Skip to main content

Advertisement

Log in

IL-35 and Autoimmunity: a Comprehensive Perspective

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Interleukin 35 (IL-35) is the most recently identified member of the IL-12 family of cytokines and offers the potential to be a target for new therapies for autoimmune, inflammatory, and infectious diseases. Similar to other members of the IL-12 family including IL-12, IL-23, and IL-27, IL-35 is composed of a heterodimer of α and β chains, which in the case of IL-35 are the p35 and Epstein–Barr virus-induced gene 3 (EBI3) proteins. However, unlike its proinflammatory relatives, IL-35 has immunosuppressive effects that are mediated through regulatory T and B cells. Although there are limited data available regarding the role of IL-35 in human autoimmunity, several murine models of autoimmunity suggest that IL-35 may have potent effects in regulating immunoreactivity via IL-10-dependent mechanisms. We suggest that similar effects are operational in human disease and IL-35-directed therapies hold significant promise. In particular, we emphasize that IL-35 has immunosuppressive ability that are mediated via regulatory T and B cells that are IL-10 dependent. Further, although deletion of IL-35 does not result in spontaneous breach of tolerance, recombinant IL-35 can improve autoimmune responses in several experimental models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Collison LW, Vignali DA (2008) Interleukin-35: odd one out or part of the family? Immunol Rev 226:248–262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Yoshida K, Yang GX, Zhang W et al (2009) Deletion of interleukin-12p40 suppresses autoimmune cholangitis in dominant negative transforming growth factor beta receptor type II mice. Hepatology 50:1494–1500

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Langrish CL, McKenzie BS, Wilson NJ, de Waal Malefyt R, Kastelein RA, Cua DJ (2004) IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol Rev 202:96–105

    Article  CAS  PubMed  Google Scholar 

  4. Kastelein RA, Hunter CA, Cua DJ (2007) Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu Rev Immunol 25:221–242

    Article  CAS  PubMed  Google Scholar 

  5. Murugaiyan G, Mittal A, Lopez-Diego R, Maier LM, Anderson DE, Weiner HL (2009) IL-27 is a key regulator of IL-10 and IL-17 production by human CD4+ T cells. J Immunol 183:2435–2443

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Goriely S, Molle C, Nguyen M et al (2006) Interferon regulatory factor 3 is involved in toll-like receptor 4 (TLR4)- and TLR3-induced IL-12p35 gene activation. Blood 107:1078–1084

    Article  CAS  PubMed  Google Scholar 

  7. Wirtz S, Becker C, Fantini MC et al (2005) EBV-induced gene 3 transcription is induced by TLR signaling in primary dendritic cells via NF-kappa B activation. J Immunol 174:2814–2824

    Article  CAS  PubMed  Google Scholar 

  8. Collison LW, Workman CJ, Kuo TT et al (2007) The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450:566–569

    Article  CAS  PubMed  Google Scholar 

  9. Tedder TF, Leonard WJ (2014) Autoimmunity: regulatory B cells—IL-35 and IL-21 regulate the regulators. Nat Rev Rheumatol 10:452–453

    Article  CAS  PubMed  Google Scholar 

  10. Banchereau J, Pascual V, O'Garra A (2012) From IL-2 to IL-37: the expanding spectrum of anti-inflammatory cytokines. Nat Immunol 13:925–931

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Shen P, Roch T, Lampropoulou V et al (2014) IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature 507:366–370

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Terayama H, Yoshimoto T, Hirai S et al (2014) Contribution of IL-12/IL-35 common subunit p35 to maintaining the testicular immune privilege. PLoS One 9:e96120

    Article  PubMed Central  PubMed  Google Scholar 

  13. Collison LW, Chaturvedi V, Henderson AL et al (2010) IL-35-mediated induction of a potent regulatory T cell population. Nat Immunol 11:1093–1101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Pankratz S, Bittner S, Herrmann AM et al (2014) Human CD4+ HLA-G+ regulatory T cells are potent suppressors of graft-versus-host disease in vivo. FASEB J 28:3435–3445

    Article  CAS  PubMed  Google Scholar 

  15. Nieuwenhuis EE, Neurath MF, Corazza N et al (2002) Disruption of T helper 2-immune responses in Epstein-Barr virus-induced gene 3-deficient mice. Proc Natl Acad Sci U S A 99:16951–16956

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Mattner F, Magram J, Ferrante J et al (1996) Genetically resistant mice lacking interleukin-12 are susceptible to infection with Leishmania major and mount a polarized Th2 cell response. Eur J Immunol 26:1553–1559

    Article  CAS  PubMed  Google Scholar 

  17. Zheng SG, Gray JD, Ohtsuka K, Yamagiwa S, Horwitz DA (2002) Generation ex vivo of TGF-beta-producing regulatory T cells from CD4 + CD25- precursors. J Immunol 169:4183–4189

