Skip to main content

Advertisement

Log in

The Impact of Conventional and Biological Disease Modifying Antirheumatic Drugs on Bone Biology. Rheumatoid Arthritis as a Case Study

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

The bone and the immune system have a very tight interaction. Systemic immune-mediated inflammatory diseases, such as rheumatoid arthritis (RA), induce bone loss, leading to a twofold increase in osteoporosis and an increase of fragility fracture risk of 1.35–2.13 times. This review focuses on the effects of conventional and biological disease modifying antirheumatic drugs (DMARDs) on bone biology, in the context of systemic inflammation, with a focus on RA. Published evidence supports a decrease in osteoclastic activity induced by DMARDs, which leads to positive effects on bone mineral density (BMD). It is unknown if this effect could be translated into fracture risk reduction. The combination with antiosteoclastic drugs can have an additional benefit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Caetano-Lopes J, Canhao H, Fonseca JE (2009) Osteoimmunology—the hidden immune regulation of bone. Autoimmun Rev 8(3):250–255. doi:10.1016/j.autrev.2008.07.038

    Article  CAS  PubMed  Google Scholar 

  2. Saidenberg-Kermanac’h N, Cohen-Solal M, Bessis N, De Vernejoul MC, Boissier MC (2004) Role for osteoprotegerin in rheumatoid inflammation. Joint Bone Spine: Rev Rhum 71(1):9–13. doi:10.1016/s1297-319x(03)00131-3

    Article  Google Scholar 

  3. Takayanagi H (2007) Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 7(4):292–304. doi:10.1038/nri2062

    Article  CAS  PubMed  Google Scholar 

  4. Kubota T, Michigami T, Ozono K (2009) Wnt signaling in bone metabolism. J Bone Miner Metab 27(3):265–271. doi:10.1007/s00774-009-0064-8

    Article  CAS  PubMed  Google Scholar 

  5. Kawai VK, Stein CM, Perrien DS, Griffin MR (2012) Effects of anti-tumor necrosis factor alpha agents on bone. Curr Opin Rheumatol 24(5):576–585. doi:10.1097/BOR.0b013e328356d212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mukai T, Otsuka F, Otani H, Yamashita M, Takasugi K, Inagaki K, Yamamura M, Makino H (2007) TNF-alpha inhibits BMP-induced osteoblast differentiation through activating SAPK/JNK signaling. Biochem Biophys Res Commun 356(4):1004–1010. doi:10.1016/j.bbrc.2007.03.099

    Article  CAS  PubMed  Google Scholar 

  7. Kim SY, Schneeweiss S, Liu J, Daniel GW, Chang CL, Garneau K, Solomon DH (2010) Risk of osteoporotic fracture in a large population-based cohort of patients with rheumatoid arthritis. Arthritis Res Ther 12(4):R154. doi:10.1186/ar3107

    Article  PubMed  PubMed Central  Google Scholar 

  8. van Staa TP, Geusens P, Bijlsma JW, Leufkens HG, Cooper C (2006) Clinical assessment of the long-term risk of fracture in patients with rheumatoid arthritis. Arthritis Rheum 54(10):3104–3112. doi:10.1002/art.22117

    Article  PubMed  Google Scholar 

  9. Orstavik RE, Haugeberg G, Mowinckel P, Hoiseth A, Uhlig T, Falch JA, Halse JI, McCloskey E, Kvien TK (2004) Vertebral deformities in rheumatoid arthritis: a comparison with population-based controls. Arch Intern Med 164(4):420–425. doi:10.1001/archinte.164.4.420

    Article  PubMed  Google Scholar 

  10. Hauser B, Riches PL, Wilson JF, Horne AE, Ralston SH (2014) Prevalence and clinical prediction of osteoporosis in a contemporary cohort of patients with rheumatoid arthritis. Rheumatology (Oxford) 53(10):1759–1766. doi:10.1093/rheumatology/keu162

