, Cohen JA, Krueger JG (2011) Th17 cells and activated dendritic cells are increased in vitiligo lesions. PLoS One 6(4):e18907. https://doi.org/10.1371/journal.pone.0018907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Le Poole IC, van den Wijngaard RM, Westerhof W, Das PK (1996) Presence of T cells and macrophages in inflammatory vitiligo skin parallels melanocyte disappearance. Am J Pathol 148(4):1219–1228

    PubMed  PubMed Central  Google Scholar 

  124. Grimes PE (2005) New insights and new therapies in vitiligo. JAMA 293(6):730–735. https://doi.org/10.1001/jama.293.6.730

    Article  CAS  PubMed  Google Scholar 

  125. Wankowicz-Kalinska A, van den Wijngaard RM, Tigges BJ, Westerhof W, Ogg GS, Cerundolo V, Storkus WJ, Das PK (2003) Immunopolarization of CD4+ and CD8+ T cells to Type-1-like is associated with melanocyte loss in human vitiligo. Lab Invest 83(5):683–695. https://doi.org/10.1097/01.lab.0000069521.42488.1b

    Article  CAS  PubMed  Google Scholar 

  126. Lang KS, Caroli CC, Muhm A, Wernet D, Moris A, Schittek B, Knauss-Scherwitz E, Stevanovic S, Rammensee HG, Garbe C (2001) HLA-A2 restricted, melanocyte-specific CD8+ T lymphocytes detected in vitiligo patients are related to disease activity and are predominantly directed against MelanA/MART1. J Invest Dermatol 116(6):891–897. https://doi.org/10.1046/j.1523-1747.2001.01363.x

    Article  CAS  PubMed  Google Scholar 

  127. Mandelcorn-Monson RL, Shear NH, Yau E, Sambhara S, Barber BH, Spaner D, DeBenedette MA (2003) Cytotoxic T lymphocyte reactivity to gp100, MelanA/MART-1, and tyrosinase, in HLA-A2-positive vitiligo patients. J Invest Dermatol 121(3):550–556. https://doi.org/10.1046/j.1523-1747.2003.12413.x

    Article  CAS  PubMed  Google Scholar 

  128. Ogg GS, Rod Dunbar P, Romero P, Chen JL, Cerundolo V (1998) High frequency of skin-homing melanocyte-specific cytotoxic T lymphocytes in autoimmune vitiligo. J Exp Med 188(6):1203–1208. https://doi.org/10.1084/jem.188.6.1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Palermo B, Campanelli R, Garbelli S, Mantovani S, Lantelme E, Brazzelli V, Ardigo M, Borroni G, Martinetti M, Badulli C, Necker A, Giachino C (2001) Specific cytotoxic T lymphocyte responses against Melan-A/MART1, tyrosinase and gp100 in vitiligo by the use of major histocompatibility complex/peptide tetramers: the role of cellular immunity in the etiopathogenesis of vitiligo. J Invest Dermatol 117(2):326–332. https://doi.org/10.1046/j.1523-1747.2001.01408.x

    Article  CAS  PubMed  Google Scholar 

  130. Richmond JM, Strassner JP, Essien KI, Harris JE (2019) T-cell positioning by chemokines in autoimmune skin diseases. Immunol Rev 289(1):186–204. https://doi.org/10.1111/imr.12762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. van den Boorn JG, Konijnenberg D, Dellemijn TA, van der Veen JP, Bos JD, Melief CJ, Vyth-Dreese FA, Luiten RM (2009) Autoimmune destruction of skin melanocytes by perilesional T cells from vitiligo patients. J Invest Dermatol 129(9):2220–2232. https://doi.org/10.1038/jid.2009.32

    Article  CAS  PubMed  Google Scholar 

  132. Harris JE, Harris TH, Weninger W, Wherry EJ, Hunter CA, Turka LA (2012) A mouse model of vitiligo with focused epidermal depigmentation requires IFN-gamma for autoreactive CD8+ T-cell accumulation in the skin. J Invest Dermatol 132(7):1869–1876. https://doi.org/10.1038/jid.2011.463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wu J, Zhou M, Wan Y, Xu A (2013) CD8+ T cells from vitiligo perilesional margins induce autologous melanocyte apoptosis. Mol Med Rep 7(1):237–241. https://doi.org/10.3892/mmr.2012.1117