    Article  CAS  PubMed  Google Scholar 

  18. Cua DJ, Sherlock J, Chen Y et al (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421:744–748

    Article  CAS  PubMed  Google Scholar 

  19. Murphy CA, Langrish CL, Chen Y et al (2003) Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med 198:1951–1957

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Langrish CL, Chen Y, Blumenschein WM et al (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201:233–240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Jonuleit H, Schmitt E, Kakirman H, Stassen M, Knop J, Enk AH (2002) Infectious tolerance: human CD25(+) regulatory T cells convey suppressor activity to conventional CD4(+) T helper cells. J Exp Med 196:255–260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Collison LW, Delgoffe GM, Guy CS et al (2012) The composition and signaling of the IL-35 receptor are unconventional. Nat Immunol 13:290–299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Grohmann U, Belladonna ML, Bianchi R et al (1998) IL-12 acts directly on DC to promote nuclear localization of NF-kappaB and primes DC for IL-12 production. Immunity 9:315–323

    Article  CAS  PubMed  Google Scholar 

  24. Wang RX, Yu CR, Dambuza IM et al (2014) Interleukin-35 induces regulatory B cells that suppress autoimmune disease. Nat Med 20:633–641

    Article  PubMed Central  PubMed  Google Scholar 

  25. Wu CY, Gadina M, Wang K, O'Shea J, Seder RA (2000) Cytokine regulation of IL-12 receptor beta2 expression: differential effects on human T and NK cells. Eur J Immunol 30:1364–1374

    Article  CAS  PubMed  Google Scholar 

  26. Koch MA, Thomas KR, Perdue NR, Smigiel KS, Srivastava S, Campbell DJ (2012) T-bet(+) Treg cells undergo abortive Th1 cell differentiation due to impaired expression of IL-12 receptor beta2. Immunity 37:501–510

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Saito M, Yoshida K, Hibi M, Taga T, Kishimoto T (1992) Molecular cloning of a murine IL-6 receptor-associated signal transducer, gp130, and its regulated expression in vivo. J Immunol 148:4066–4071

    CAS  PubMed  Google Scholar 

  28. Presky DH, Yang H, Minetti LJ et al (1996) A functional interleukin 12 receptor complex is composed of two beta-type cytokine receptor subunits. Proc Natl Acad Sci U S A 93:14002–14007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Yoshida K, Taga T, Saito M et al (1996) Targeted disruption of gp130, a common signal transducer for the interleukin 6 family of cytokines, leads to myocardial and hematological disorders. Proc Natl Acad Sci U S A 93:407–411

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Airoldi I, Di Carlo E, Cocco C et al (2005) Lack of Il12rb2 signaling predisposes to spontaneous autoimmunity and malignancy. Blood 106:3846–3853

    Article  CAS  PubMed  Google Scholar 

  31. Hirschfield GM, Liu X, Xu C et al (2009) Primary biliary cirrhosis associated with HLA, IL12A, and IL12RB2 variants. N Engl J Med 360:2544–2555

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Matsui E, Kaneko H, Fukao T et al (1999) Mutations of the IL-12 receptor beta2 chain gene in atopic subjects. Biochem Biophys Res Commun 266:551–555

    Article  CAS  PubMed  Google Scholar 

  33. Remmers EF, Cosan F, Kirino Y et al (2010) Genome-wide association study identifies variants in the MHC class I, IL10, and IL23R-IL12RB2 regions associated with Behcet's disease. Nat Genet 42:698–702

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Bettini M, Castellaw AH, Lennon GP, Burton AR, Vignali DA (2012) Prevention of autoimmune diabetes by ectopic pancreatic beta-cell expression of interleukin-35. Diabetes 61:1519–1526

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Cargill M, Schrodi SJ, Chang M et al (2007) A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am J Hum Genet 80:273–290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Bossini-Castillo L, Martin JE, Broen J et al (2012) A GWAS follow-up study reveals the association of the IL12RB2 gene with systemic sclerosis in Caucasian populations. Hum Mol Genet 21:926–933

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. McGovern DP, Rotter JI, Mei L et al (2009) Genetic epistasis of IL23/IL17 pathway genes in Crohn's disease. Inflamm Bowel Dis 15:883–889

    Article  PubMed Central  PubMed  Google Scholar 

  38. Olson BM, Jankowska-Gan E, Becker JT, Vignali DA, Burlingham WJ, McNeel DG (2012) Human prostate tumor antigen-specific CD8+ regulatory T cells are inhibited by CTLA-4 or IL-35 blockade. J Immunol 189:5590–5601