    Article  Google Scholar 

  11. Kim D, Cho SK, Choi CB, Jun JB, Kim TH, Lee HS, Lee J, Lee SS, Yoo DH, Yoo WH, Sung YK, Bae SC (2016) Incidence and risk factors of fractures in patients with rheumatoid arthritis: an Asian prospective cohort study. Rheumatol Int. doi:10.1007/s00296-016-3453-z

    Google Scholar 

  12. Malgo F, Appelman-Dijkstra NM, Termaat MF, van der Heide HJ, Schipper IB, Rabelink TJ, Hamdy NA (2016) High prevalence of secondary factors for bone fragility in patients with a recent fracture independently of BMD. Arch Osteoporos 11(1):12. doi:10.1007/s11657-016-0258-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S, Saito S, Inoue K, Kamatani N, Gillespie MT, Martin TJ, Suda T (1999) IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 103(9):1345–1352. doi:10.1172/jci5703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Caetano-Lopes J, Rodrigues A, Lopes A, Vale AC, Pitts-Kiefer MA, Vidal B, Perpetuo IP, Monteiro J, Konttinen YT, Vaz MF, Nazarian A, Canhao H, Fonseca JE (2014) Rheumatoid arthritis bone fragility is associated with upregulation of IL17 and DKK1 gene expression. Clin Rev Allergy Immunol 47(1):38–45. doi:10.1007/s12016-013-8366-y

    Article  CAS  PubMed  Google Scholar 

  15. Seror R, Boudaoud S, Pavy S, Nocturne G, Schaeverbeke T, Saraux A, Chanson P, Gottenberg JE, Devauchelle-Pensec V, Tobon GJ, Mariette X, Miceli-Richard C (2016) Increased dickkopf-1 in recent-onset rheumatoid arthritis is a new biomarker of structural severity. Data from the ESPOIR Cohort. Sci Rep 6:18421. doi:10.1038/srep18421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mehaney DA, Eissa M, Anwar S, Fakhr El-Din S (2015) Serum sclerostin level among Egyptian rheumatoid arthritis patients: relation to disease activity, bone mineral density and radiological grading. Acta Reumatol Port 40(3):268–274

    CAS  PubMed  Google Scholar 

  17. Caetano-Lopes J, Nery AM, Canhao H, Duarte J, Cascao R, Rodrigues A, Perpetuo IP, Abdulghani S, Amaral PM, Sakaguchi S, Konttinen YT, Graca L, Vaz MF, Fonseca JE (2010) Chronic arthritis leads to disturbances in the bone collagen network. Arthritis Res Ther 12(1):R9. doi:10.1186/ar2908

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zonneveld IM, Bakker WK, Dijkstra PF, Bos JD, van Soesbergen RM, Dinant HJ (1996) Methotrexate osteopathy in long-term, low-dose methotrexate treatment for psoriasis and rheumatoid arthritis. Arch Dermatol 132(2):184–187

    Article  CAS  PubMed  Google Scholar 

  19. Minaur NJ, Jefferiss C, Bhalla AK, Beresford JN (2002) Methotrexate in the treatment of rheumatoid arthritis. I. In vitro effects on cells of the osteoblast lineage. Rheumatology (Oxford) 41(7):735–740

    Article  CAS  Google Scholar 

  20. May KP, West SG, McDermott MT, Huffer WE (1994) The effect of low-dose methotrexate on bone metabolism and histomorphometry in rats. Arthritis Rheum 37(2):201–206

    Article  CAS  PubMed  Google Scholar 

  21. Corrado A, Neve A, Marucci A, Gaudio A, Cantatore FP (2015) Combined effects of infliximab and methotrexate on rheumatoid arthritis osteoblastic cell metabolism. Clin Exp Med 15(3):277–283. doi:10.1007/s10238-014-0307-4

    Article  CAS  PubMed  Google Scholar 

  22. Minaur NJ, Kounali D, Vedi S, Compston JE, Beresford JN, Bhalla AK (2002) Methotrexate in the treatment of rheumatoid arthritis. II. In vivo effects on bone mineral density. Rheumatology (Oxford) 41(7):741–749

