Skip to main content

Advertisement

Log in

Mechanisms of tissue injury in autoimmune liver diseases

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Autoimmune diseases affecting the liver are mainly represented by autoimmune hepatitis (AIH), primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC). The characteristic morphologic patterns of injury are a chronic hepatitis pattern of damage in AIH, destruction of small intrahepatic bile ducts in PBC and periductal fibrosis and inflammation involving larger bile ducts in PSC. The factors responsible for initiation and perpetuation of the injury in all the three autoimmune liver diseases are not understood completely but are likely to be environmental triggers on the background of genetic variation in immune regulation. In this review, we summarise the current understanding of the mechanisms underlying the breakdown of self-tolerance in autoimmune liver diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hirschfield GM, Gershwin ME (2013) The immunobiology and pathophysiology of primary biliary cirrhosis. Annu Rev Pathol 8:303–330

    PubMed  CAS  Google Scholar 

  2. Kaplan MM, Gershwin ME (2005) Primary biliary cirrhosis. N Engl J Med 353:1261–1273

    PubMed  CAS  Google Scholar 

  3. Hirschfield GM, Karlsen TH, Lindor KD, Adams DH (2013) Primary sclerosing cholangitis. Lancet 382:1587–1599

    PubMed  Google Scholar 

  4. Trivedi PJ, Hirschfield GM (2012) Review article: overlap syndromes and autoimmune liver disease. Aliment Pharmacol Ther 36:517–533

    PubMed  CAS  Google Scholar 

  5. Trivedi PJ, Adams DH (2013) Mucosal immunity in liver autoimmunity: a comprehensive review. J Autoimmun 46:97–111

    PubMed  CAS  Google Scholar 

  6. Bowlus CL (2011) Cutting edge issues in primary sclerosing cholangitis. Clin Rev Allergy Immunol 41:139–150

    PubMed  CAS  Google Scholar 

  7. Bergquist A, Lindberg G, Saarinen S, Broome U (2005) Increased prevalence of primary sclerosing cholangitis among first-degree relatives. J Hepatol 42:252–256

    PubMed  Google Scholar 

  8. Gershwin ME, Selmi C, Worman HJ, Gold EB, Watnik M, Utts J, Lindor KD et al (2005) Risk factors and comorbidities in primary biliary cirrhosis: a controlled interview-based study of 1032 patients. Hepatology 42:1194–1202

    PubMed  PubMed Central  Google Scholar 

  9. Selmi C, Mayo MJ, Bach N, Ishibashi H, Invernizzi P, Gish RG, Gordon SC et al (2004) Primary biliary cirrhosis in monozygotic and dizygotic twins: genetics, epigenetics, and environment. Gastroenterology 127:485–492

    PubMed  Google Scholar 

  10. Yoshida O, Abe M, Furukawa S, Murata Y, Hamada M, Hiasa Y, Matsuura B et al (2009) A familial case of autoimmune hepatitis. Intern Med 48:315–319

    PubMed  Google Scholar 

  11. Ohira H, Shinzawa J, Suzuki T, Tojo J, Sato H, Nishimaki T, Morito T et al (1998) Two sister cases of autoimmune hepatitis. Fukushima J Med Sci 44:113–120

    PubMed  CAS  Google Scholar 

  12. Hirschfield GM, Liu X, Xu C, Lu Y, Xie G, Lu Y, Gu X et al (2009) Primary biliary cirrhosis associated with HLA, IL12A, and IL12RB2 variants. N Engl J Med 360:2544–2555

    PubMed  CAS  PubMed Central  Google Scholar 

  13. Liu X, Invernizzi P, Lu Y, Kosoy R, Lu Y, Bianchi I, Podda M et al (2010) Genome-wide meta-analyses identify three loci associated with primary biliary cirrhosis. Nat Genet 42:658–660

    PubMed  CAS  PubMed Central  Google Scholar 

  14. Mells GF, Floyd JA, Morley KI, Cordell HJ, Franklin CS, Shin SY, Heneghan MA et al (2011) Genome-wide association study identifies 12 new susceptibility loci for primary biliary cirrhosis. Nat Genet 43:329–332

    PubMed  CAS  PubMed Central  Google Scholar 

  15. Nakamura M, Nishida N, Kawashima M, Aiba Y, Tanaka A, Yasunami M, Nakamura H et al (2012) Genome-wide association study identifies TNFSF15 and POU2AF1 as susceptibility loci for primary biliary cirrhosis in the Japanese population. Am J Hum Genet 91:721–728

    PubMed  CAS  PubMed Central  Google Scholar 

  16. Juran BD, Hirschfield GM, Invernizzi P, Atkinson EJ, Li Y, Xie G, Kosoy R et al (2012) Immunochip analyses identify a novel risk locus for primary biliary cirrhosis at 13q14, multiple independent associations at four established risk loci and epistasis between 1p31 and 7q32 risk variants. Hum Mol Genet 21:5209–5221

    PubMed  CAS  PubMed Central  Google Scholar 

  17. Liu JZ, Almarri MA, Gaffney DJ, Mells GF, Jostins L, Cordell HJ, Ducker SJ et al (2012) Dense fine-mapping study identifies new susceptibility loci for primary biliary cirrhosis. Nat Genet 44:1137–1141

    PubMed  CAS  PubMed Central  Google Scholar 

  18. Hirschfield GM, Liu X, Han Y, Gorlov IP, Lu Y, Xu C, Lu Y et al (2010) Variants at IRF5-TNPO3, 17q12-21 and MMEL1 are associated with primary biliary cirrhosis. Nat Genet 42:655–657

    PubMed  CAS  PubMed Central  Google Scholar 

  19. Karlsen TH, Franke A, Melum E, Kaser A, Hov JR, Balschun T, Lie BA et al (2010) Genome-wide association analysis in primary sclerosing cholangitis. Gastroenterology 138:1102–1111

    PubMed  Google Scholar 

  20. Melum E, Franke A, Schramm C, Weismuller TJ, Gotthardt DN, Offner FA, Juran BD et al (2011) Genome-wide association analysis in primary sclerosing cholangitis identifies two non-HLA susceptibility loci. Nat Genet 43:17–19

    PubMed  CAS  Google Scholar 

  21. Lamberts LE, Janse M, Haagsma EB, van den Berg AP, Weersma RK (2011) Immune-mediated diseases in primary sclerosing cholangitis. Dig Liver Dis 43:802–806