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Liu JQ, Liu Z, Zhang X et al (2012) Increased Th17 and regulatory T cell responses in EBV-induced gene 3-deficient mice lead to marginally enhanced development of autoimmune encephalomyelitis. J Immunol 188:3099–3106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Jafarzadeh, A., Jamali, M., Mahdavi, R., et al. (2014), Circulating levels of interleukin-35 in patients with multiple sclerosis: evaluation of the influences of FOXP3 gene polymorphism and treatment program. J Mol Neurosci

  41. Niedbala W, Wei XQ, Cai B et al (2007) IL-35 is a novel cytokine with therapeutic effects against collagen-induced arthritis through the expansion of regulatory T cells and suppression of Th17 cells. Eur J Immunol 37:3021–3029

    Article  CAS  PubMed  Google Scholar 

  42. Kochetkova I, Golden S, Holderness K, Callis G, Pascual DW (2010) IL-35 stimulation of CD39+ regulatory T cells confers protection against collagen II-induced arthritis via the production of IL-10. J Immunol 184:7144–7153

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Wirtz S, Billmeier U, McHedlidze T, Blumberg RS, Neurath MF (2011) Interleukin-35 mediates mucosal immune responses that protect against T-cell-dependent colitis. Gastroenterology 141:1875–1886

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Gershwin ME, Mackay IR, Sturgess A, Coppel RL (1987) Identification and specificity of a cDNA encoding the 70 kd mitochondrial antigen recognized in primary biliary cirrhosis. J Immunol 138:3525–3531

    CAS  PubMed  Google Scholar 

  45. Liaskou E, Hirschfield GM, Gershwin ME (2014) Mechanisms of tissue injury in autoimmune liver diseases. Semin Immunopathol 36:553–568

    Article  CAS  PubMed  Google Scholar 

  46. Wang L, Wang FS, Chang C, Gershwin ME (2014) Breach of tolerance: primary biliary cirrhosis. Semin Liver Dis 34:297–317

    Article  PubMed  Google Scholar 

  47. Zhang J, Zhang W, Leung PS et al (2014) Ongoing activation of autoantigen-specific B cells in primary biliary cirrhosis. Hepatology 60:1708–1716

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Lleo A, Zhang W, McDonald WH et al (2014) Shotgun proteomics: identification of unique protein profiles of apoptotic bodies from biliary epithelial cells. Hepatology 60:1314–1323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Chen RC, Naiyanetr P, Shu SA et al (2013) Antimitochondrial antibody heterogeneity and the xenobiotic etiology of primary biliary cirrhosis. Hepatology 57:1498–1508

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Yang CY, Ma X, Tsuneyama K et al (2014) IL-12/Th1 and IL-23/Th17 biliary microenvironment in primary biliary cirrhosis: implications for therapy. Hepatology 59:1944–1953

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Hudspeth K, Pontarini E, Tentorio P et al (2013) The role of natural killer cells in autoimmune liver disease: a comprehensive review. J Autoimmun 46:55–65

    Article  CAS  PubMed  Google Scholar 

  52. Huang W, Kachapati K, Adams D et al (2014) Murine autoimmune cholangitis requires two hits: cytotoxic KLRG1(+) CD8 effector cells and defective T regulatory cells. J Autoimmun 50:123–134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Yao Y, Yang W, Yang YQ et al (2014) Distinct from its canonical effects, deletion of IL-12p40 induces cholangitis and fibrosis in interleukin-2Ralpha(-/-) mice. J Autoimmun 51:99–108

    Article  CAS  PubMed  Google Scholar 

  54. Kawata K, Yang GX, Ando Y et al (2013) Clonality, activated antigen-specific CD8(+) T cells, and development of autoimmune cholangitis in dnTGFbetaRII mice. Hepatology 58:1094–1104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Ando Y, Yang GX, Kenny TP et al (2013) Overexpression of microRNA-21 is associated with elevated pro-inflammatory cytokines in dominant-negative TGF-beta receptor type II mouse. J Autoimmun 41:111–119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Oertelt S, Lian ZX, Cheng CM et al (2006) Anti-mitochondrial antibodies and primary biliary cirrhosis in TGF-beta receptor II dominant-negative mice. J Immunol 177:1655–1660

    Article  CAS  PubMed  Google Scholar 

  57. Tsuda M, Zhang W, Yang GX et al (2013) Deletion of interleukin (IL)-12p35 induces liver fibrosis in dominant-negative TGFbeta receptor type II mice. Hepatology 57:806–816

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Eric Gershwin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J., Leung, P.S.C., Bowlus, C. et al. IL-35 and Autoimmunity: a Comprehensive Perspective. Clinic Rev Allerg Immunol 49, 327–332 (2015). https://doi.org/10.1007/s12016-015-8468-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-015-8468-9

Keywords

Navigation