    Article  CAS  PubMed  Google Scholar 

  134. Czarnowicki T, He H, Leonard A, Kim HJ, Kameyama N, Pavel AB, Li R, Estrada Y, Wen HC, Kimmel GW, Kim HJ, Chima M, Lebwohl M, Krueger JG, Guttman-Yassky E (2019) Blood endotyping distinguishes the profile of vitiligo from that of other inflammatory and autoimmune skin diseases. J Allergy Clin Immunol 143(6):2095–2107. https://doi.org/10.1016/j.jaci.2018.11.031

    Article  CAS  PubMed  Google Scholar 

  135. Gudjonsson JE, Kabashima K, Eyerich K (2020) Mechanisms of skin autoimmunity: cellular and soluble immune components of the skin. J Allergy Clin Immunol 146(1):8–16. https://doi.org/10.1016/j.jaci.2020.05.009

    Article  CAS  PubMed  Google Scholar 

  136. van den Wijngaard R, Wankowicz-Kalinska A, Le Poole C, Tigges B, Westerhof W, Das P (2000) Local immune response in skin of generalized vitiligo patients. Destruction of melanocytes is associated with the prominent presence of CLA+ T cells at the perilesional site. Lab Invest 80 (8):1299–1309. https://doi.org/10.1038/labinvest.3780138

  137. Le Gal FA, Avril MF, Bosq J, Lefebvre P, Deschemin JC, Andrieu M, Dore MX, Guillet JG (2001) Direct evidence to support the role of antigen-specific CD8+ T cells in melanoma-associated vitiligo. J Invest Dermatol 117(6):1464–1470. https://doi.org/10.1046/j.0022-202x.2001.01605.x

    Article  PubMed  Google Scholar 

  138. Song YH, Connor E, Li Y, Zorovich B, Balducci P, Maclaren N (1994) The role of tyrosinase in autoimmune vitiligo. Lancet 344(8929):1049–1052. https://doi.org/10.1016/s0140-6736(94)91709-4

    Article  CAS  PubMed  Google Scholar 

  139. Yang L, Yang S, Lei J, Hu W, Chen R, Lin F, Xu AE (2018) Role of chemokines and the corresponding receptors in vitiligo: a pilot study. J Dermatol 45(1):31–38. https://doi.org/10.1111/1346-8138.14004

    Article  CAS  PubMed  Google Scholar 

  140. Li S, Zhu G, Yang Y, Jian Z, Guo S, Dai W, Shi Q, Ge R, Ma J, Liu L, Li K, Luan Q, Wang G, Gao T, Li C (2017) Oxidative stress drives CD8+ T-cell skin trafficking in patients with vitiligo through CXCL16 upregulation by activating the unfolded protein response in keratinocytes. J Allergy Clin Immunol 140 (1):177–189 e179. https://doi.org/10.1016/j.jaci.2016.10.013

  141. Rashighi M, Agarwal P, Richmond JM, Harris TH, Dresser K, Su MW, Zhou Y, Deng A, Hunter CA, Luster AD, Harris JE (2014) CXCL10 is critical for the progression and maintenance of depigmentation in a mouse model of vitiligo. Sci Transl Med 6 (223):223ra223. https://doi.org/10.1126/scitranslmed.3007811

  142. Richmond JM, Masterjohn E, Chu R, Tedstone J, Youd ME, Harris JE (2017) CXCR3 depleting antibodies prevent and reverse vitiligo in mice. J Invest Dermatol 137(4):982–985. https://doi.org/10.1016/j.jid.2016.10.048

    Article  CAS  PubMed  Google Scholar 

  143. Ohkura N, Kitagawa Y, Sakaguchi S (2013) Development and maintenance of regulatory T cells. Immunity 38(3):414–423. https://doi.org/10.1016/j.immuni.2013.03.002