    PubMed  Google Scholar 

  22. Janse M, Lamberts LE, Franke L, Raychaudhuri S, Ellinghaus E, Muri Boberg K, Melum E et al (2011) Three ulcerative colitis susceptibility loci are associated with primary sclerosing cholangitis and indicate a role for IL2, REL, and CARD9. Hepatology 53:1977–1985

    PubMed  CAS  PubMed Central  Google Scholar 

  23. Folseraas T, Melum E, Rausch P, Juran BD, Ellinghaus E, Shiryaev A, Laerdahl JK et al (2012) Extended analysis of a genome-wide association study in primary sclerosing cholangitis detects multiple novel risk loci. J Hepatol 57:366–375

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Srivastava B, Mells GF, Cordell HJ, Muriithi A, Brown M, Ellinghaus E, Franke A et al (2012) Fine mapping and replication of genetic risk loci in primary sclerosing cholangitis. Scand J Gastroenterol 47:820–826

    PubMed  CAS  Google Scholar 

  25. Ellinghaus D, Folseraas T, Holm K, Ellinghaus E, Melum E, Balschun T, Laerdahl JK et al (2013) Genome-wide association analysis in Primary sclerosing cholangitis and ulcerative colitis identifies risk loci at GPR35 and TCF4. Hepatology 58:1074–1083

    PubMed  CAS  Google Scholar 

  26. Liu JZ, Hov JR, Folseraas T, Ellinghaus E, Rushbrook SM, Doncheva NT, Andreassen OA et al (2013) Dense genotyping of immune-related disease regions identifies nine new risk loci for primary sclerosing cholangitis. Nat Genet 45:670–675

    PubMed  CAS  PubMed Central  Google Scholar 

  27. Carbone M, Neuberger JM (2014) Autoimmune liver disease, autoimmunity and liver transplantation. J Hepatol 60:210–223

    PubMed  CAS  Google Scholar 

  28. Spurkland A, Saarinen S, Boberg KM, Mitchell S, Broome U, Caballeria L, Ciusani E et al (1999) HLA class II haplotypes in primary sclerosing cholangitis patients from five European populations. Tissue Antigens 53:459–469

    PubMed  CAS  Google Scholar 

  29. Donaldson PT, Norris S (2002) Evaluation of the role of MHC class II alleles, haplotypes and selected amino acid sequences in primary sclerosing cholangitis. Autoimmunity 35:555–564

    PubMed  CAS  Google Scholar 

  30. Donaldson PT (2004) Genetics of liver disease: immunogenetics and disease pathogenesis. Gut 53:599–608

    PubMed  CAS  PubMed Central  Google Scholar 

  31. Donaldson PT, Baragiotta A, Heneghan MA, Floreani A, Venturi C, Underhill JA, Jones DE et al (2006) HLA class II alleles, genotypes, haplotypes, and amino acids in primary biliary cirrhosis: a large-scale study. Hepatology 44:667–674

    PubMed  CAS  Google Scholar 

  32. Goldberg AC, Bittencourt PL, Mougin B, Cancado EL, Porta G, Carrilho F, Kalil J (2001) Analysis of HLA haplotypes in autoimmune hepatitis type 1: identifying the major susceptibility locus. Hum Immunol 62:165–169

    PubMed  CAS  Google Scholar 

  33. Czaja AJ, Donaldson PT (2000) Genetic susceptibilities for immune expression and liver cell injury in autoimmune hepatitis. Immunol Rev 174:250–259

    PubMed  CAS  Google Scholar 

  34. Czaja AJ, Kruger M, Santrach PJ, Moore SB, Manns MP (1997) Genetic distinctions between types 1 and 2 autoimmune hepatitis. Am J Gastroenterol 92:2197–2200

    PubMed  CAS  Google Scholar 

  35. Hirschfield GM, Chapman RW, Karlsen TH, Lammert F, Lazaridis KN, Mason AL (2013) The genetics of complex cholestatic disorders. Gastroenterology 144:1357–1374

    PubMed  CAS  PubMed Central  Google Scholar 

  36. Folseraas T, Melum E, Franke A, Karlsen TH (2011) Genetics in primary sclerosing cholangitis. Best Pract Res Clin Gastroenterol 25:713–726

    PubMed  CAS  Google Scholar 

  37. Mells GF, Kaser A, Karlsen TH (2013) Novel insights into autoimmune liver diseases provided by genome-wide association studies. J Autoimmun 46:41–54

    PubMed  CAS  Google Scholar 

  38. Mitchell MM, Lleo A, Zammataro L, Mayo MJ, Invernizzi P, Bach N, Shimoda S et al (2011) Epigenetic investigation of variably X chromosome inactivated genes in monozygotic female twins discordant for primary biliary cirrhosis. Epigenetics 6:95–102

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Bakalov VK, Gutin L, Cheng CM, Zhou J, Sheth P, Shah K, Arepalli S et al (2012) Autoimmune disorders in women with turner syndrome and women with karyotypically normal primary ovarian insufficiency. J Autoimmun 38:315–321

    PubMed  PubMed Central  Google Scholar 

  40. Miller FW, Pollard KM, Parks CG, Germolec DR, Leung PS, Selmi C, Humble MC et al (2012) Criteria for environmentally associated autoimmune diseases. J Autoimmun 39:253–258

    PubMed  CAS  PubMed Central  Google Scholar 

  41. Selmi C, Leung PS, Sherr DH, Diaz M, Nyland JF, Monestier M, Rose NR et al (2012) Mechanisms of environmental influence on human autoimmunity: a National Institute of Environmental Health Sciences expert panel workshop. J Autoimmun 39:272–284

    PubMed  Google Scholar 

  42. Ngu JH, Gearry RB, Frampton CM, Stedman CA (2013) Autoimmune hepatitis: the role of environmental risk factors: a population-based study. Hepatol Int 7:869–875

    Google Scholar 

  43. Liang Y, Yang Z, Zhong R (2011) Smoking, family history and urinary tract infection are associated with primary biliary cirrhosis: a meta-analysis. Hepatol Res 41:572–578

    PubMed  Google Scholar 

  44. Andersen IM, Tengesdal G, Lie BA, Boberg KM, Karlsen TH, Hov JR (2013) Effects of coffee consumption, smoking, and hormones on risk for primary sclerosing cholangitis. Clin Gastroenterol Hepatol