    Article  CAS  Google Scholar 

  23. Tascioglu F, Oner C, Armagan O (2003) The effect of low-dose methotrexate on bone mineral density in patients with early rheumatoid arthritis. Rheumatol Int 23(5):231–235. doi:10.1007/s00296-003-0298-z

    Article  CAS  PubMed  Google Scholar 

  24. Suematsu A, Tajiri Y, Nakashima T, Taka J, Ochi S, Oda H, Nakamura K, Tanaka S, Takayanagi H (2007) Scientific basis for the efficacy of combined use of antirheumatic drugs against bone destruction in rheumatoid arthritis. Mod Rheumatol 17(1):17–23. doi:10.1007/s10165-006-0531-1

    Article  CAS  PubMed  Google Scholar 

  25. Lee CK, Lee EY, Chung SM, Mun SH, Yoo B, Moon HB (2004) Effects of disease-modifying antirheumatic drugs and antiinflammatory cytokines on human osteoclastogenesis through interaction with receptor activator of nuclear factor kappaB, osteoprotegerin, and receptor activator of nuclear factor kappaB ligand. Arthritis Rheum 50(12):3831–3843. doi:10.1002/art.20637

    Article  CAS  PubMed  Google Scholar 

  26. Revu S, Neregard P, af Klint E, Korotkova M, Catrina AI (2013) Synovial membrane immunohistology in early-untreated rheumatoid arthritis reveals high expression of catabolic bone markers that is modulated by methotrexate. Arthritis Res Ther 15(6):R205. doi:10.1186/ar4398

    Article  PubMed  PubMed Central  Google Scholar 

  27. Majumdar S, Aggarwal BB (2001) Methotrexate suppresses NF-kappaB activation through inhibition of IkappaBalpha phosphorylation and degradation. J Immunol 167(5):2911–2920

    Article  CAS  PubMed  Google Scholar 

  28. Hensvold AH, Joshua V, Li W, Larkin M, Qureshi F, Israelsson L, Padyukov L, Lundberg K, Defranoux N, Saevarsdottir S, Catrina AI (2015) Serum RANKL levels associate with anti- citrullinated protein antibodies in early untreated rheumatoid arthritis and are modulated following methotrexate. Arthritis Res Ther 17:239. doi:10.1186/s13075-015-0760-9

    Article  PubMed  PubMed Central  Google Scholar 

  29. Katz JM, Gray DH (1986) The in vitro effect of gold complexes on bone resorption. J Orthop Res 4(2):188–193. doi:10.1002/jor.1100040207

    Article  CAS  PubMed  Google Scholar 

  30. Hall TJ, Jeker H, Nyugen H, Schaeublin M (1996) Gold salts inhibit osteoclastic bone resorption in vitro. Inflamm Res 45(5):230–233

    Article  CAS  PubMed  Google Scholar 

  31. Hayman AR, Cox TM (2004) Tartrate-resistant acid phosphatase: a potential target for therapeutic gold. Cell Biochem Funct 22(5):275–280. doi:10.1002/cbf.1133

    Article  CAS  PubMed  Google Scholar 

  32. Kobayashi Y, Ueyama S, Arai Y, Yoshida Y, Kaneda T, Sato T, Shin K, Kumegawa M, Hakeda Y (2004) The active metabolite of leflunomide, A771726, inhibits both the generation of and the bone-resorbing activity of osteoclasts by acting directly on cells of the osteoclast lineage. J Bone Miner Metab 22(4):318–328. doi:10.1007/s00774-003-0489-4

    Article  CAS  PubMed  Google Scholar 

  33. Urushibara M, Takayanagi H, Koga T, Kim S, Isobe M, Morishita Y, Nakagawa T, Loeffler M, Kodama T, Kurosawa H, Taniguchi T (2004) The antirheumatic drug leflunomide inhibits osteoclastogenesis by interfering with receptor activator of NF-kappa B ligand-stimulated induction of nuclear factor of activated T cells c1. Arthritis Rheum 50(3):794–804. doi:10.1002/art.20206

