Skip to main content

Advertisement

Log in

Epigenetics in Immune-Mediated Pulmonary Diseases

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Immune-mediated pulmonary diseases are a group of diseases that resulted from immune imbalance initiated by allergens or of unknown causes. Inflammatory responses without restrictions cause tissue damage and remodeling, which leads to airway hyperactivity, destruction of alveolar architecture, and a resultant loss of lung function. Epigenetic mechanisms have been demonstrated to be involved in inflammation, autoimmunity, and cancer. Recent studies have identified that epigenetic changes also regulate molecular pathways in immune-mediated lung diseases. Aberrant DNA methylation status, dysregulation of histone modifications, as well as altered microRNAs expression could change transcription activity of genes involved in the development of immune-mediated pulmonary diseases, which contributes to skewed differentiation of T cells and proliferation and activation of myofibroblasts, leading to overproduction of inflammatory cytokines and excessive accumulation of extracellular matrix, respectively. Aside from this, epigenetics also explains how environmental exposure influence on gene transcription without genetic changes. It acts as a mediator of the interaction between environmental factors and genetic factors. Identification of the abnormal epigenetic marks in diseases provides novel biomarkers for prediction and diagnosis and affords novel therapeutic targets for those difficult clinical problems, such as steroid-resistance and rapidly progressing fibrosis. In this review, we summarized the latest experimental and translational epigenetic studies in immune-mediated pulmonary diseases, including asthma, idiopathic pulmonary fibrosis, tuberculosis, sarcoidosis, and silicosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Waldrep JC (1998) New aerosol drug delivery systems for the treatment of immune-mediated pulmonary diseases. Drugs Today (Barc) 34:549–561

    CAS  Google Scholar 

  2. Apter AJ (2013) Advances in adult asthma diagnosis and treatment in 2012: potential therapeutics and gene-environment interactions. J Allergy Clin Immunol 131:47–54

    PubMed  Google Scholar 

  3. Kabesch M, Adcock IM (2012) Epigenetics in asthma and COPD. Biochimie 94:2231–2241

    PubMed  CAS  Google Scholar 

  4. Lu Q (2013) The critical importance of epigenetics in autoimmunity. J Autoimmun 41:1–5

    PubMed  CAS  Google Scholar 

  5. Jakopovic M, Thomas A, Balasubramaniam S, Schrump D, Giaccone G et al (2013) Targeting the epigenome in lung cancer: expanding approaches to epigenetic therapy. Front Oncol 3:261

    PubMed  Google Scholar 

  6. Vavouri T, Lehner B (2012) Human genes with CpG island promoters have a distinct transcription-associated chromatin organization. Genome Biol 13:R110

    PubMed  Google Scholar 

  7. Zhang Y, Zhao M, Sawalha AH, Richardson B, Lu Q (2013) Impaired DNA methylation and its mechanisms in CD4(+)T cells of systemic lupus erythematosus. J Autoimmun 41:92–99

    PubMed  Google Scholar 

  8. Schoofs T, Rohde C, Hebestreit K, Klein HU, Gollner S et al (2013) DNA methylation changes are a late event in acute promyelocytic leukemia and coincide with loss of transcription factor binding. Blood 121:178–187

    PubMed  CAS  Google Scholar 

  9. Bogdanovic O, Veenstra GJ (2009) DNA methylation and methyl-CpG binding proteins: developmental requirements and function. Chromosoma 118:549–565

    PubMed  CAS  Google Scholar 

  10. Salam MT, Zhang Y, Begum K (2012) Epigenetics and childhood asthma: current evidence and future research directions. Epigenomics 4:415–429

    PubMed  CAS  Google Scholar 

  11. Hervouet E, Cartron PF, Jouvenot M, Delage-Mourroux R (2013) Epigenetic regulation of estrogen signaling in breast cancer. Epigenetics 8:237–245

    PubMed  CAS  Google Scholar 

  12. Shi BW, Xu WF (2013) The development and potential clinical utility of biomarkers for HDAC inhibitors. Drug Discov Ther 7:129–136

    PubMed  CAS  Google Scholar 

  13. Badeaux AI, Shi Y (2013) Emerging roles for chromatin as a signal integration and storage platform. Nat Rev Mol Cell Biol 14:211–224

    CAS  Google Scholar 

  14. Zhang X, Hou J, Lu M (2013) Regulation of hepatitis B virus replication by epigenetic mechanisms and microRNAs. Front Genet 4:202

    PubMed  Google Scholar 

  15. Thamilarasan M, Koczan D, Hecker M, Paap B, Zettl UK (2012) MicroRNAs in multiple sclerosis and experimental autoimmune encephalomyelitis. Autoimmun Rev 11:174–179