    Article  CAS  PubMed  Google Scholar 

  144. Giri PS, Dwivedi M, Begum R (2020) Decreased suppression of CD8+ and CD4+ T cells by peripheral regulatory T cells in generalized vitiligo due to reduced NFATC1 and FOXP3 proteins. Exp Dermatol 29(8):759–775. https://doi.org/10.1111/exd.14157

    Article  CAS  PubMed  Google Scholar 

  145. Giri PS, Dwivedi M, Laddha NC, Begum R, Bharti AH (2020) Altered expression of nuclear factor of activated T cells, forkhead box P3, and immune-suppressive genes in regulatory T cells of generalized vitiligo patients. Pigment Cell Melanoma Res 33(4):566–578. https://doi.org/10.1111/pcmr.12862

    Article  CAS  PubMed  Google Scholar 

  146. Lili Y, Yi W, Ji Y, Yue S, Weimin S, Ming L (2012) Global activation of CD8+ cytotoxic T lymphocytes correlates with an impairment in regulatory T cells in patients with generalized vitiligo. PLoS One 7(5):e37513. https://doi.org/10.1371/journal.pone.0037513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Chatterjee S, Eby JM, Al-Khami AA, Soloshchenko M, Kang HK, Kaur N, Naga OS, Murali A, Nishimura MI, Caroline Le Poole I, Mehrotra S (2014) A quantitative increase in regulatory T cells controls development of vitiligo. J Invest Dermatol 134(5):1285–1294. https://doi.org/10.1038/jid.2013.540

    Article  CAS  PubMed  Google Scholar 

  148. Gregg RK, Nichols L, Chen Y, Lu B, Engelhard VH (2010) Mechanisms of spatial and temporal development of autoimmune vitiligo in tyrosinase-specific TCR transgenic mice. J Immunol 184(4):1909–1917. https://doi.org/10.4049/jimmunol.0902778

    Article  CAS  PubMed  Google Scholar 

  149. Klarquist J, Denman CJ, Hernandez C, Wainwright DA, Strickland FM, Overbeck A, Mehrotra S, Nishimura MI, Le Poole IC (2010) Reduced skin homing by functional Treg in vitiligo. Pigment Cell Melanoma Res 23(2):276–286. https://doi.org/10.1111/j.1755-148X.2010.00688.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Eby JM, Kang HK, Tully ST, Bindeman WE, Peiffer DS, Chatterjee S, Mehrotra S, Le Poole IC (2015) CCL22 to activate Treg migration and suppress depigmentation in vitiligo. J Invest Dermatol 135(6):1574–1580. https://doi.org/10.1038/jid.2015.26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Le Poole IC, Mehrotra S (2017) Replenishing regulatory T cells to halt depigmentation in vitiligo. J Investig Dermatol Symp Proc 18(2):S38–S45. https://doi.org/10.1016/j.jisp.2016.10.023

    Article  PubMed  Google Scholar 

  152. Richmond JM, Strassner JP, Zapata L, Jr., Garg M, Riding RL, Refat MA, Fan X, Azzolino V, Tovar-Garza A, Tsurushita N, Pandya AG, Tso JY, Harris JE (2018) Antibody blockade of IL-15 signaling has the potential to durably reverse vitiligo. Sci Transl Med 10 (450). https://doi.org/10.1126/scitranslmed.aam7710

  153. Boniface K, Jacquemin C, Darrigade AS, Dessarthe B, Martins C, Boukhedouni N, Vernisse C, Grasseau A, Thiolat D, Rambert J, Lucchese F, Bertolotti A, Ezzedine K, Taieb A, Seneschal J (2018) Vitiligo skin is imprinted with resident memory CD8 T cells expressing CXCR3. J Invest Dermatol 138(2):355–364. https://doi.org/10.1016/j.jid.2017.08.038