    Article  CAS  PubMed  Google Scholar 

  34. Burger D, Begue-Pastor N, Benavent S, Gruaz L, Kaufmann MT, Chicheportiche R, Dayer JM (2003) The active metabolite of leflunomide, A77 1726, inhibits the production of prostaglandin E(2), matrix metalloproteinase 1 and interleukin 6 in human fibroblast-like synoviocytes. Rheumatology (Oxford) 42(1):89–96

    Article  CAS  Google Scholar 

  35. Pfeil A, Lippold J, Eidner T, Lehmann G, Oelzner P, Renz DM, Hansch A, Wolf G, Hein G, Kaiser WA, Bottcher J (2009) Effects of leflunomide and methotrexate in rheumatoid arthritis detected by digital X-ray radiogrammetry and computer-aided joint space analysis. Rheumatol Int 29(3):287–295. doi:10.1007/s00296-008-0682-9

    Article  CAS  PubMed  Google Scholar 

  36. Vis M, Havaardsholm EA, Haugeberg G, Uhlig T, Voskuyl AE, van de Stadt RJ, Dijkmans BA, Woolf AD, Kvien TK, Lems WF (2006) Evaluation of bone mineral density, bone metabolism, osteoprotegerin and receptor activator of the NFkappaB ligand serum levels during treatment with infliximab in patients with rheumatoid arthritis. Ann Rheum Dis 65(11):1495–1499. doi:10.1136/ard.2005.044198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Seriolo B, Paolino S, Sulli A, Ferretti V, Cutolo M (2006) Bone metabolism changes during anti-TNF-alpha therapy in patients with active rheumatoid arthritis. Ann N Y Acad Sci 1069:420–427. doi:10.1196/annals.1351.040

    Article  CAS  PubMed  Google Scholar 

  38. Marotte H, Pallot-Prades B, Grange L, Gaudin P, Alexandre C, Miossec P (2007) A 1-year case-control study in patients with rheumatoid arthritis indicates prevention of loss of bone mineral density in both responders and nonresponders to infliximab. Arthritis Res Ther 9(3):R61. doi:10.1186/ar2219

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lange U, Teichmann J, Muller-Ladner U, Strunk J (2005) Increase in bone mineral density of patients with rheumatoid arthritis treated with anti-TNF-alpha antibody: a prospective open-label pilot study. Rheumatology (Oxford) 44(12):1546–1548. doi:10.1093/rheumatology/kei082

    Article  CAS  Google Scholar 

  40. Haugeberg G, Conaghan PG, Quinn M, Emery P (2009) Bone loss in patients with active early rheumatoid arthritis: infliximab and methotrexate compared with methotrexate treatment alone. Explorative analysis from a 12-month randomised, double-blind, placebo-controlled study. Ann Rheum Dis 68(12):1898–1901. doi:10.1136/ard.2008.106484

    Article  CAS  PubMed  Google Scholar 

  41. Gengenbacher M, Sebald HJ, Villiger PM, Hofstetter W, Seitz M (2008) Infliximab inhibits bone resorption by circulating osteoclast precursor cells in patients with rheumatoid arthritis and ankylosing spondylitis. Ann Rheum Dis 67(5):620–624. doi:10.1136/ard.2007.076711

    Article  CAS  PubMed  Google Scholar 

  42. Yago T, Nanke Y, Ichikawa N, Kobashigawa T, Mogi M, Kamatani N, Kotake S (2009) IL-17 induces osteoclastogenesis from human monocytes alone in the absence of osteoblasts, which is potently inhibited by anti-TNF-alpha antibody: a novel mechanism of osteoclastogenesis by IL-17. J Cell Biochem 108(4):947–955. doi:10.1002/jcb.22326