    PubMed  CAS  Google Scholar 

  16. Zhu S, Pan W, Qian Y (2013) MicroRNA in immunity and autoimmunity. J Mol Med (Berl) 91:1039–1050

    CAS  Google Scholar 

  17. Guerau-de-Arellano M, Alder H, Ozer HG, Lovett-Racke A, Racke MK (2012) miRNA profiling for biomarker discovery in multiple sclerosis: from microarray to deep sequencing. J Neuroimmunol 248:32–39

    PubMed  CAS  Google Scholar 

  18. Miao CG, Yang YY, He X, Huang C, Huang Y et al (2013) The emerging role of microRNAs in the pathogenesis of systemic lupus erythematosus. Cell Signal 25:1828–1836

    PubMed  CAS  Google Scholar 

  19. Aushev VN, Zborovskaya IB, Laktionov KK, Girard N, Cros MP et al (2013) Comparisons of microRNA patterns in plasma before and after tumor removal reveal new biomarkers of lung squamous cell carcinoma. PLoS One 8:e78649

    PubMed  CAS  Google Scholar 

  20. Holloway RA, Donnelly LE (2013) Immunopathogenesis of chronic obstructive pulmonary disease. Curr Opin Pulm Med 19:95–102

    PubMed  Google Scholar 

  21. Chervonsky AV (2013) Microbiota and autoimmunity. Cold Spring Harb Perspect Biol 5:a007294

    PubMed  Google Scholar 

  22. Germolec D, Kono DH, Pfau JC, Pollard KM (2012) Animal models used to examine the role of the environment in the development of autoimmune disease: findings from an NIEHS Expert Panel Workshop. J Autoimmun 39:285–293

    PubMed  Google Scholar 

  23. Eringsmark Regnell S, Lernmark A (2013) The environment and the origins of islet autoimmunity and type 1 diabetes. Diabet Med 30:155–160

    PubMed  CAS  Google Scholar 

  24. Selmi C, Lu Q, Humble MC (2012) Heritability versus the role of the environment in autoimmunity. J Autoimmun 39:249–252

    PubMed  Google Scholar 

  25. Miller FW, Alfredsson L, Costenbader KH, Kamen DL, Nelson LM et al (2012) Epidemiology of environmental exposures and human autoimmune diseases: findings from a National Institute of Environmental Health Sciences Expert Panel Workshop. J Autoimmun 39:259–271

    PubMed  Google Scholar 

  26. Selmi C, Leung PS, Sherr DH, Diaz M, Nyland JF et al (2012) Mechanisms of environmental influence on human autoimmunity: a National Institute of Environmental Health Sciences expert panel workshop. J Autoimmun 39:272–284

    PubMed  Google Scholar 

  27. Durham A, Chou PC, Kirkham P, Adcock IM (2010) Epigenetics in asthma and other inflammatory lung diseases. Epigenomics 2:523–537

    PubMed  CAS  Google Scholar 

  28. Ho SM (2010) Environmental epigenetics of asthma: an update. J Allergy Clin Immunol 126:453–465

    PubMed  Google Scholar 

  29. Ghosh AK, Quaggin SE, Vaughan DE (2013) Molecular basis of organ fibrosis: potential therapeutic approaches. Exp Biol Med (Maywood) 238:461–481

    CAS  Google Scholar 

  30. Bowen T, Jenkins RH, Fraser DJ (2013) MicroRNAs, transforming growth factor beta-1, and tissue fibrosis. J Pathol 229:274–285

    PubMed  CAS  Google Scholar 

  31. Diamant Z, Boot JD, Virchow JC (2007) Summing up 100 years of asthma. Respir Med 101:378–388

    PubMed  Google Scholar 

  32. Lloyd CM, Saglani S (2013) T cells in asthma: influences of genetics, environment, and T-cell plasticity. J Allergy Clin Immunol 131:1267–1274, quiz 1275

    PubMed  CAS  Google Scholar 

  33. Norman RE, Carpenter DO, Scott J, Brune MN, Sly PD (2013) Environmental exposures: an underrecognized contribution to noncommunicable diseases. Rev Environ Health 28:59–65

    PubMed  Google Scholar 

  34. Lovinsky-Desir S, Miller RL (2012) Epigenetics, asthma, and allergic diseases: a review of the latest advancements. Curr Allergy Asthma Rep 12:211–220

    PubMed  CAS  Google Scholar 

  35. Kim EG, Shin HJ, Lee CG, Park HY, Kim YK et al (2010) DNA methylation and not allelic variation regulates STAT6 expression in human T cells. Clin Exp Med 10:143–152

    PubMed  CAS  Google Scholar 

  36. Brand S, Kesper DA, Teich R, Kilic-Niebergall E, Pinkenburg O et al (2012) DNA methylation of TH1/TH2 cytokine genes affects sensitization and progress of experimental asthma. J Allergy Clin Immunol 129(1602–1610):e1606

    Google Scholar 

  37. Mikhaylova L, Zhang Y, Kobzik L, Fedulov AV (2013) Link between epigenomic alterations and genome-wide aberrant transcriptional response to allergen in dendritic cells conveying maternal asthma risk. PLoS One 8:e70387