    Article  CAS  PubMed  Google Scholar 

  154. Cheuk S, Schlums H, Gallais Serezal I, Martini E, Chiang SC, Marquardt N, Gibbs A, Detlofsson E, Introini A, Forkel M, Hoog C, Tjernlund A, Michaelsson J, Folkersen L, Mjosberg J, Blomqvist L, Ehrstrom M, Stahle M, Bryceson YT, Eidsmo L (2017) CD49a expression defines tissue-resident CD8+ T cells poised for cytotoxic function in human skin. Immunity 46(2):287–300. https://doi.org/10.1016/j.immuni.2017.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Richmond JM, Strassner JP, Rashighi M, Agarwal P, Garg M, Essien KI, Pell LS, Harris JE (2019) Resident memory and recirculating memory T cells cooperate to maintain disease in a mouse model of vitiligo. J Invest Dermatol 139(4):769–778. https://doi.org/10.1016/j.jid.2018.10.032

    Article  CAS  PubMed  Google Scholar 

  156. Jacquemin C, Martins C, Lucchese F, Thiolat D, Taieb A, Seneschal J, Boniface K (2020) NKG2D defines a subset of skin effector memory CD8 T cells with proinflammatory functions in vitiligo. J Invest Dermatol 140 (6):1143–1153 e1145. https://doi.org/10.1016/j.jid.2019.11.013

  157. Chen X, Guo W, Chang Y, Chen J, Kang P, Yi X, Cui T, Guo S, Xiao Q, Jian Z, Li K, Gao T, Li S, Liu L, Li C (2019) Oxidative stress-induced IL-15 trans-presentation in keratinocytes contributes to CD8+ T cells activation via JAK-STAT pathway in vitiligo. Free Radic Biol Med 139:80–91. https://doi.org/10.1016/j.freeradbiomed.2019.05.011

    Article  CAS  PubMed  Google Scholar 

  158. Jacquemin C, Rambert J, Guillet S, Thiolat D, Boukhedouni N, Doutre MS, Darrigade AS, Ezzedine K, Blanco P, Taieb A, Boniface K, Seneschal J (2017) Heat shock protein 70 potentiates interferon alpha production by plasmacytoid dendritic cells: relevance for cutaneous lupus and vitiligo pathogenesis. Br J Dermatol 177(5):1367–1375. https://doi.org/10.1111/bjd.15550

    Article  CAS  PubMed  Google Scholar 

  159. Bal SM, Golebski K, Spits H (2020) Plasticity of innate lymphoid cell subsets. Nat Rev Immunol 20(9):552–565. https://doi.org/10.1038/s41577-020-0282-9

    Article  CAS  PubMed  Google Scholar 

  160. Myers JA, Miller JS (2020) Exploring the NK cell platform for cancer immunotherapy. Nat Rev Clin Oncol. https://doi.org/10.1038/s41571-020-0426-7

    Article  PubMed  PubMed Central  Google Scholar 

  161. van den Boorn JG, Jakobs C, Hagen C, Renn M, Luiten RM, Melief CJ, Tuting T, Garbi N, Hartmann G, Hornung V (2016) Inflammasome-dependent induction of adaptive NK cell memory. Immunity 44(6):1406–1421. https://doi.org/10.1016/j.immuni.2016.05.008

    Article  CAS  PubMed  Google Scholar 

  162. Yu R, Broady R, Huang Y, Wang Y, Yu J, Gao M, Levings M, Wei S, Zhang S, Xu A, Su M, Dutz J, Zhang X, Zhou Y (2012) Transcriptome analysis reveals markers of aberrantly activated innate immunity in vitiligo lesional and non-lesional skin. PLoS One 7(12):e51040. https://doi.org/10.1371/journal.pone.0051040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Halder RM, Walters CS, Johnson BA, Chakrabarti SG, Kenney JA Jr (1986) Aberrations in T lymphocytes and natural killer cells in vitiligo: a flow cytometric study. J Am Acad Dermatol 14(5 Pt 1):733–737. https://doi.org/10.1016/s0190-9622(86)70085-6

    Article  CAS  PubMed  Google Scholar 

  164. Richmond JM, Bangari DS, Essien KI, Currimbhoy SD, Groom JR, Pandya AG, Youd ME, Luster AD, Harris JE (2017) Keratinocyte-derived chemokines orchestrate T-cell positioning in the epidermis during vitiligo and may serve as biomarkers of disease. J Invest Dermatol 137(2):350–358. https://doi.org/10.1016/j.jid.2016.09.016