  45. Florin TH, Pandeya N, Radford-Smith GL (2004) Epidemiology of appendicectomy in primary sclerosing cholangitis and ulcerative colitis: its influence on the clinical behaviour of these diseases. Gut 53:973–979

    PubMed  CAS  PubMed Central  Google Scholar 

  46. Mitchell SA, Thyssen M, Orchard TR, Jewell DP, Fleming KA, Chapman RW (2002) Cigarette smoking, appendectomy, and tonsillectomy as risk factors for the development of primary sclerosing cholangitis: a case control study. Gut 51:567–573

    PubMed  CAS  PubMed Central  Google Scholar 

  47. Kerkar N, Choudhuri K, Ma Y, Mahmoud A, Bogdanos DP, Muratori L, Bianchi F et al (2003) Cytochrome P4502D6(193–212): a new immunodominant epitope and target of virus/self cross-reactivity in liver kidney microsomal autoantibody type 1-positive liver disease. J Immunol 170:1481–1489

    PubMed  CAS  Google Scholar 

  48. Hopf U, Moller B, Stemerowicz R, Lobeck H, Rodloff A, Freudenberg M, Galanos C et al (1989) Relation between Escherichia coli R(rough)-forms in gut, lipid A in liver, and primary biliary cirrhosis. Lancet 2:1419–1422

    PubMed  CAS  Google Scholar 

  49. Bogdanos DP, Baum H, Grasso A, Okamoto M, Butler P, Ma Y, Rigopoulou E et al (2004) Microbial mimics are major targets of crossreactivity with human pyruvate dehydrogenase in primary biliary cirrhosis. J Hepatol 40:31–39

    PubMed  CAS  Google Scholar 

  50. Berg CP, Kannan TR, Klein R, Gregor M, Baseman JB, Wesselborg S, Lauber K et al (2009) Mycoplasma antigens as a possible trigger for the induction of antimitochondrial antibodies in primary biliary cirrhosis. Liver Int 29:797–809

    PubMed  CAS  Google Scholar 

  51. Padgett KA, Selmi C, Kenny TP, Leung PS, Balkwill DL, Ansari AA, Coppel RL et al (2005) Phylogenetic and immunological definition of four lipoylated proteins from Novosphingobium aromaticivorans, implications for primary biliary cirrhosis. J Autoimmun 24:209–219

    PubMed  CAS  Google Scholar 

  52. Rieger R, Gershwin ME (2007) The X and why of xenobiotics in primary biliary cirrhosis. J Autoimmun 28:76–84

    PubMed  CAS  PubMed Central  Google Scholar 

  53. Rieger R, Leung PS, Jeddeloh MR, Kurth MJ, Nantz MH, Lam KS, Barsky D et al (2006) Identification of 2-nonynoic acid, a cosmetic component, as a potential trigger of primary biliary cirrhosis. J Autoimmun 27:7–16

    PubMed  CAS  Google Scholar 

  54. Leung PS, Wang J, Naiyanetr P, Kenny TP, Lam KS, Kurth MJ, Gershwin ME (2013) Environment and primary biliary cirrhosis: electrophilic drugs and the induction of AMA. J Autoimmun 41:79–86

    PubMed  CAS  PubMed Central  Google Scholar 

  55. Bogdanos DP, Mieli-Vergani G, Vergani D (2009) Autoantibodies and their antigens in autoimmune hepatitis. Semin Liver Dis 29:241–253

    PubMed  CAS  Google Scholar 

  56. Vergani D, Mieli-Vergani G, Mondelli M, Portmann B, Eddleston AL (1987) Immunoglobulin on the surface of isolated hepatocytes is associated with antibody-dependent cell-mediated cytotoxicity and liver damage. Liver 7:307–315

    PubMed  CAS  Google Scholar 

  57. Muratori L, Parola M, Ripalti A, Robino G, Muratori P, Bellomo G, Carini R et al (2000) Liver/kidney microsomal antibody type 1 targets CYP2D6 on hepatocyte plasma membrane. Gut 46:553–561

    PubMed  CAS  PubMed Central  Google Scholar 

  58. Folci M, Meda F, Gershwin ME, Selmi C (2012) Cutting-edge issues in primary biliary cirrhosis. Clin Rev Allergy Immunol 42:342–354

    PubMed  CAS  Google Scholar 

  59. Oertelt S, Rieger R, Selmi C, Invernizzi P, Ansari AA, Coppel RL, Podda M et al (2007) A sensitive bead assay for antimitochondrial antibodies: chipping away at AMA-negative primary biliary cirrhosis. Hepatology 45:659–665

    PubMed  CAS  Google Scholar 

  60. Courvalin JC, Lassoued K, Bartnik E, Blobel G, Wozniak RW (1990) The 210-kD nuclear envelope polypeptide recognized by human autoantibodies in primary biliary cirrhosis is the major glycoprotein of the nuclear pore. J Clin Invest 86:279–285

    PubMed  CAS  PubMed Central  Google Scholar 

  61. Wesierska-Gadek J, Hohenuer H, Hitchman E, Penner E (1996) Autoantibodies against nucleoporin p62 constitute a novel marker of primary biliary cirrhosis. Gastroenterology 110:840–847

    PubMed  CAS  Google Scholar 

  62. Wesierska-Gadek J, Penner E, Battezzati PM, Selmi C, Zuin M, Hitchman E, Worman HJ et al (2006) Correlation of initial autoantibody profile and clinical outcome in primary biliary cirrhosis. Hepatology 43:1135–1144

    PubMed  CAS  Google Scholar 

  63. Szostecki C, Guldner HH, Will H (1997) Autoantibodies against “nuclear dots” in primary biliary cirrhosis. Semin Liver Dis 17:71–78

    PubMed  CAS  Google Scholar 

  64. Yang WH, Yu JH, Nakajima A, Neuberg D, Lindor K, Bloch DB (2004) Do antinuclear antibodies in primary biliary cirrhosis patients identify increased risk for liver failure? Clin Gastroenterol Hepatol 2:1116–1122

    PubMed  Google Scholar 

  65. Pollheimer MJ, Halilbasic E, Fickert P, Trauner M (2011) Pathogenesis of primary sclerosing cholangitis. Best Pract Res Clin Gastroenterol 25:727–739