    PubMed  CAS  Google Scholar 

  38. O’Brien E, Dolinoy DC, Mancuso P (2013) Perinatal bisphenol A exposures increase production of pro-inflammatory mediators in bone marrow-derived mast cells of adult mice. J Immunotoxicol. doi:10.3109/1547691X.2013.822036

  39. Pascual M, Suzuki M, Isidoro-Garcia M, Padron J, Turner T et al (2011) Epigenetic changes in B lymphocytes associated with house dust mite allergic asthma. Epigenetics 6:1131–1137

    PubMed  CAS  Google Scholar 

  40. Runyon RS, Cachola LM, Rajeshuni N, Hunter T, Garcia M et al (2012) Asthma discordance in twins is linked to epigenetic modifications of T cells. PLoS One 7:e48796

    PubMed  CAS  Google Scholar 

  41. Gaffin JM, Raby BA, Petty CR, Hoffman EB, Baccarelli AA et al (2013) beta-2 adrenergic receptor gene methylation is associated with decreased asthma severity in inner-city school children. Clin Exp Allergy. doi:10.1111/cea.12219

  42. Ouyang B, Bernstein DI, Lummus ZL, Ying J, Boulet LP et al (2013) Interferon-gamma promoter is hypermethylated in blood DNA from workers with confirmed diisocyanate asthma. Toxicol Sci 133:218–224

    PubMed  CAS  Google Scholar 

  43. Naumova AK, Al Tuwaijri A, Morin A, Vaillancourt VT, Madore AM et al (2013) Sex- and age-dependent DNA methylation at the 17q12–q21 locus associated with childhood asthma. Hum Genet 132:811–822

    PubMed  CAS  Google Scholar 

  44. Collison A, Siegle JS, Hansbro NG, Kwok CT, Herbert C et al (2013) Epigenetic changes associated with disease progression in a mouse model of childhood allergic asthma. Dis Model Mech 6:993–1000

    PubMed  CAS  Google Scholar 

  45. Karmaus W, Ziyab AH, Everson T, Holloway JW (2013) Epigenetic mechanisms and models in the origins of asthma. Curr Opin Allergy Clin Immunol 13:63–69

    PubMed  Google Scholar 

  46. Yang IV, Schwartz DA (2012) Epigenetic mechanisms and the development of asthma. J Allergy Clin Immunol 130:1243–1255

    PubMed  CAS  Google Scholar 

  47. Sofer T, Baccarelli A, Cantone L, Coull B, Maity A et al (2013) Exposure to airborne particulate matter is associated with methylation pattern in the asthma pathway. Epigenomics 5:147–154

    PubMed  CAS  Google Scholar 

  48. Curtin JA, Simpson A, Belgrave D, Semic-Jusufagic A, Custovic A et al (2013) Methylation of IL-2 promoter at birth alters the risk of asthma exacerbations during childhood. Clin Exp Allergy 43:304–311

    PubMed  CAS  Google Scholar 

  49. Munthe-Kaas MC, Bertelsen RJ, Torjussen TM, Hjorthaug HS, Undlien DE et al (2012) Pet keeping and tobacco exposure influence CD14 methylation in childhood. Pediatr Allergy Immunol 23:747–754

    PubMed  Google Scholar 

  50. Michel S, Busato F, Genuneit J, Pekkanen J, Dalphin JC et al (2013) Farm exposure and time trends in early childhood may influence DNA methylation in genes related to asthma and allergy. Allergy 68:355–364

    PubMed  CAS  Google Scholar 

  51. Chen W, Boutaoui N, Brehm JM, Han YY, Schmitz C et al (2013) ADCYAP1R1 and asthma in Puerto Rican children. Am J Respir Crit Care Med 187:584–588

    PubMed  CAS  Google Scholar 

  52. Reinius LE, Gref A, Saaf A, Acevedo N, Joerink M et al (2013) DNA methylation in the Neuropeptide S Receptor 1 (NPSR1) promoter in relation to asthma and environmental factors. PLoS One 8:e53877

    PubMed  CAS  Google Scholar 

  53. Wu CJ, Yang CY, Chen YH, Chen CM, Chen LC et al (2013) The DNA methylation inhibitor 5-azacytidine increases regulatory T cells and alleviates airway inflammation in ovalbumin-sensitized mice. Int Arch Allergy Immunol 160:356–364

    PubMed  CAS  Google Scholar 

  54. Allan RS, Zueva E, Cammas F, Schreiber HA, Masson V et al (2012) An epigenetic silencing pathway controlling T helper 2 cell lineage commitment. Nature 487:249–253

    PubMed  CAS  Google Scholar 

  55. Cui ZL, Gu W, Ding T, Peng XH, Chen X et al (2013) Histone modifications of notch1 promoter affect lung CD4+ T cell differentiation in asthmatic rats. Int J Immunopathol Pharmacol 26:371–381