    Article  CAS  PubMed  Google Scholar 

  165. Elbuluk N, Ezzedine K (2017) Quality of Life, Burden of Disease, co-morbidities, and systemic effects in vitiligo patients. Dermatol Clin 35(2):117–128. https://doi.org/10.1016/j.det.2016.11.002

    Article  CAS  PubMed  Google Scholar 

  166. Gill L, Zarbo A, Isedeh P, Jacobsen G, Lim HW, Hamzavi I (2016) Comorbid autoimmune diseases in patients with vitiligo: a cross-sectional study. J Am Acad Dermatol 74(2):295–302. https://doi.org/10.1016/j.jaad.2015.08.063

    Article  PubMed  Google Scholar 

  167. Dahir AM, Thomsen SF (2018) Comorbidities in vitiligo: comprehensive review. Int J Dermatol 57(10):1157–1164. https://doi.org/10.1111/ijd.14055

    Article  PubMed  Google Scholar 

  168. Chang HC, Lin MH, Huang YC, Hou TY (2019) The association between vitiligo and diabetes mellitus: a systematic review and meta-analysis. J Am Acad Dermatol 81(6):1442–1445. https://doi.org/10.1016/j.jaad.2019.06.022

    Article  PubMed  Google Scholar 

  169. Anbar TS, El-Badry MM, McGrath JA, Abdel-Azim ES (2015) Most individuals with either segmental or non-segmental vitiligo display evidence of bilateral cochlear dysfunction. Br J Dermatol 172(2):406–411. https://doi.org/10.1111/bjd.13276

    Article  CAS  PubMed  Google Scholar 

  170. Atas H, Gonul M (2017) Increased risk of metabolic syndrome in patients with vitiligo. Balkan Med J 34(3):219–225. https://doi.org/10.4274/balkanmedj.2016.1005

    Article  PubMed  PubMed Central  Google Scholar 

  171. Odineal DD, Gershwin ME (2020) The epidemiology and clinical manifestations of autoimmunity in selective IgA deficiency. Clin Rev Allergy Immunol 58(1):107–133. https://doi.org/10.1007/s12016-019-08756-7

    Article  CAS  PubMed  Google Scholar 

  172. Saleh K (2020) Prurigo nodularis in vitiligo patches: an unusual observation. JAAD Case Rep 6(9):841–842. https://doi.org/10.1016/j.jdcr.2020.06.039

    Article  PubMed  PubMed Central  Google Scholar 

  173. Narla S, Silverberg JI (2020) Associations of pemphigus or pemphigoid with autoimmune disorders in US adult inpatients. J Am Acad Dermatol 82(3):586–595. https://doi.org/10.1016/j.jaad.2019.07.029

    Article  PubMed  Google Scholar 

  174. Bae JM, Chung KY, Yun SJ, Kim H, Park BC, Kim JS, Seo SH, Ahn HH, Lee DY, Kim YC, Park HJ, Kim M (2019) Markedly reduced risk of internal malignancies in patients with vitiligo: a nationwide population-based cohort study. J Clin Oncol 37(11):903–911. https://doi.org/10.1200/JCO.18.01223

    Article  CAS  PubMed  Google Scholar 

  175. Ban L, Labbouz S, Grindlay D, Batchelor JM, Ratib S (2018) Risk of skin cancer in people with vitiligo: a systematic review and meta-analysis. Br J Dermatol 179(4):971–972. https://doi.org/10.1111/bjd.16703

    Article  CAS  PubMed  Google Scholar 

  176. Zubair R, Hamzavi IH (2020) Phototherapy for vitiligo. Dermatol Clin 38(1):55–62. https://doi.org/10.1016/j.det.2019.08.005

    Article  CAS  PubMed  Google Scholar 

  177. Lee JH, Kwon HS, Jung HM, Lee H, Kim GM, Yim HW, Bae JM (2019) Treatment outcomes of topical calcineurin inhibitor therapy for patients with vitiligo: a systematic review and meta-analysis. JAMA Dermatol 155(8):929-938. https://doi.org/10.1001/jamadermatol.2019.0696