    PubMed  CAS  PubMed Central  Google Scholar 

  66. Terjung B, Herzog V, Worman HJ, Gestmann I, Bauer C, Sauerbruch T, Spengler U (1998) Atypical antineutrophil cytoplasmic antibodies with perinuclear fluorescence in chronic inflammatory bowel diseases and hepatobiliary disorders colocalize with nuclear lamina proteins. Hepatology 28:332–340

    PubMed  CAS  Google Scholar 

  67. Terjung B, Sohne J, Lechtenberg B, Gottwein J, Muennich M, Herzog V, Mahler M et al (2010) p-ANCAs in autoimmune liver disorders recognise human beta-tubulin isotype 5 and cross-react with microbial protein FtsZ. Gut 59:808–816

    PubMed  CAS  Google Scholar 

  68. Xu B, Broome U, Ericzon BG, Sumitran-Holgersson S (2002) High frequency of autoantibodies in patients with primary sclerosing cholangitis that bind biliary epithelial cells and induce expression of CD44 and production of interleukin 6. Gut 51:120–127

    PubMed  CAS  PubMed Central  Google Scholar 

  69. Karrar A, Broome U, Sodergren T, Jaksch M, Bergquist A, Bjornstedt M, Sumitran-Holgersson S (2007) Biliary epithelial cell antibodies link adaptive and innate immune responses in primary sclerosing cholangitis. Gastroenterology 132:1504–1514

    PubMed  CAS  Google Scholar 

  70. O’Toole A, Alakkari A, Keegan D, Doherty G, Mulcahy H, O’Donoghue D (2012) Primary sclerosing cholangitis and disease distribution in inflammatory bowel disease. Clin Gastroenterol Hepatol 10:439–441

    PubMed  Google Scholar 

  71. Sano H, Nakazawa T, Ando T, Hayashi K, Naitoh I, Okumura F, Miyabe K et al (2011) Clinical characteristics of inflammatory bowel disease associated with primary sclerosing cholangitis. J Hepato-Biliary-Pancreat Sci 18:154–161

    Google Scholar 

  72. Eksteen B, Liaskou E, Adams DH (2008) Lymphocyte homing and its role in the pathogenesis of IBD. Inflamm Bowel Dis 14:1298–1312

    PubMed  Google Scholar 

  73. O’Mahony CA, Vierling JM (2006) Etiopathogenesis of primary sclerosing cholangitis. Semin Liver Dis 26:3–21

    PubMed  Google Scholar 

  74. Rudolph G, Gotthardt D, Kloters-Plachky P, Kulaksiz H, Rost D, Stiehl A (2009) Influence of dominant bile duct stenoses and biliary infections on outcome in primary sclerosing cholangitis. J Hepatol 51:149–155

    PubMed  Google Scholar 

  75. Miyake Y, Yamamoto K (2013) Role of gut microbiota in liver diseases. Hepatol Res 43:139–146

    PubMed  CAS  Google Scholar 

  76. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801

    PubMed  CAS  Google Scholar 

  77. Yang L, Seki E (2012) Toll-like receptors in liver fibrosis: cellular crosstalk and mechanisms. Front Physiol 3:138

    PubMed  CAS  PubMed Central  Google Scholar 

  78. O’Hara SP, Splinter PL, Trussoni CE, Gajdos GB, Lineswala PN, LaRusso NF (2011) Cholangiocyte N-Ras protein mediates lipopolysaccharide-induced interleukin 6 secretion and proliferation. J Biol Chem 286:30352–30360

    PubMed  PubMed Central  Google Scholar 

  79. Chapman R, Cullen S (2008) Etiopathogenesis of primary sclerosing cholangitis. World J Gastroenterol 14:3350–3359

    PubMed  CAS  PubMed Central  Google Scholar 

  80. Mueller T, Beutler C, Pico AH, Shibolet O, Pratt DS, Pascher A, Neuhaus P et al (2011) Enhanced innate immune responsiveness and intolerance to intestinal endotoxins in human biliary epithelial cells contributes to chronic cholangitis. Liver Int 31:1574–1588

    PubMed  CAS  Google Scholar 

  81. Sheth P, Delos Santos N, Seth A, LaRusso NF, Rao RK (2007) Lipopolysaccharide disrupts tight junctions in cholangiocyte monolayers by a c-Src-, TLR4-, and LBP-dependent mechanism. Am J Physiol Gastrointest Liver Physiol 293:G308–G318

    PubMed  CAS  Google Scholar 

  82. Guo S, Al-Sadi R, Said HM, Ma TY (2013) Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLR-4 and CD14. Am J Pathol 182:375–387

    PubMed  CAS  PubMed Central  Google Scholar 

  83. Fickert P, Fuchsbichler A, Marschall HU, Wagner M, Zollner G, Krause R, Zatloukal K et al (2006) Lithocholic acid feeding induces segmental bile duct obstruction and destructive cholangitis in mice. Am J Pathol 168:410–422

    PubMed  CAS  PubMed Central  Google Scholar 

  84. Fickert P, Fuchsbichler A, Wagner M, Zollner G, Kaser A, Tilg H, Krause R et al (2004) Regurgitation of bile acids from leaky bile ducts causes sclerosing cholangitis in Mdr2 (Abcb4) knockout mice. Gastroenterology 127:261–274

    PubMed  CAS  Google Scholar 

  85. Foell D, Wittkowski H, Roth J (2007) Mechanisms of disease: a ‘DAMP’ view of inflammatory arthritis. Nat Clin Pract Rheumatol 3:382–390

    PubMed  CAS  Google Scholar 

  86. O’Hara SP, Tabibian JH, Splinter PL, LaRusso NF (2013) The dynamic biliary epithelia: molecules, pathways, and disease. J Hepatol 58:575–582

    PubMed  Google Scholar 

  87. Hov JR, Boberg KM, Karlsen TH (2008) Autoantibodies in primary sclerosing cholangitis. World J Gastroenterol 14:3781–3791

    PubMed  CAS  PubMed Central  Google Scholar 

  88. Panasiuk A, Prokopowicz D, Zak J, Panasiuk B, Wysocka J (2004) Lymphocyte subpopulations in peripheral blood in primary sclerosing cholangitis. Hepatogastroenterology 51:1289–1291

    PubMed  Google Scholar 

  89. Bo X, Broome U, Remberger M, Sumitran-Holgersson S (2001) Tumour necrosis factor alpha impairs function of liver derived T lymphocytes and natural killer cells in patients with primary sclerosing cholangitis. Gut 49:131–141