    PubMed  CAS  Google Scholar 

  56. Li CY, Peng J, Ren LP, Gan LX, Lu XJ et al (2013) Roles of histone hypoacetylation in LAT expression on T cells and Th2 polarization in allergic asthma. J Transl Med 11:26

    PubMed  CAS  Google Scholar 

  57. Clifford RL, John AE, Brightling CE, Knox AJ (2012) Abnormal histone methylation is responsible for increased vascular endothelial growth factor 165a secretion from airway smooth muscle cells in asthma. J Immunol 189:819–831

    PubMed  CAS  Google Scholar 

  58. Barnes PJ (2013) Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol 131:636–645

    PubMed  CAS  Google Scholar 

  59. Cortessis VK, Thomas DC, Levine AJ, Breton CV, Mack TM et al (2012) Environmental epigenetics: prospects for studying epigenetic mediation of exposure-response relationships. Hum Genet 131:1565–1589

    PubMed  CAS  Google Scholar 

  60. Rehan VK, Liu J, Naeem E, Tian J, Sakurai R et al (2012) Perinatal nicotine exposure induces asthma in second generation offspring. BMC Med 10:129

    PubMed  CAS  Google Scholar 

  61. Reiprich M, Rudzok S, Schutze N, Simon JC, Lehmann I et al (2013) Inhibition of endotoxin-induced perinatal asthma protection by pollutants in an experimental mouse model. Allergy 68:481–489

    PubMed  CAS  Google Scholar 

  62. Lu TX, Hartner J, Lim EJ, Fabry V, Mingler MK et al (2011) MicroRNA-21 limits in vivo immune response-mediated activation of the IL-12/IFN-gamma pathway, Th1 polarization, and the severity of delayed-type hypersensitivity. J Immunol 187:3362–3373

    PubMed  CAS  Google Scholar 

  63. Sharma A, Kumar M, Ahmad T, Mabalirajan U, Aich J et al (2012) Antagonism of mmu-mir-106a attenuates asthma features in allergic murine model. J Appl Physiol 113(1985):459–464

    PubMed  CAS  Google Scholar 

  64. Liu F, Qin HB, Xu B, Zhou H, Zhao DY (2012) Profiling of miRNAs in pediatric asthma: upregulation of miRNA-221 and miRNA-485-3p. Mol Med Rep 6:1178–1182

    PubMed  CAS  Google Scholar 

  65. Qin HB, Xu B, Mei JJ, Li D, Liu JJ et al (2012) Inhibition of miRNA-221 suppresses the airway inflammation in asthma. Inflammation 35:1595–1599

    PubMed  CAS  Google Scholar 

  66. Feng MJ, Shi F, Qiu C, Peng WK (2012) MicroRNA-181a, -146a and -146b in spleen CD4+ T lymphocytes play proinflammatory roles in a murine model of asthma. Int Immunopharmacol 13:347–353

    PubMed  CAS  Google Scholar 

  67. Jimenez-Morales S, Gamboa-Becerra R, Baca V, Del Rio-Navarro BE, Lopez-Ley DY et al (2012) MiR-146a polymorphism is associated with asthma but not with systemic lupus erythematosus and juvenile rheumatoid arthritis in Mexican patients. Tissue Antigens 80:317–321

    PubMed  CAS  Google Scholar 

  68. Nicodemus-Johnson J, Laxman B, Stern RK, Sudi J, Tierney CN et al (2013) Maternal asthma and microRNA regulation of soluble HLA-G in the airway. J Allergy Clin Immunol 131:1496–1503

    PubMed  CAS  Google Scholar 

  69. Jardim MJ, Dailey L, Silbajoris R, Diaz-Sanchez D (2012) Distinct microRNA expression in human airway cells of asthmatic donors identifies a novel asthma-associated gene. Am J Respir Cell Mol Biol 47:536–542

    PubMed  CAS  Google Scholar 

  70. Jude JA, Dileepan M, Subramanian S, Solway J, Panettieri RA Jr et al (2012) miR-140-3p regulation of TNF-alpha-induced CD38 expression in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 303:L460–L468

    PubMed  CAS  Google Scholar 

  71. Kumar M, Ahmad T, Sharma A, Mabalirajan U, Kulshreshtha A et al (2011) Let-7 microRNA-mediated regulation of IL-13 and allergic airway inflammation. J Allergy Clin Immunol 128:1077.e1071–1010–1085.e1071-1010

    Google Scholar 

  72. Kim YH, Kwon SS (2013) Interstitial lung diseases: respiratory review of 2013. Tuberc Respir Dis (Seoul) 75:47–51

    Google Scholar 

  73. Wolters PJ, Collard HR, Jones KD (2014) Pathogenesis of idiopathic pulmonary fibrosis. Annu Rev Pathol Mech Dis 9:157–79. doi:10.1146/annurev-pathol-012513-104706