    Article  PubMed  PubMed Central  Google Scholar 

  178. Thomas KS, Batchelor JM, Akram P, Chalmers JR, Haines RH, Meakin GD, Duley L, Ravenscroft JC, Rogers A, Sach TH, Santer M, Tan W, White J, Whitton ME, Williams HC, Cheung ST, Hamad H, Wright A, Ingram JR, Levell NJ, Goulding JMR, Makrygeorgou A, Bewley A, Ogboli M, Stainforth J, Ferguson A, Laguda B, Wahie S, Ellis R, Azad J, Rajasekaran A, Eleftheriadou V, Montgomery AA, Team UKDCTNsH-LVT (2020) Randomised controlled trial of topical corticosteroid and home-based narrowband UVB for active and limited vitiligo - results of the HI-Light vitiligo trial. Br J Dermatol. https://doi.org/10.1111/bjd.19592

    Article  Google Scholar 

  179. Passeron T (2017) Medical and maintenance treatments for vitiligo. Dermatol Clin 35(2):163–170. https://doi.org/10.1016/j.det.2016.11.007

    Article  CAS  PubMed  Google Scholar 

  180. Bassiouny D, Hegazy R, Esmat S, Gawdat HI, Ahmed Ezzat M, Tawfik HA, Hegazy AA, Ibrahim S (2021) Cosmetic camouflage as an adjuvant to vitiligo therapies: Effect on quality of life. J Cosmet Dermatol 20(1):159–165. https://doi.org/10.1111/jocd.13459

    Article  PubMed  Google Scholar 

  181. Ju HJ, Bae JM, Lee RW, Kim SH, Parsad D, Pourang A, Hamzavi I, Shourick J, Ezzedine K (2021) Surgical interventions for patients with vitiligo: a systematic review and meta-analysis. JAMA Dermatol 157(3):307–316. https://doi.org/10.1001/jamadermatol.2020.5756

    Article  PubMed  Google Scholar 

  182. Rogers A, Akram P, Batchelor JM, Crutchley J, Grocki M, Haines RH, Meakin G, O’Dowd K, Ravenscroft J, Thomas KS (2020) Quality assurance and characterisation of NB-UVB devices for use at home - lessons from the Hi-Light vitiligo trial. Br J Dermatol 184(5):954–955. https://doi.org/10.1111/bjd.19630

    Article  PubMed  PubMed Central  Google Scholar 

  183. Narayan VS, Uitentuis SE, Luiten RM, Bekkenk MW, Wolkerstorfer A (2020) Patients’ perspective on current treatments and demand for novel treatments in vitiligo. J Eur Acad Dermatol Venereol. https://doi.org/10.1111/jdv.16927

    Article  PubMed  PubMed Central  Google Scholar 

  184. Rashighi M, Harris JE (2017) Vitiligo pathogenesis and emerging treatments. Dermatol Clin 35(2):257–265. https://doi.org/10.1016/j.det.2016.11.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Liu LY, Strassner JP, Refat MA, Harris JE, King BA (2017) Repigmentation in vitiligo using the Janus kinase inhibitor tofacitinib may require concomitant light exposure. J Am Acad Dermatol 77 (4):675–682 e671. https://doi.org/10.1016/j.jaad.2017.05.043

  186. Kim SR, Heaton H, Liu LY, King BA (2018) Rapid repigmentation of vitiligo using tofacitinib plus low-dose, narrowband UV-B phototherapy. JAMA Dermatol 154(3):370–371. https://doi.org/10.1001/jamadermatol.2017.5778

    Article  PubMed  Google Scholar 

  187. Nguyen JK, Schlichte MJ, Jogi R, Alikhan M, Patel AB (2020) A case of new-onset vitiligo in a patient on tofacitinib and brief review of paradoxical presentations with other novel targeted therapies. Dermatol Online J 26 (3)

  188. Azzolino V, Zapata L Jr, Garg M, Gjoni M, Riding RL, Strassner JP, Richmond JM, Harris JE (2020) Jak inhibitors reverse vitiligo in mice but do not deplete skin resident memory T cells. J Invest Dermatol. https://doi.org/10.1016/j.jid.2020.04.027