    PubMed  CAS  PubMed Central  Google Scholar 

  90. Takeda K, Kojima Y, Ikejima K, Harada K, Yamashina S, Okumura K, Aoyama T et al (2008) Death receptor 5 mediated-apoptosis contributes to cholestatic liver disease. Proc Natl Acad Sci U S A 105:10895–10900

    PubMed  CAS  PubMed Central  Google Scholar 

  91. Mao TK, Lian ZX, Selmi C, Ichiki Y, Ashwood P, Ansari AA, Coppel RL et al (2005) Altered monocyte responses to defined TLR ligands in patients with primary biliary cirrhosis. Hepatology 42:802–808

    PubMed  CAS  Google Scholar 

  92. Chuang YH, Lian ZX, Tsuneyama K, Chiang BL, Ansari AA, Coppel RL, Gershwin ME (2006) Increased killing activity and decreased cytokine production in NK cells in patients with primary biliary cirrhosis. J Autoimmun 26:232–240

    PubMed  CAS  Google Scholar 

  93. Adams DH, Eksteen B (2006) Aberrant homing of mucosal T cells and extra-intestinal manifestations of inflammatory bowel disease. Nat Rev Immunol 6:244–251

    PubMed  CAS  Google Scholar 

  94. Eksteen B, Grant AJ, Miles A, Curbishley SM, Lalor PF, Hubscher SG, Briskin M et al (2004) Hepatic endothelial CCL25 mediates the recruitment of CCR9+ gut-homing lymphocytes to the liver in primary sclerosing cholangitis. J Exp Med 200:1511–1517

    PubMed  CAS  PubMed Central  Google Scholar 

  95. Grant AJ, Lalor PF, Hubscher SG, Briskin M, Adams DH (2001) MAdCAM-1 expressed in chronic inflammatory liver disease supports mucosal lymphocyte adhesion to hepatic endothelium (MAdCAM-1 in chronic inflammatory liver disease). Hepatology 33:1065–1072

    PubMed  CAS  Google Scholar 

  96. Liaskou E, Karikoski M, Reynolds GM, Lalor PF, Weston CJ, Pullen N, Salmi M et al (2011) Regulation of mucosal addressin cell adhesion molecule 1 expression in human and mice by vascular adhesion protein 1 amine oxidase activity. Hepatology 53:661–672

    PubMed  CAS  PubMed Central  Google Scholar 

  97. Shen SH, Wertz DL, Klinman JP (2012) Implication for functions of the ectopic adipocyte copper amine oxidase (AOC3) from purified enzyme and cell-based kinetic studies. PLoS One 7:e29270

    PubMed  CAS  PubMed Central  Google Scholar 

  98. Miles A, Liaskou E, Eksteen B, Lalor PF, Adams DH (2008) CCL25 and CCL28 promote alpha4 beta7-integrin-dependent adhesion of lymphocytes to MAdCAM-1 under shear flow. Am J Physiol Gastrointest Liver Physiol 294:G1257–G1267

    PubMed  CAS  Google Scholar 

  99. Wright N, Hidalgo A, Rodriguez-Frade JM, Soriano SF, Mellado M, Parmo-Cabanas M, Briskin MJ et al (2002) The chemokine stromal cell-derived factor-1 alpha modulates alpha 4 beta 7 integrin-mediated lymphocyte adhesion to mucosal addressin cell adhesion molecule-1 and fibronectin. J Immunol 168:5268–5277

    PubMed  CAS  Google Scholar 

  100. Eksteen B, Mora JR, Haughton EL, Henderson NC, Lee-Turner L, Villablanca EJ, Curbishley SM et al (2009) Gut homing receptors on CD8 T cells are retinoic acid dependent and not maintained by liver dendritic or stellate cells. Gastroenterology 137:320–329

    PubMed  CAS  PubMed Central  Google Scholar 

  101. Neumann K, Kruse N, Szilagyi B, Erben U, Rudolph C, Flach A, Zeitz M et al (2012) Connecting liver and gut: murine liver sinusoidal endothelium induces gut tropism of CD4+ T cells via retinoic acid. Hepatology 55:1976–1984

    PubMed  CAS  Google Scholar 

  102. Teufel A, Weinmann A, Kahaly GJ, Centner C, Piendl A, Worns M, Lohse AW et al (2010) Concurrent autoimmune diseases in patients with autoimmune hepatitis. J Clin Gastroenterol 44:208–213

    PubMed  CAS  Google Scholar 

  103. Tsuda M, Ambrosini YM, Zhang W, Yang GX, Ando Y, Rong G, Tsuneyama K et al (2011) Fine phenotypic and functional characterization of effector cluster of differentiation 8 positive T cells in human patients with primary biliary cirrhosis. Hepatology 54:1293–1302

    PubMed  CAS  PubMed Central  Google Scholar 

  104. Feld JJ, Meddings J, Heathcote EJ (2006) Abnormal intestinal permeability in primary biliary cirrhosis. Dig Dis Sci 51:1607–1613

    PubMed  Google Scholar 

  105. Palak J, Trivedi SC (2013) Etiopathogenesis of primary biliary cirrhosis: an overview of recent developments. Hepatol Int 7:28–47

    Google Scholar 

  106. Senaldi G, Portmann B, Mowat AP, Mieli-Vergani G, Vergani D (1992) Immunohistochemical features of the portal tract mononuclear cell infiltrate in chronic aggressive hepatitis. Arch Dis Child 67:1447–1453

    PubMed  CAS  PubMed Central  Google Scholar 

  107. Lapierre P, Hajoui O, Homberg JC, Alvarez F (1999) Formiminotransferase cyclodeaminase is an organ-specific autoantigen recognized by sera of patients with autoimmune hepatitis. Gastroenterology 116:643–649

    PubMed  CAS  Google Scholar 

  108. Zhao L, Tang Y, You Z, Wang Q, Liang S, Han X, Qiu D et al (2011) Interleukin-17 contributes to the pathogenesis of autoimmune hepatitis through inducing hepatic interleukin-6 expression. PLoS One 6:e18909

    PubMed  CAS  PubMed Central  Google Scholar 

  109. Ferri S, Longhi MS, De Molo C, Lalanne C, Muratori P, Granito A, Hussain MJ et al (2010) A multifaceted imbalance of T cells with regulatory function characterizes type 1 autoimmune hepatitis. Hepatology 52:999–1007