    Article  CAS  PubMed  Google Scholar 

  43. Chopin F, Garnero P, le Henanff A, Debiais F, Daragon A, Roux C, Sany J, Wendling D, Zarnitsky C, Ravaud P, Thomas T (2008) Long-term effects of infliximab on bone and cartilage turnover markers in patients with rheumatoid arthritis. Ann Rheum Dis 67(3):353–357. doi:10.1136/ard.2007.076604

    Article  CAS  PubMed  Google Scholar 

  44. Torikai E, Kageyama Y, Takahashi M, Suzuki M, Ichikawa T, Nagafusa T, Nagano A (2006) The effect of infliximab on bone metabolism markers in patients with rheumatoid arthritis. Rheumatology (Oxford) 45(6):761–764. doi:10.1093/rheumatology/kei280

    Article  CAS  Google Scholar 

  45. Wijbrandts CA, Klaasen R, Dijkgraaf MG, Gerlag DM, van Eck-Smit BL, Tak PP (2009) Bone mineral density in rheumatoid arthritis patients 1 year after adalimumab therapy: arrest of bone loss. Ann Rheum Dis 68(3):373–376. doi:10.1136/ard.2008.091611

    Article  CAS  PubMed  Google Scholar 

  46. Krieckaert CL, Nurmohamed MT, Wolbink G, Lems WF (2013) Changes in bone mineral density during long-term treatment with adalimumab in patients with rheumatoid arthritis: a cohort study. Rheumatology (Oxford) 52(3):547–553. doi:10.1093/rheumatology/kes320

    Article  CAS  Google Scholar 

  47. Veerappan SG, Healy M, Walsh BJ, O’Morain CA, Daly JS, Ryan BM (2015) Adalimumab therapy has a beneficial effect on bone metabolism in patients with Crohn’s disease. Dig Dis Sci 60(7):2119–2129. doi:10.1007/s10620-015-3606-z

    Article  CAS  PubMed  Google Scholar 

  48. Tanida A, Kishimoto Y, Okano T, Hagino H (2013) Etanercept promotes bone formation via suppression of Dickkopf-1 expression in rats with collagen-induced arthritis. Yonago Acta Med 56(1):13–19

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kliwinski C, Kukral D, Postelnek J, Krishnan B, Killar L, Lewin A, Nadler S, Townsend R (2005) Prophylactic administration of abatacept prevents disease and bone destruction in a rat model of collagen-induced arthritis. J Autoimmun 25(3):165–171. doi:10.1016/j.jaut.2005.09.020

    Article  CAS  PubMed  Google Scholar 

  50. Bozec A, Zaiss MM, Kagwiria R, Voll R, Rauh M, Chen Z, Mueller-Schmucker S, Kroczek RA, Heinzerling L, Moser M, Mellor AL, David JP, Schett G (2014) T cell costimulation molecules CD80/86 inhibit osteoclast differentiation by inducing the IDO/tryptophan pathway. Sci Transl Med 6(235):235ra260. doi:10.1126/scitranslmed.3007764

    Article  Google Scholar 

  51. Hein G, Eidner T, Oelzner P, Rose M, Wilke A, Wolf G, Franke S (2011) Influence of Rituximab on markers of bone remodeling in patients with rheumatoid arthritis: a prospective open-label pilot study. Rheumatol Int 31(2):269–272. doi:10.1007/s00296-010-1560-9

    Article  CAS  PubMed  Google Scholar 

  52. Wheater G, Hogan VE, Teng YK, Tekstra J, Lafeber FP, Huizinga TW, Bijlsma JW, Francis RM, Tuck SP, Datta HK, van Laar JM (2011) Suppression of bone turnover by B-cell depletion in patients with rheumatoid arthritis. Osteoporos Int 22(12):3067–3072. doi:10.1007/s00198-011-1607-0, A journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA

    Article  CAS  PubMed  Google Scholar 

  53. Boumans MJ, Thurlings RM, Yeo L, Scheel-Toellner D, Vos K, Gerlag DM, Tak PP (2012) Rituximab abrogates joint destruction in rheumatoid arthritis by inhibiting osteoclastogenesis. Ann Rheum Dis 71(1):108–113. doi:10.1136/annrheumdis-2011-200198

    Article  CAS  PubMed  Google Scholar 

  54. Kume K, Amano K, Yamada S, Kanazawa T, Ohta H, Hatta K, Amano K, Kuwaba N (2014) The effect of tocilizumab on bone mineral density in patients with methotrexate-resistant active rheumatoid arthritis. Rheumatology (Oxford) 53(5):900–903. doi:10.1093/rheumatology/ket468

    Article  CAS  Google Scholar 

  55. Briot K, Rouanet S, Schaeverbeke T, Etchepare F, Gaudin P, Perdriger A, Vray M, Steinberg G, Roux C (2015) The effect of tocilizumab on bone mineral density, serum levels of Dickkopf-1 and bone remodeling markers in patients with rheumatoid arthritis. Joint Bone Spine: Rev Rhum 82(2):109–115. doi:10.1016/j.jbspin.2014.10.015

    Article  CAS  Google Scholar 

  56. Garnero P, Thompson E, Woodworth T, Smolen JS (2010) Rapid and sustained improvement in bone and cartilage turnover markers with the anti-interleukin-6 receptor inhibitor tocilizumab plus methotrexate in rheumatoid arthritis patients with an inadequate response to methotrexate: results from a substudy of the multicenter double-blind, placebo-controlled trial of tocilizumab in inadequate responders to methotrexate alone. Arthritis Rheum 62(1):33–43. doi:10.1002/art.25053

    Article  CAS  PubMed  Google Scholar 

  57. Tanaka K, Hashizume M, Mihara M, Yoshida H, Suzuki M, Matsumoto Y (2014) Anti-interleukin-6 receptor antibody prevents systemic bone mass loss via reducing the number of osteoclast precursors in bone marrow in a collagen-induced arthritis model. Clin Exp Immunol 175(2):172–180. doi:10.1111/cei.12201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Axmann R, Bohm C, Kronke G, Zwerina J, Smolen J, Schett G (2009) Inhibition of interleukin-6 receptor directly blocks osteoclast formation in vitro and in vivo. Arthritis Rheum 60(9):2747–2756. doi:10.1002/art.24781

    Article  CAS  PubMed  Google Scholar 

  59. Kato A, Matsuo S, Takai H, Uchiyama Y, Mihara M, Suzuki M (2008) Early effects of tocilizumab on bone and bone marrow lesions in a collagen-induced arthritis monkey model. Exp Mol Pathol 84(3):262–270. doi:10.1016/j.yexmp.2008.03.003

    Article  CAS  PubMed  Google Scholar 

  60. LaBranche TP, Jesson MI, Radi ZA, Storer CE, Guzova JA, Bonar SL, Thompson JM, Happa FA, Stewart ZS, Zhan Y, Bollinger CS, Bansal PN, Wellen JW, Wilkie DP, Bailey SA, Symanowicz PT, Hegen M, Head RD, Kishore N, Mbalaviele G, Meyer DM (2012) JAK inhibition with tofacitinib suppresses arthritic joint structural damage through decreased RANKL production. Arthritis Rheum 64(11):3531–3542. doi:10.1002/art.34649

    Article  CAS  PubMed  Google Scholar 

  61. Hoff M, Kvien TK, Kalvesten J, Elden A, Kavanaugh A, Haugeberg G (2011) Adalimumab reduces hand bone loss in rheumatoid arthritis independent of clinical response: subanalysis of the PREMIER study. BMC Musculoskelet Disord 12:54. doi:10.1186/1471-2474-12-54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Axmann R, Herman S, Zaiss M, Franz S, Polzer K, Zwerina J, Herrmann M, Smolen J, Schett G (2008) CTLA-4 directly inhibits osteoclast formation. Ann Rheum Dis 67(11):1603–1609. doi:10.1136/ard.2007.080713

