Skip to main content

Advertisement

Log in

Horizons in Sjögren’s Syndrome Genetics

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Sjögren’s syndrome (SS) is a complex polygenic autoimmune disorder. A few major genetic effects have been identified. Historically, HLA and non-HLA genetic associations have been reported. Recently, the HLA region continued to reveal association findings. A new susceptibility region has been suggested by a study of a D6S349 microsatellite marker. Among non-HLA studies, recent association of immunoglobulin κ chain allotype KM1 with anti-La autoantibodies in primary Sjögren’s syndrome confirms findings in a study from two decades ago. Meanwhile, mouse models have been employed to study the genetic contribution to salivary lymphadenitis or dry eyes and mouth. Gene transfer exploration in mouse models shows promise. The authors review the HLA and non-HLA association studies and the mouse model work that has been reported. Newly developed genomic capacity will provide, in the future, a much closer approximation of the true picture of the genetic architecture of Sjögren’s syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Vitali C, Bombardieri S, Jonsson R, Moutsopoulos HM, Alexander EL, Carsons SE, Daniels TE, Fox PC, Fox RI, Kassan SS, Pillemer SR, Talal N, Weisman MH, European Study Group on Classification Criteria for Sjogren’s S (2002) Classification criteria for Sjogren’s syndrome: a revised version of the European criteria proposed by the American–European Consensus Group. Ann Rheum Dis 61:554–558

    Article  PubMed  CAS  Google Scholar 

  2. Lisch K (1937) Uber hereditarisches vorkommen des mit keratoconjuctivitis sicca verbunden Sjogrenschen symptomenkomplexes. Arch Augenheilkd 110:357

    Google Scholar 

  3. Reveille JD, Wilson RW, Provost TT, Bias WB, Arnett FC (1984) Primary Sjogren’s syndrome and other autoimmune diseases in families. Prevalence and immunogenetic studies in six kindreds. Ann Intern Med 101:748–756

    PubMed  CAS  Google Scholar 

  4. Whittingham S, Propert DN, Mackay IR (1984) A strong Xassociation between the antinuclear antibody anti-La (SS-B) and the kappa chain allotype Km(1). Immunogenetics 19:295–299

    Article  PubMed  CAS  Google Scholar 

  5. Pertovaara M, Hurme M, Antonen J, Pasternack A, Pandey JP (2004) Immunoglobulin KM and GM gene polymorphisms modify the clinical presentation of primary Sjogren’s syndrome. J Rheumatol 31:2175–2180

    PubMed  CAS  Google Scholar 

  6. Kim T-H, Uhm W-S, Inman RD (2005) Pathogenesis of ankylosing spondylitis and reactive arthritis. Curr Opin Rheumatol 17:400–405

    Article  PubMed  Google Scholar 

  7. Pauling L, Itano H, Singer S, Wells I (1949) Sickle cell anemia, a molecular disease. Science 110:543–548

    Article  PubMed  CAS  Google Scholar 

  8. Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG (2001) Replication validity of genetic association studies [see comment]. Nat Genet 29:306–309

    Article  PubMed  CAS  Google Scholar 

  9. Criswell LA, Pfeiffer KA, Lum RF, Gonzales B, Novitzke J, Kern M, Moser KL, Begovich AB, Carlton VEH, Li W, Lee AT, Ortmann W, Behrens TW, Gregersen PK (2005) Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: the PTPN22 620W allele associates with multiple autoimmune phenotypes. Am J Hum Genet 76:561–571

    Article  PubMed  CAS  Google Scholar 

  10. Gottenberg J-E, Busson M, Loiseau P, Cohen-Solal J, Lepage V, Charron D, Sibilia J, Mariette X (2003) In primary Sjogren’s syndrome, HLA class II is associated exclusively with autoantibody production and spreading of the autoimmune response. Arthritis Rheum 48:2240–2245

    Article  PubMed  CAS  Google Scholar 

  11. Fye KH, Terasaki PI, Moutsopoulos H, Daniels TE, Michalski JP, Talal N (1976) Association of Sjogren’s syndrome with HLA-B8. Arthritis Rheum 19:883–886

    Article  PubMed  CAS  Google Scholar 

  12. Gershwin ME, Terasaki I, Graw R, Chused TM (1975) Increased frequency of HL-A8 in Sjogren’s syndrome. Tissue Antigens 6:342–346

    Article  PubMed  CAS  Google Scholar 

  13. Chused TM, Kassan SS, Opelz G, Moutsopoulos HM, Terasaki PI (1977) Sjogren’s syndrome association with HLA-Dw3. N Engl J Med 296:895–897

    Article  PubMed  CAS  Google Scholar 

  14. Guggenbuhl P, Veillard E, Quelvenec E, Jego P, Semana G, Jean S, Meadeb J, Chales G, Perdriger A (2000) Analysis of TNFalpha microsatellites in 35 patients with primary Sjogren’s syndrome. Joint, Bone, Spine: Revue du Rhumatisme 67:290–295

    CAS  Google Scholar 

  15. Kumagai S, Kanagawa S, Morinobu A, Takada M, Nakamura K, Sugai S, Maruya E, Saji H (1997) Association of a new allele of the TAP2 gene, TAP2*Bky2 (Val577), with susceptibility to Sjogren’s syndrome. Arthritis Rheum 40:1685–1692