    Google Scholar 

  74. Vancheri C (2013) Common pathways in idiopathic pulmonary fibrosis and cancer. Eur Respir Rev 22:265–272

    PubMed  Google Scholar 

  75. Fernandez IE, Eickelberg O (2012) New cellular and molecular mechanisms of lung injury and fibrosis in idiopathic pulmonary fibrosis. Lancet 380:680–688

    PubMed  CAS  Google Scholar 

  76. King TE Jr, Pardo A, Selman M (2011) Idiopathic pulmonary fibrosis. Lancet 378:1949–1961

    PubMed  Google Scholar 

  77. Fernandez IE, Eickelberg O (2012) The impact of TGF-beta on lung fibrosis: from targeting to biomarkers. Proc Am Thorac Soc 9:111–116

    PubMed  CAS  Google Scholar 

  78. Sanders YY, Ambalavanan N, Halloran B, Zhang X, Liu H et al (2012) Altered DNA methylation profile in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 186:525–535

    PubMed  CAS  Google Scholar 

  79. Rabinovich EI, Kapetanaki MG, Steinfeld I, Gibson KF, Pandit KV et al (2012) Global methylation patterns in idiopathic pulmonary fibrosis. PLoS One 7:e33770

    PubMed  CAS  Google Scholar 

  80. Huang SK, Fisher AS, Scruggs AM, White ES, Hogaboam CM et al (2010) Hypermethylation of PTGER2 confers prostaglandin E2 resistance in fibrotic fibroblasts from humans and mice. Am J Pathol 177:2245–2255

    PubMed  CAS  Google Scholar 

  81. Sanders YY, Pardo A, Selman M, Nuovo GJ, Tollefsbol TO et al (2008) Thy-1 promoter hypermethylation: a novel epigenetic pathogenic mechanism in pulmonary fibrosis. Am J Respir Cell Mol Biol 39:610–618

    PubMed  CAS  Google Scholar 

  82. Huang SK, Scruggs AM, Donaghy J, Horowitz JC, Zaslona Z et al (2013) Histone modifications are responsible for decreased Fas expression and apoptosis resistance in fibrotic lung fibroblasts. Cell Death Dis 4:e621

    PubMed  CAS  Google Scholar 

  83. Coward WR, Watts K, Feghali-Bostwick CA, Jenkins G, Pang L (2010) Repression of IP-10 by interactions between histone deacetylation and hypermethylation in idiopathic pulmonary fibrosis. Mol Cell Biol 30:2874–2886

    PubMed  CAS  Google Scholar 

  84. Coward WR, Watts K, Feghali-Bostwick CA, Knox A, Pang L (2009) Defective histone acetylation is responsible for the diminished expression of cyclooxygenase 2 in idiopathic pulmonary fibrosis. Mol Cell Biol 29:4325–4339

    PubMed  CAS  Google Scholar 

  85. Wang Z, Chen C, Finger SN, Kwajah S, Jung M et al (2009) Suberoylanilide hydroxamic acid: a potential epigenetic therapeutic agent for lung fibrosis? Eur Respir J 34:145–155

    PubMed  CAS  Google Scholar 

  86. Xu G, Zhang Z, Wei J, Zhang Y, Zhang Y et al (2013) microR-142-3p down-regulates IRAK-1 in response to Mycobacterium bovis BCG infection in macrophages. Tuberculosis (Edinb) 93:606–611

    CAS  Google Scholar 

  87. Sanders YY, Tollefsbol TO, Varisco BM, Hagood JS (2011) Epigenetic regulation of thy-1 by histone deacetylase inhibitor in rat lung fibroblasts. Am J Respir Cell Mol Biol 45:16–23

    PubMed  CAS  Google Scholar 

  88. Guo W, Shan B, Klingsberg RC, Qin X, Lasky JA (2009) Abrogation of TGF-beta1-induced fibroblast-myofibroblast differentiation by histone deacetylase inhibition. Am J Physiol Lung Cell Mol Physiol 297:L864–L870

    PubMed  CAS  Google Scholar 

  89. Davies ER, Haitchi HM, Thatcher TH, Sime PJ, Kottmann RM et al (2012) Spiruchostatin A inhibits proliferation and differentiation of fibroblasts from patients with pulmonary fibrosis. Am J Respir Cell Mol Biol 46:687–694

    PubMed  CAS  Google Scholar 

  90. Minagawa S, Araya J, Numata T, Nojiri S, Hara H et al (2011) Accelerated epithelial cell senescence in IPF and the inhibitory role of SIRT6 in TGF-beta-induced senescence of human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 300:L391–L401

    PubMed  CAS  Google Scholar 

  91. Oak SR, Murray L, Herath A, Sleeman M, Anderson I et al (2011) A micro RNA processing defect in rapidly progressing idiopathic pulmonary fibrosis. PLoS One 6:e21253