    Article  CAS  PubMed  Google Scholar 

  63. Briot K, Garnero P, Le Henanff A, Dougados M, Roux C (2005) Body weight, body composition, and bone turnover changes in patients with spondyloarthropathy receiving anti-tumour necrosis factor {alpha} treatment. Ann Rheum Dis 64(8):1137–1140. doi:10.1136/ard.2004.028670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Durnez A, Paternotte S, Fechtenbaum J, Landewe RB, Dougados M, Roux C, Briot K (2013) Increase in bone density in patients with spondyloarthritis during anti-tumor necrosis factor therapy: 6-year followup study. J Rheumatol 40(10):1712–1718. doi:10.3899/jrheum.121417

    Article  CAS  PubMed  Google Scholar 

  65. Haroon NN, Sriganthan J, Al Ghanim N, Inman RD, Cheung AM (2014) Effect of TNF-alpha inhibitor treatment on bone mineral density in patients with ankylosing spondylitis: a systematic review and meta-analysis. Semin Arthritis Rheum 44(2):155–161. doi:10.1016/j.semarthrit.2014.05.008

    Article  PubMed  Google Scholar 

  66. Stolina M, Schett G, Dwyer D, Vonderfecht S, Middleton S, Duryea D, Pacheco E, Van G, Bolon B, Feige U, Zack D, Kostenuik P (2009) RANKL inhibition by osteoprotegerin prevents bone loss without affecting local or systemic inflammation parameters in two rat arthritis models: comparison with anti-TNFalpha or anti-IL-1 therapies. Arthritis Res Ther 11(6):R187. doi:10.1186/ar2879

    Article  PubMed  PubMed Central  Google Scholar 

  67. Cohen SB, Dore RK, Lane NE, Ory PA, Peterfy CG, Sharp JT, van der Heijde D, Zhou L, Tsuji W, Newmark R (2008) Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum 58(5):1299–1309. doi:10.1002/art.23417

    Article  CAS  PubMed  Google Scholar 

  68. Takeuchi T, Tanaka Y, Ishiguro N, Yamanaka H, Yoneda T, Ohira T, Okubo N, Genant HK, van der Heijde D (2015) Effect of denosumab on Japanese patients with rheumatoid arthritis: a dose-response study of AMG 162 (Denosumab) in patients with rheumatoid arthritis on methotrexate to validate inhibitory effect on bone erosion (DRIVE)-a 12-month, multicentre, randomised, double-blind, placebo-controlled, phase II clinical trial. Ann Rheum Dis. doi:10.1136/annrheumdis-2015-208052

    Google Scholar 

  69. Marenzana M, Vugler A, Moore A, Robinson M (2013) Effect of sclerostin-neutralising antibody on periarticular and systemic bone in a murine model of rheumatoid arthritis: a microCT study. Arthritis Res Ther 15(5):R125

    Article  PubMed  PubMed Central  Google Scholar 

  70. Chen XX, Baum W, Dwyer D, Stock M, Schwabe K, Ke HZ, Stolina M, Schett G, Bozec A (2013) Sclerostin inhibition reverses systemic, periarticular and local bone loss in arthritis. Ann Rheum Dis 72(10):1732–1736. doi:10.1136/annrheumdis-2013-203345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofia Carvalho Barreira.

Ethics declarations

Conflict of Interest

Sofia Barreira declares that she has no conflict of interest.

João Eurico Fonseca has received research grants and/or acted as a speaker for Pfizer, MSD, Amgen, Abbvie, UCB, and Roche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barreira, S.C., Fonseca, J.E. The Impact of Conventional and Biological Disease Modifying Antirheumatic Drugs on Bone Biology. Rheumatoid Arthritis as a Case Study. Clinic Rev Allerg Immunol 51, 100–109 (2016). https://doi.org/10.1007/s12016-016-8547-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-016-8547-6

Keywords

Navigation