    PubMed  CAS  Google Scholar 

  110. Kita H, Matsumura S, He XS, Ansari AA, Lian ZX, Van de Water J, Coppel RL et al (2002) Quantitative and functional analysis of PDC-E2-specific autoreactive cytotoxic T lymphocytes in primary biliary cirrhosis. J Clin Invest 109:1231–1240

    PubMed  CAS  PubMed Central  Google Scholar 

  111. Van de Water J, Ansari A, Prindiville T, Coppel RL, Ricalton N, Kotzin BL, Liu S et al (1995) Heterogeneity of autoreactive T cell clones specific for the E2 component of the pyruvate dehydrogenase complex in primary biliary cirrhosis. J Exp Med 181:723–733

    PubMed  Google Scholar 

  112. Martinez OM, Villanueva JC, Gershwin ME, Krams SM (1995) Cytokine patterns and cytotoxic mediators in primary biliary cirrhosis. Hepatology 21:113–119

    PubMed  CAS  Google Scholar 

  113. Yang GX, Lian ZX, Chuang YH, Moritoki Y, Lan RY, Wakabayashi K, Ansari AA et al (2008) Adoptive transfer of CD8(+) T cells from transforming growth factor beta receptor type II (dominant negative form) induces autoimmune cholangitis in mice. Hepatology 47:1974–1982

    PubMed  PubMed Central  Google Scholar 

  114. Kita H, Lian ZX, Van de Water J, He XS, Matsumura S, Kaplan M, Luketic V et al (2002) Identification of HLA-A2-restricted CD8(+) cytotoxic T cell responses in primary biliary cirrhosis: T cell activation is augmented by immune complexes cross-presented by dendritic cells. J Exp Med 195:113–123

    PubMed  CAS  PubMed Central  Google Scholar 

  115. Shimoda S, Nakamura M, Ishibashi H, Hayashida K, Niho Y (1995) HLA DRB4 0101-restricted immunodominant T cell autoepitope of pyruvate dehydrogenase complex in primary biliary cirrhosis: evidence of molecular mimicry in human autoimmune diseases. J Exp Med 181:1835–1845

    PubMed  CAS  Google Scholar 

  116. Arai O, Ikeda H, Mouri H, Notohara K, Matsueda K (2010) Two cases of inflammatory bowel disease diagnosed in the course of primary biliary cirrhosis. Nihon Shokakibyo Gakkai Zasshi 107:900–908

    PubMed  Google Scholar 

  117. Hashimoto E, Lindor KD, Homburger HA, Dickson ER, Czaja AJ, Wiesner RH, Ludwig J (1993) Immunohistochemical characterization of hepatic lymphocytes in primary biliary cirrhosis in comparison with primary sclerosing cholangitis and autoimmune chronic active hepatitis. Mayo Clin Proc 68:1049–1055

    PubMed  CAS  Google Scholar 

  118. Cameron RG, Blendis LM, Neuman MG (2001) Accumulation of macrophages in primary sclerosing cholangitis. Clin Biochem 34:195–201

    PubMed  CAS  Google Scholar 

  119. Ponsioen CY, Kuiper H, Ten Kate FJ, Ponsioen CY, Kuiper H, Ten Kate FJ, van Milligen de Wit M, van Deventer SJ, Tytgat GN (1999) Immunohistochemical analysis of inflammation in primary sclerosing cholangitis. Eur J Gastroenterol Hepatol 11:769–774

    PubMed  CAS  Google Scholar 

  120. Martins EB, Graham AK, Chapman RW, Fleming KA (1996) Elevation of gamma delta T lymphocytes in peripheral blood and livers of patients with primary sclerosing cholangitis and other autoimmune liver diseases. Hepatology 23:988–993

    PubMed  CAS  Google Scholar 

  121. Harada K, Shimoda S, Sato Y, Isse K, Ikeda H, Nakanuma Y (2009) Periductal interleukin-17 production in association with biliary innate immunity contributes to the pathogenesis of cholangiopathy in primary biliary cirrhosis. Clin Exp Immunol 157:261–270

    PubMed  CAS  PubMed Central  Google Scholar 

  122. Katt J, Schwinge D, Schoknecht T, Quaas A, Sobottka I, Burandt E, Becker C et al (2013) Increased T helper type 17 response to pathogen stimulation in patients with primary sclerosing cholangitis. Hepatology 58:1084–1093

    PubMed  CAS  Google Scholar 

  123. Rong G, Zhou Y, Xiong Y, Zhou L, Geng H, Jiang T, Zhu Y et al (2009) Imbalance between T helper type 17 and T regulatory cells in patients with primary biliary cirrhosis: the serum cytokine profile and peripheral cell population. Clin Exp Immunol 156:217–225

    PubMed  CAS  PubMed Central  Google Scholar 

  124. Atarashi K, Nishimura J, Shima T, Umesaki Y, Yamamoto M, Onoue M, Yagita H et al (2008) ATP drives lamina propria T(H)17 cell differentiation. Nature 455:808–812

    PubMed  CAS  Google Scholar 

  125. Esplugues E, Huber S, Gagliani N, Hauser AE, Town T, Wan YY, O’Connor W Jr et al (2011) Control of TH17 cells occurs in the small intestine. Nature 475:514–518

    PubMed  CAS  PubMed Central  Google Scholar 

  126. Dusseaux M, Martin E, Serriari N, Peguillet I, Premel V, Louis D, Milder M et al (2011) Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood 117:1250–1259

    PubMed  CAS  Google Scholar 

  127. Yang CY, Ma X, Tsuneyama K, Huang S, Takahashi T, Chalasani NP, Bowlus CL, et al (2013) IL-12/Th1 and IL-23/Th17 biliary microenvironment in primary biliary cirrhosis: Implications for therapy. Hepatology

  128. Sakaguchi S, Vignali DA, Rudensky AY, Niec RE, Waldmann H (2013) The plasticity and stability of regulatory T cells. Nat Rev Immunol 13:461–467

    PubMed  CAS  Google Scholar 

  129. Tan Z, Qian X, Jiang R, Liu Q, Wang Y, Chen C, Wang X et al (2013) IL-17A plays a critical role in the pathogenesis of liver fibrosis through hepatic stellate cell activation. J Immunol 191:1835–1844