    PubMed  CAS  Google Scholar 

  92. Honeyman L, Bazett M, Tomko TG, Haston CK (2013) MicroRNA profiling implicates the insulin-like growth factor pathway in bleomycin-induced pulmonary fibrosis in mice. Fibrogenesis Tissue Repair 6:16

    PubMed  Google Scholar 

  93. Liu G, Friggeri A, Yang Y, Milosevic J, Ding Q et al (2010) miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med 207:1589–1597

    PubMed  CAS  Google Scholar 

  94. Yamada M, Kubo H, Ota C, Takahashi T, Tando Y et al (2013) The increase of microRNA-21 during lung fibrosis and its contribution to epithelial-mesenchymal transition in pulmonary epithelial cells. Respir Res 14:95

    PubMed  Google Scholar 

  95. Lino Cardenas CL, Henaoui IS, Courcot E, Roderburg C, Cauffiez C et al (2013) miR-199a-5p Is upregulated during fibrogenic response to tissue injury and mediates TGFbeta-induced lung fibroblast activation by targeting caveolin-1. PLoS Genet 9:e1003291

    PubMed  CAS  Google Scholar 

  96. Yang S, Cui H, Xie N, Icyuz M, Banerjee S et al (2013) miR-145 regulates myofibroblast differentiation and lung fibrosis. FASEB J 27:2382–2391

    PubMed  CAS  Google Scholar 

  97. Milosevic J, Pandit K, Magister M, Rabinovich E, Ellwanger DC et al (2012) Profibrotic role of miR-154 in pulmonary fibrosis. Am J Respir Cell Mol Biol 47:879–887

    PubMed  CAS  Google Scholar 

  98. Wang Y, Huang C, Reddy Chintagari N, Bhaskaran M, Weng T et al (2013) miR-375 regulates rat alveolar epithelial cell trans-differentiation by inhibiting Wnt/beta-catenin pathway. Nucleic Acids Res 41:3833–3844

    PubMed  CAS  Google Scholar 

  99. Pandit KV, Corcoran D, Yousef H, Yarlagadda M, Tzouvelekis A et al (2010) Inhibition and role of let-7d in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 182:220–229

    PubMed  CAS  Google Scholar 

  100. Yang S, Banerjee S, de Freitas A, Sanders YY, Ding Q et al (2012) Participation of miR-200 in pulmonary fibrosis. Am J Pathol 180:484–493

    PubMed  CAS  Google Scholar 

  101. Yang S, Xie N, Cui H, Banerjee S, Abraham E et al (2012) miR-31 is a negative regulator of fibrogenesis and pulmonary fibrosis. FASEB J 26:3790–3799

    PubMed  CAS  Google Scholar 

  102. Dakhlallah D, Batte K, Wang Y, Cantemir-Stone CZ, Yan P et al (2013) Epigenetic regulation of miR-17 92 contributes to the pathogenesis of pulmonary fibrosis. Am J Respir Crit Care Med 187:397–405

    PubMed  CAS  Google Scholar 

  103. Zhang H, Liu X, Chen S, Wu J, Ye X et al (2010) Tectorigenin inhibits the in vitro proliferation and enhances miR-338* expression of pulmonary fibroblasts in rats with idiopathic pulmonary fibrosis. J Ethnopharmacol 131:165–173

    PubMed  CAS  Google Scholar 

  104. (2010) Global tuberculosis control: key findings from the December 2009 WHO report. Wkly Epidemiol Rec 85:69–80

  105. Musa M (2013) Immune mechanism: a ‘double-edged sword’. Malays J Med Sci 20:61–67

    PubMed  Google Scholar 

  106. Shen CY, Hsieh SC, Yu CL, Wang JY, Lee LN et al (2013) Autoantibody prevalence in active tuberculosis: reactive or pathognomonic? BMJ Open 3

  107. Zuniga J, Torres-Garcia D, Santos-Mendoza T, Rodriguez-Reyna TS, Granados J et al (2012) Cellular and humoral mechanisms involved in the control of tuberculosis. Clin Dev Immunol 2012:193923

    PubMed  Google Scholar 

  108. Wang C, Yang S, Sun G, Tang X, Lu S et al (2011) Comparative miRNA expression profiles in individuals with latent and active tuberculosis. PLoS One 6:e25832

    PubMed  CAS  Google Scholar 

  109. Abd-El-Fattah AA, Sadik NA, Shaker OG, Aboulftouh ML (2013) Differential MicroRNAs expression in serum of patients with lung cancer, pulmonary tuberculosis, and pneumonia. Cell Biochem Biophys. doi:10.1007/s12013-013-9575-y

  110. Fu Y, Yi Z, Wu X, Li J, Xu F (2011) Circulating microRNAs in patients with active pulmonary tuberculosis. J Clin Microbiol 49:4246–4251