    Article  PubMed  Google Scholar 

  189. Khemis A, Fontas E, Moulin S, Montaudie H, Lacour JP, Passeron T (2020) Apremilast in combination with narrowband UVB in the treatment of vitiligo: a 52-week monocentric prospective randomized placebo-controlled study. J Invest Dermatol 140 (8):1533–1537 e1532. https://doi.org/10.1016/j.jid.2019.11.031

  190. Speeckaert R, Mylle S, van Geel N (2019) IL-17A is not a treatment target in progressive vitiligo. Pigment Cell Melanoma Res 32(6):842–847. https://doi.org/10.1111/pcmr.12789

    Article  CAS  PubMed  Google Scholar 

  191. Migayron L, Boniface K, Seneschal J (2020) Vitiligo, from physiopathology to emerging treatments: a review. Dermatol Ther (Heidelb) 10(6):1185–1198. https://doi.org/10.1007/s13555-020-00447-y

    Article  Google Scholar 

  192. Barbulescu CC, Goldstein NB, Roop DR, Norris DA, Birlea SA (2020) Harnessing the power of regenerative therapy for vitiligo and alopecia areata. J Invest Dermatol 140(1):29–37. https://doi.org/10.1016/j.jid.2019.03.1142

    Article  CAS  PubMed  Google Scholar 

  193. Abdel-Malek ZA, Jordan C, Ho T, Upadhyay PR, Fleischer A, Hamzavi I (2020) The enigma and challenges of vitiligo pathophysiology and treatment. Pigment Cell Melanoma Res 33(6):778–787. https://doi.org/10.1111/pcmr.12878

    Article  PubMed  Google Scholar 

  194. Toh JJH, Chuah SY, Jhingan A, Chong WS, Thng STG (2020) Afamelanotide implants and narrow-band ultraviolet B phototherapy for the treatment of nonsegmental vitiligo in Asians. J Am Acad Dermatol 82(6):1517–1519. https://doi.org/10.1016/j.jaad.2020.01.035

    Article  CAS  PubMed  Google Scholar 

  195. Regazzetti C, Joly F, Marty C, Rivier M, Mehul B, Reiniche P, Mounier C, Rival Y, Piwnica D, Cavalie M, Chignon-Sicard B, Ballotti R, Voegel J, Passeron T (2015) Transcriptional analysis of vitiligo skin reveals the alteration of WNT pathway: a promising target for repigmenting vitiligo patients. J Invest Dermatol 135(12):3105–3114. https://doi.org/10.1038/jid.2015.335

    Article  CAS  PubMed  Google Scholar 

  196. Cortelazzi C, Pellacani G, Raposio E, Di Nuzzo S (2020) Vitiligo management: combination of surgical treatment and phototherapy under reflectance confocal microscopy monitoring. Eur Rev Med Pharmacol Sci 24 (13):7366–7371. https://doi.org/10.26355/eurrev_202007_21904

  197. Elshafy Khashaba SA, Elkot RA, Ibrahim AM (2018) Efficacy of NB-UVB, microneedling with triamcinolone acetonide, and a combination of both modalities in the treatment of vitiligo: a comparative study. J Am Acad Dermatol 79(2):365–367. https://doi.org/10.1016/j.jaad.2017.12.054

    Article  PubMed  Google Scholar 

  198. Hesseler MJ, Shyam N (2019) Platelet-rich plasma and its utility in medical dermatology: a systematic review. J Am Acad Dermatol 81(3):834–846. https://doi.org/10.1016/j.jaad.2019.04.037

    Article  PubMed  Google Scholar 

  199. Vocetkova K, Sovkova V, Buzgo M, Lukasova V, Divin R, Rampichova M, Blazek P, Zikmund T, Kaiser J, Karpisek Z, Amler E, Filova E (2020) A simple drug delivery system for platelet-derived bioactive molecules, to improve melanocyte stimulation in vitiligo treatment. Nanomaterials (Basel) 10 (9). https://doi.org/10.3390/nano10091801

  200. Passeron T (2020) First step in a new era for treatment of patients with vitiligo. Lancet 396(10244):74–75. https://doi.org/10.1016/S0140-6736(20)30747-9