    PubMed  CAS  Google Scholar 

  130. Meng F, Wang K, Aoyama T, Grivennikov SI, Paik Y, Scholten D, Cong M et al (2012) Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology 143:765–776, e761-763

    PubMed  CAS  PubMed Central  Google Scholar 

  131. Weaver CT, Hatton RD (2009) Interplay between the TH17 and TReg cell lineages: a (co-)evolutionary perspective. Nat Rev Immunol 9:883–889

    PubMed  CAS  Google Scholar 

  132. Alvarado-Sanchez B, Hernandez-Castro B, Portales-Perez D, Baranda L, Layseca-Espinosa E, Abud-Mendoza C, Cubillas-Tejeda AC et al (2006) Regulatory T cells in patients with systemic lupus erythematosus. J Autoimmun 27:110–118

    PubMed  CAS  Google Scholar 

  133. Longhi MS, Hussain MJ, Mitry RR, Arora SK, Mieli-Vergani G, Vergani D, Ma Y (2006) Functional study of CD4 + CD25+ regulatory T cells in health and autoimmune hepatitis. J Immunol 176:4484–4491

    PubMed  CAS  Google Scholar 

  134. Peiseler M, Sebode M, Franke B, Wortmann F, Schwinge D, Quaas A, Baron U et al (2012) FOXP3+ regulatory T cells in autoimmune hepatitis are fully functional and not reduced in frequency. J Hepatol 57:125–132

    PubMed  CAS  Google Scholar 

  135. Longhi MS, Ma Y, Bogdanos DP, Cheeseman P, Mieli-Vergani G, Vergani D (2004) Impairment of CD4(+)CD25(+) regulatory T-cells in autoimmune liver disease. J Hepatol 41:31–37

    PubMed  CAS  Google Scholar 

  136. Longhi MS, Mitry RR, Samyn M, Scalori A, Hussain MJ, Quaglia A, Mieli-Vergani G et al (2009) Vigorous activation of monocytes in juvenile autoimmune liver disease escapes the control of regulatory T-cells. Hepatology 50:130–142

    PubMed  CAS  Google Scholar 

  137. Lan RY, Cheng C, Lian ZX, Tsuneyama K, Yang GX, Moritoki Y, Chuang YH et al (2006) Liver-targeted and peripheral blood alterations of regulatory T cells in primary biliary cirrhosis. Hepatology 43:729–737

    PubMed  Google Scholar 

  138. Sebode M, Peiseler M, Franke B, Schwinge D, Schoknecht T, Wortmann F, Quaas A, et al (2014) Reduced FOXP3+ regulatory T cells in patients with primary sclerosing cholangitis are associated with IL-2RA gene polymorphisms. J Hepatol

  139. Lamireau T, Zoltowska M, Levy E, Yousef I, Rosenbaum J, Tuchweber B, Desmouliere A (2003) Effects of bile acids on biliary epithelial cells: proliferation, cytotoxicity, and cytokine secretion. Life Sci 72:1401–1411

    PubMed  CAS  Google Scholar 

  140. Oude Elferink RP, Paulusma CC (2007) Function and pathophysiological importance of ABCB4 (MDR3 P-glycoprotein). Pflugers Arch 453:601–610

    PubMed  CAS  Google Scholar 

  141. Trauner M, Fickert P, Wagner M (2007) MDR3 (ABCB4) defects: a paradigm for the genetics of adult cholestatic syndromes. Semin Liver Dis 27:77–98

    PubMed  CAS  Google Scholar 

  142. Sheth S, Shea JC, Bishop MD, Chopra S, Regan MM, Malmberg E, Walker C et al (2003) Increased prevalence of CFTR mutations and variants and decreased chloride secretion in primary sclerosing cholangitis. Hum Genet 113:286–292

    PubMed  Google Scholar 

  143. Medina JF, Martinez A, Vazquez JJ, Prieto J (1997) Decreased anion exchanger 2 immunoreactivity in the liver of patients with primary biliary cirrhosis. Hepatology 25:12–17

    PubMed  CAS  Google Scholar 

  144. Melero S, Spirli C, Zsembery A, Medina JF, Joplin RE, Duner E, Zuin M et al (2002) Defective regulation of cholangiocyte Cl-/HCO3(−) and Na+/H+ exchanger activities in primary biliary cirrhosis. Hepatology 35:1513–1521

    PubMed  CAS  Google Scholar 

  145. Shibao K, Hirata K, Robert ME, Nathanson MH (2003) Loss of inositol 1,4,5-trisphosphate receptors from bile duct epithelia is a common event in cholestasis. Gastroenterology 125:1175–1187

    PubMed  CAS  PubMed Central  Google Scholar 

  146. Takeyama Y, Kanegae K, Inomata S, Takata K, Tanaka T, Ueda S, Yokoyama K et al (2010) Sustained upregulation of sodium taurocholate cotransporting polypeptide and bile salt export pump and downregulation of cholesterol 7alpha-hydroxylase in the liver of patients with end-stage primary biliary cirrhosis. Med Mol Morphol 43:134–138

    PubMed  CAS  Google Scholar 

  147. Zollner G, Fickert P, Zenz R, Fuchsbichler A, Stumptner C, Kenner L, Ferenci P et al (2001) Hepatobiliary transporter expression in percutaneous liver biopsies of patients with cholestatic liver diseases. Hepatology 33:633–646

    PubMed  CAS  Google Scholar 

  148. Harada K, Isse K, Nakanuma Y (2006) Interferon gamma accelerates NF-kappaB activation of biliary epithelial cells induced by Toll-like receptor and ligand interaction. J Clin Pathol 59:184–190

    PubMed  CAS  PubMed Central  Google Scholar 

  149. Lazaridis KN, Strazzabosco M, Larusso NF (2004) The cholangiopathies: disorders of biliary epithelia. Gastroenterology 127:1565–1577

    PubMed  CAS  Google Scholar 

  150. Odin JA, Huebert RC, Casciola-Rosen L, LaRusso NF, Rosen A (2001) Bcl-2-dependent oxidation of pyruvate dehydrogenase-E2, a primary biliary cirrhosis autoantigen, during apoptosis. J Clin Invest 108:223–232

    PubMed  CAS  PubMed Central  Google Scholar 

  151. Lleo A, Bowlus CL, Yang GX, Invernizzi P, Podda M, Van de Water J, Ansari AA et al (2010) Biliary apotopes and anti-mitochondrial antibodies activate innate immune responses in primary biliary cirrhosis. Hepatology 52:987–998