    PubMed  CAS  Google Scholar 

  111. Spinelli SV, Diaz A, D’Attilio L, Marchesini MM, Bogue C et al (2013) Altered microRNA expression levels in mononuclear cells of patients with pulmonary and pleural tuberculosis and their relation with components of the immune response. Mol Immunol 53:265–269

    PubMed  CAS  Google Scholar 

  112. Yi Z, Fu Y, Ji R, Li R, Guan Z (2012) Altered microRNA signatures in sputum of patients with active pulmonary tuberculosis. PLoS One 7:e43184

    PubMed  CAS  Google Scholar 

  113. Kleinsteuber K, Heesch K, Schattling S, Kohns M, Sander-Julch C et al (2013) Decreased expression of miR-21, miR-26a, miR-29a, and miR-142-3p in CD4(+) T cells and peripheral blood from tuberculosis patients. PLoS One 8:e61609

    PubMed  CAS  Google Scholar 

  114. Wu J, Lu C, Diao N, Zhang S, Wang S et al (2012) Analysis of microRNA expression profiling identifies miR-155 and miR-155* as potential diagnostic markers for active tuberculosis: a preliminary study. Hum Immunol 73:31–37

    PubMed  CAS  Google Scholar 

  115. Dorhoi A, Iannaccone M, Farinacci M, Fae KC, Schreiber J et al (2013) MicroRNA-223 controls susceptibility to tuberculosis by regulating lung neutrophil recruitment. J Clin Invest pii:67604

  116. Ghorpade DS, Leyland R, Kurowska-Stolarska M, Patil SA, Balaji KN (2012) MicroRNA-155 is required for Mycobacterium bovis BCG-mediated apoptosis of macrophages. Mol Cell Biol 32:2239–2253

    PubMed  CAS  Google Scholar 

  117. Wang J, Yang K, Zhou L, Minhaowu WY et al (2013) MicroRNA-155 promotes autophagy to eliminate intracellular mycobacteria by targeting Rheb. PLoS Pathog 9:e1003697

    PubMed  Google Scholar 

  118. Kumar R, Halder P, Sahu SK, Kumar M, Kumari M et al (2012) Identification of a novel role of ESAT-6-dependent miR-155 induction during infection of macrophages with Mycobacterium tuberculosis. Cell Microbiol 14:1620–1631

    PubMed  CAS  Google Scholar 

  119. Ghorpade DS, Holla S, Kaveri SV, Bayry J, Patil SA et al (2013) Sonic hedgehog-dependent induction of microRNA 31 and microRNA 150 regulates Mycobacterium bovis BCG-driven toll-like receptor 2 signaling. Mol Cell Biol 33:543–556

    PubMed  CAS  Google Scholar 

  120. Liu Y, Wang X, Jiang J, Cao Z, Yang B et al (2011) Modulation of T cell cytokine production by miR-144* with elevated expression in patients with pulmonary tuberculosis. Mol Immunol 48:1084–1090

    PubMed  CAS  Google Scholar 

  121. Ma F, Xu S, Liu X, Zhang Q, Xu X et al (2011) The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-gamma. Nat Immunol 12:861–869

    PubMed  CAS  Google Scholar 

  122. Rajaram MV, Ni B, Morris JD, Brooks MN, Carlson TK et al (2011) Mycobacterium tuberculosis lipomannan blocks TNF biosynthesis by regulating macrophage MAPK-activated protein kinase 2 (MK2) and microRNA miR-125b. Proc Natl Acad Sci U S A 108:17408–17413

    PubMed  CAS  Google Scholar 

  123. Singh Y, Kaul V, Mehra A, Chatterjee S, Tousif S et al (2013) Mycobacterium tuberculosis controls microRNA-99b (miR-99b) expression in infected murine dendritic cells to modulate host immunity. J Biol Chem 288:5056–5061

    PubMed  CAS  Google Scholar 

  124. Wu Z, Lu H, Sheng J, Li L (2012) Inductive microRNA-21 impairs anti-mycobacterial responses by targeting IL-12 and Bcl-2. FEBS Lett 586:2459–2467

    PubMed  CAS  Google Scholar 

  125. Bettencourt P, Marion S, Pires D, Santos LF, Lastrucci C et al (2013) Actin-binding protein regulation by microRNAs as a novel microbial strategy to modulate phagocytosis by host cells: the case of N-Wasp and miR-142-3p. Front Cell Infect Microbiol 3:19

    PubMed  Google Scholar 

  126. Leli I, Salimbene I, Varone F, Fuso L, Valente S (2013) Husband and wife with sarcoidosis: possible environmental factors involved. Multidiscip Respir Med 8:5

    PubMed  Google Scholar 

  127. Kirsten D (2013) Pulmonary sarcoidosis: current diagnosis and treatment. Dtsch Med Wochenschr 138:537–541

    PubMed  CAS  Google Scholar 

  128. Dubaniewicz A (2013) Microbial and human heat shock proteins as ‘danger signals’ in sarcoidosis. Hum Immunol. doi:10.1016/j.humimm.2013.08.275