    Article  PubMed  Google Scholar 

  201. Pacifico A, Damiani G, Iacovelli P, Conic RRZ, Young Dermatologists Italian N, Gonzalez S, Morrone A (2021) NB-UVB plus oral Polypodium leucotomos extract display higher efficacy than NB-UVB alone in patients with vitiligo. Dermatol Ther:e14776. https://doi.org/10.1111/dth.14776

  202. Tajalli M, Kabir S, Vance TM, Qureshi AA (2020) Effective use of oral tofacitinib and phototherapy in a patient with concomitant alopecia areata, vitiligo, and plaque and inverse psoriasis. Clin Case Rep 8(5):819–822. https://doi.org/10.1002/ccr3.2759

    Article  PubMed  PubMed Central  Google Scholar 

  203. Mohammad TF, Al-Jamal M, Hamzavi IH, Harris JE, Leone G, Cabrera R, Lim HW, Pandya AG, Esmat SM (2017) The Vitiligo Working Group recommendations for narrowband ultraviolet B light phototherapy treatment of vitiligo. J Am Acad Dermatol 76(5):879–888. https://doi.org/10.1016/j.jaad.2016.12.041

    Article  PubMed  Google Scholar 

  204. Wong PM, Yang L, Yang L, Wu H, Li W, Ma X, Katayama I, Zhang H (2020) New insight into the role of exosomes in vitiligo. Autoimmun Rev:102664. https://doi.org/10.1016/j.autrev.2020.102664

  205. Zhao C, Wang D, Wang X, Mao Y, Xu Z, Sun Y, Mei X, Song J, Shi W (2020) Down-regulation of exosomal miR-200c derived from keratinocytes in vitiligo lesions suppresses melanogenesis. J Cell Mol Med 24(20):12164–12175. https://doi.org/10.1111/jcmm.15864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Hassan AS, Kohil MM, Sayed SSE, Mahmoud SB (2021) Immunohistochemical study of perforin and apoptosis stimulation fragment ligand (FasL) in active vitiligo. Arch Dermatol Res 313(6):453–460. https://doi.org/10.1007/s00403-020-02117-7

    Article  PubMed  Google Scholar 

  207. Chen J, Li S, Li C (2020) Mechanisms of melanocyte death in vitiligo. Med Res Rev 41(2):1138–1166. https://doi.org/10.1002/med.21754

    Article  PubMed  PubMed Central  Google Scholar 

  208. Danielsson O, Haggqvist B, Grontoft L, Ollinger K, Ernerudh J (2020) Apoptosis in idiopathic inflammatory myopathies with partial invasion; a role for CD8+ cytotoxic T cells? PLoS One 15(9):e0239176. https://doi.org/10.1371/journal.pone.0239176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Chaudhry MZ, Casalegno-Garduno R, Sitnik KM, Kasmapour B, Pulm AK, Brizic I, Eiz-Vesper B, Moosmann A, Jonjic S, Mocarski ES, Cicin-Sain L (2020) Cytomegalovirus inhibition of extrinsic apoptosis determines fitness and resistance to cytotoxic CD8 T cells. Proc Natl Acad Sci U S A 117(23):12961–12968. https://doi.org/10.1073/pnas.1914667117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study has received funding from the National Natural Science Foundation of China (no. 81930087, no. 91742201, no. 81625020).

Author information

Authors and Affiliations

Authors

Contributions

Chunying Li and Shuli Li had the idea for the article. Yinghan Wang and Shuli Li performed the literature search and data analysis. Yinghan Wang drafted the manuscript. Chunying Li and Shuli Li helped write the manuscript. All the authors critically revised the work.

Corresponding author

Correspondence to Chunying Li.

Ethics declarations

Ethics Approval

This review was performed according to applicable ethical guidelines, using previously published and publicly available data.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: An article note for the authors that contributed equally is missed to be captured.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, S. & Li, C. Clinical Features, Immunopathogenesis, and Therapeutic Strategies in Vitiligo. Clinic Rev Allerg Immunol 61, 299–323 (2021). https://doi.org/10.1007/s12016-021-08868-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-021-08868-z

Keywords

Navigation