    PubMed  CAS  PubMed Central  Google Scholar 

  152. Allina J, Hu B, Sullivan DM, Fiel MI, Thung SN, Bronk SF, Huebert RC et al (2006) T cell targeting and phagocytosis of apoptotic biliary epithelial cells in primary biliary cirrhosis. J Autoimmun 27:232–241

    PubMed  CAS  Google Scholar 

  153. Savill J, Dransfield I, Gregory C, Haslett C (2002) A blast from the past: clearance of apoptotic cells regulates immune responses. Nat Rev Immunol 2:965–975

    PubMed  CAS  Google Scholar 

  154. Chamulitrat W, Burhenne J, Rehlen T, Pathil A, Stremmel W (2009) Bile salt-phospholipid conjugate ursodeoxycholyl lysophosphatidylethanolamide as a hepatoprotective agent. Hepatology 50:143–154

    PubMed  CAS  Google Scholar 

  155. Inamura K, Tsuji H, Nakamoto Y, Suzuki M, Kaneko S (2006) Transgenic mice aberrantly expressing pyruvate dehydrogenase complex E2 component on biliary epithelial cells do not show primary biliary cirrhosis. Clin Exp Immunol 145:93–100

    PubMed  CAS  PubMed Central  Google Scholar 

  156. Sasaki M, Ikeda H, Haga H, Manabe T, Nakanuma Y (2005) Frequent cellular senescence in small bile ducts in primary biliary cirrhosis: a possible role in bile duct loss. J Pathol 205:451–459

    PubMed  Google Scholar 

  157. Sasaki M, Ikeda H, Yamaguchi J, Nakada S, Nakanuma Y (2008) Telomere shortening in the damaged small bile ducts in primary biliary cirrhosis reflects ongoing cellular senescence. Hepatology 48:186–195

    PubMed  Google Scholar 

  158. Sasaki M, Nakanuma Y (2012) Novel approach to bile duct damage in primary biliary cirrhosis: participation of cellular senescence and autophagy. Int J Hepatol 2012:452143

    PubMed  PubMed Central  Google Scholar 

  159. Sasaki M, Miyakoshi M, Sato Y, Nakanuma Y (2010) Modulation of the microenvironment by senescent biliary epithelial cells may be involved in the pathogenesis of primary biliary cirrhosis. J Hepatol 53:318–325

    PubMed  Google Scholar 

  160. Lunz JG 3rd, Contrucci S, Ruppert K, Murase N, Fung JJ, Starzl TE, Demetris AJ (2001) Replicative senescence of biliary epithelial cells precedes bile duct loss in chronic liver allograft rejection: increased expression of p21(WAF1/Cip1) as a disease marker and the influence of immunosuppressive drugs. Am J Pathol 158:1379–1390

    PubMed  CAS  PubMed Central  Google Scholar 

  161. Laish I, Katz H, Sulayev Y, Liberman M, Naftali T, Benjaminov F, Stein A et al (2013) Increased TERC gene copy number and cells in senescence in primary sclerosing cholangitis compared to colitis and control patients. Gene 529:245–249

    PubMed  CAS  Google Scholar 

  162. Sasaki M, Miyakoshi M, Sato Y, Nakanuma Y (2010) Autophagy mediates the process of cellular senescence characterizing bile duct damages in primary biliary cirrhosis. Lab Investig 90:835–843

    PubMed  CAS  Google Scholar 

  163. Senaldi G, Lobo-Yeo A, Mowat AP, Mieli-Vergani G, Vergani D (1991) Class I and class II major histocompatibility complex antigens on hepatocytes: importance of the method of detection and expression in histologically normal and diseased livers. J Clin Pathol 44:107–114

    PubMed  CAS  PubMed Central  Google Scholar 

  164. Wen L, Peakman M, Lobo-Yeo A, McFarlane BM, Mowat AP, Mieli-Vergani G, Vergani D (1990) T-cell-directed hepatocyte damage in autoimmune chronic active hepatitis. Lancet 336:1527–1530

    PubMed  CAS  Google Scholar 

  165. Wakabayashi K, Lian ZX, Moritoki Y, Lan RY, Tsuneyama K, Chuang YH, Yang GX et al (2006) IL-2 receptor alpha(−/−) mice and the development of primary biliary cirrhosis. Hepatology 44:1240–1249

    PubMed  CAS  Google Scholar 

  166. Kawata K, Yang GX, Ando Y, Tanaka H, Zhang W, Kobayashi Y, Tsuneyama K et al (2013) Clonality, activated antigen-specific CD8(+) T cells, and development of autoimmune cholangitis in dnTGFbetaRII mice. Hepatology 58:1094–1104

    PubMed  CAS  PubMed Central  Google Scholar 

  167. Leung PS, Yang GX, Dhirapong A, Tsuneyama K, Ridgway WM, Gershwin ME (2012) Animal models of primary biliary cirrhosis: materials and methods. Methods Mol Biol 900:291–316

    PubMed  CAS  Google Scholar 

  168. Tanaka H, Yang GX, Iwakoshi N, Knechtle SJ, Kawata K, Tsuneyama K, Leung P et al (2013) Anti-CD40 ligand monoclonal antibody delays the progression of murine autoimmune cholangitis. Clin Exp Immunol 174:364–371

    PubMed  CAS  Google Scholar 

  169. Lapierre P, Djilali-Saiah I, Vitozzi S, Alvarez F (2004) A murine model of type 2 autoimmune hepatitis: xenoimmunization with human antigens. Hepatology 39:1066–1074

    PubMed  CAS  Google Scholar 

  170. Holdener M, Hintermann E, Bayer M, Rhode A, Rodrigo E, Hintereder G, Johnson EF et al (2008) Breaking tolerance to the natural human liver autoantigen cytochrome P450 2D6 by virus infection. J Exp Med 205:1409–1422

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Eric Gershwin.

Additional information

This article is a contribution to the special issue on Mechanisms of Tissue Injury in Autoimmune Diseases - Guest Editor: Dan Eilat

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liaskou, E., Hirschfield, G.M. & Gershwin, M.E. Mechanisms of tissue injury in autoimmune liver diseases. Semin Immunopathol 36, 553–568 (2014). https://doi.org/10.1007/s00281-014-0439-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-014-0439-3

Keywords

Navigation