  129. Rappl G, Pabst S, Riemann D, Schmidt A, Wickenhauser C et al (2011) Regulatory T cells with reduced repressor capacities are extensively amplified in pulmonary sarcoid lesions and sustain granuloma formation. Clin Immunol 140:71–83

    PubMed  CAS  Google Scholar 

  130. Ten Berge B, Paats MS, Bergen IM, van den Blink B, Hoogsteden HC et al (2012) Increased IL-17A expression in granulomas and in circulating memory T cells in sarcoidosis. Rheumatology (Oxford) 51:37–46

    Google Scholar 

  131. Saidha S, Sotirchos ES, Eckstein C (2012) Etiology of sarcoidosis: does infection play a role? Yale J Biol Med 85:133–141

    PubMed  Google Scholar 

  132. Maeda T, Guan JZ, Higuchi Y, Oyama J, Makino N (2009) Aging-related alterations of subtelomeric methylation in sarcoidosis patients. J Gerontol A Biol Sci Med Sci 64:752–760

    PubMed  Google Scholar 

  133. Crouser ED, Julian MW, Crawford M, Shao G, Yu L et al (2012) Differential expression of microRNA and predicted targets in pulmonary sarcoidosis. Biochem Biophys Res Commun 417:886–891

    PubMed  CAS  Google Scholar 

  134. Maertzdorf J, Weiner J 3rd, Mollenkopf HJ, Bauer T, Prasse A et al (2012) Common patterns and disease-related signatures in tuberculosis and sarcoidosis. Proc Natl Acad Sci U S A 109:7853–7858

    PubMed  CAS  Google Scholar 

  135. Dal M, Malak AT (2012) Effects of SiO2 in Turkish natural stones on cancer development. Asian Pac J Cancer Prev 13:4883–4888

    PubMed  Google Scholar 

  136. Peeters PM, Perkins TN, Wouters EF, Mossman BT, Reynaert NL (2013) Silica induces NLRP3 inflammasome activation in human lung epithelial cells. Part Fibre Toxicol 10:3

    PubMed  CAS  Google Scholar 

  137. Maeda M, Nishimura Y, Kumagai N, Hayashi H, Hatayama T et al (2010) Dysregulation of the immune system caused by silica and asbestos. J Immunotoxicol 7:268–278

    PubMed  CAS  Google Scholar 

  138. Wang YX, Yao W, Gao B, Yao YC, Wu YM et al (2012) DNA methylation levels of genome in cFb transdifferentiation induced by SiO2 in rats. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 30:326–330

    PubMed  CAS  Google Scholar 

  139. Umemura S, Fujimoto N, Hiraki A, Gemba K, Takigawa N et al (2008) Aberrant promoter hypermethylation in serum DNA from patients with silicosis. Carcinogenesis 29:1845–1849

    PubMed  CAS  Google Scholar 

  140. Faxuan W, Qin Z, Dinglun Z, Tao Z, Xiaohui R et al (2012) Altered microRNAs expression profiling in experimental silicosis rats. J Toxicol Sci 37:1207–1215

    PubMed  Google Scholar 

  141. Liu T, Ullenbruch M, Young Choi Y, Yu H, Ding L et al. (2013) Telomerase and telomere length in pulmonary fibrosis. Am J Respir Cell Mol Biol 49: 260–268

    Google Scholar 

  142. Guedes AG, Paulin J, Rivero-Nava L, Kita H, Lund FE et al. (2006) CD38-deficient mice have reduced airway hyperresponsiveness following IL-13 challenge. Am J Physiol Lung Cell Mol Physiol 291: L1286–1293

    Google Scholar 

  143. Pottier N, Maurin T, Chevalier B, Puissegur MP, Lebrigand K et al. (2009) Identification of keratinocyte growth factor as a target of microRNA-155 in lung fibroblasts: implication in epithelial-mesenchymal interactions. PLoS One 4: e6718

  144. Hassan F, Nuovo GJ, Crawford M, Boyaka PN, Kirkby S et al. (2012) MiR-101 and miR-144 regulate the expression of the CFTR chloride channel in the lung. PLoS One 7: e50837

  145. Bruce S, Nyberg F, Melen E, James A, Pulkkinen V et al. (2009) The protective effect of farm animal exposure on childhood allergy is modified by NPSR1 polymorphisms. J Med Genet 46: 159–167

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianjin Lu.

Additional information

Y. Liu and H. Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Li, H., Xiao, T. et al. Epigenetics in Immune-Mediated Pulmonary Diseases. Clinic Rev Allerg Immunol 45, 314–330 (2013). https://doi.org/10.1007/s12016-013-8398-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-013-8398-3

Keywords

Navigation