    Article  PubMed  CAS  Google Scholar 

  16. Jean S, Quelvennec E, Alizadeh M, Guggenbuhl P, Birebent B, Perdriger A, Grosbois B, Pawlotsky PY, Semana G (1998) DRB1*15 and DRB1*03 extended haplotype interaction in primary Sjogren’s syndrome genetic susceptibility. Clin Exp Rheumatol 16:725–728

    PubMed  CAS  Google Scholar 

  17. Gomez LM, Anaya JM, Gonzalez CI, Pineda-Tamayo R, Otero W, Arango A, Martin J (2005) PTPN22 C1858T polymorphism in Colombian patients with autoimmune diseases. Genes Immun 6:628–631

    Article  PubMed  CAS  Google Scholar 

  18. Graham RR, Ortmann WA, Langefeld CD, Jawaheer D, Selby SA, Rodine PR, Baechler EC, Rohlf KE, Shark KB, Espe KJ, Green LE, Nair RP, Stuart PE, Elder JT, King RA, Moser KL, Gaffney PM, Bugawan TL, Erlich HA, Rich SS, Gregersen PK, Behrens TW (2002) Visualizing human leukocyte antigen class II risk haplotypes in human systemic lupus erythematosus. Am J Hum Genet 71:543–553

    Article  PubMed  CAS  Google Scholar 

  19. Harley JB, Reichlin M, Arnett FC, Alexander EL, Bias WB, Provost TT (1986) Gene interaction at HLA-DQ enhances autoantibody production in primary Sjogren’s syndrome. Science 232:1145–1147

    Article  PubMed  CAS  Google Scholar 

  20. Correa PA, Gomez LM, Cadena J, Anaya JM (2005) Autoimmunity and tuberculosis. Opposite association with TNF polymorphism. J Rheumatol 32:219–224

    Google Scholar 

  21. Ittah M, Gottenberg JE, Proust A, Hachulla E, Puechal X, Loiseau P, Mariette X, Miceli-Richard C (2005) No evidence for association between 1858 C≠T single-nucleotide polymorphism of PTPN22 gene and primary Sjogren’s syndrome. Genes Immun 6:457–458

    Article  CAS  Google Scholar 

  22. Petrek M, Cermakova Z, Hutyrova B, Micekova D, Drabek J, Rovensky J, Bosak V (2002) CC ckemokine receptor 5 and interleukin-1 receptor antagonist gene polymorphisms in patients with primary Sjogren’s syndrome. Clin Exp Rheumatol 20:701–703

    PubMed  CAS  Google Scholar 

  23. Hulkkonen J, Pertovaara M, Antonen J, Pasternack A, Hurme M (2001) Elevated interleukin-6 plasma levels are regulated by the promoter region polymorphism of the IL6 gene in primary Sjogren’s syndrome and correlate with the clinical manifestations of the disease. Rheumatology 40:656–661

    Article  PubMed  CAS  Google Scholar 

  24. Perrier S, Coussediere C, Dubost JJ, Albuisson E, Sauvezie B (1998) IL-1 receptor antagonist (IL-1RA) gene polymorphism in Sjogren’s syndrome and rheumatoid arthritis. Clin Immunol Immunopathol 87:309–313

    Article  PubMed  CAS  Google Scholar 

  25. Ramos-Casals M, Font J, Brito-Zeron P, Trejo O, Garcia-Carrasco M, Lozano F (2004) Interleukin-4 receptor alpha polymorphisms in primary Sjogren’s syndrome. Clin Exp Rheumatol 22:374

    PubMed  CAS  Google Scholar 

  26. Bolstad AI, Wargelius A, Nakken B, al E (2000) Fas and Fas Ligand gene polymorphisms in priary Sjogren’s syndrome. J Rheumatol 27:2397–2405

    PubMed  CAS  Google Scholar 

  27. Mullighan CG, Heatley S, Bardy PG, Lester S, Rischmueller M, Gordon TP (2000) Lack of association between mannose-binding lectin gene polymorphisms and primary Sjogren’s syndrome. Arthritis Rheum 43:2851–2852

    Article  PubMed  CAS  Google Scholar 

  28. Pertovaara M, Lehtimaki T, Rontu R, Antonen J, Pasternack A, Hurme M (2004) Presence of apolipoprotein E epsilon 4 allele predisposes to early onset of primary Sjogren’s syndrome. Rheumatology 43:1484–1487

    Article  PubMed  CAS  Google Scholar 

  29. Wang ZY, Morinobu A, Kanagawa S, Kumagai S (2001) Polymorphisms of the mannose binding lectin gene in patients with Sjogren’s syndrome. Ann Rheum Dis 60:483–486

    Article  PubMed  CAS  Google Scholar 

  30. Harangi M, Kaminski WE, Fleck M, Orso E, Zeher M, Kiss E, Szekanecz Z, Zilahi E, Marienhagen J, Aslanidis C, Paragh G, Bolstad AI, Jonsson R, Schmitz G (2005) Homozygosity for the 168His variant of the minor histocompatibility antigen HA-1 is associated with reduced risk of primary Sjogren's syndrome. Eur J Immunol 35:305–317

    Article  PubMed  CAS  Google Scholar 

  31. Youn J, Hwang SH, Cho CS, Min JK, Kim WU, Park SH, Kim HY (2000) Association of the interleukin-4 receptor alpha variant Q576R with Th1/Th2 imbalance in connective tissue disease. Immunogenetics 51:743–746

    Article  PubMed  CAS  Google Scholar 

  32. Origuchi T, Kawasaki E, Ide A, Kamachi M, Tanaka F, Ida H, Kawakami A, Migita K, Eguchi K (2003) Correlation between interleukin 10 gene promoter region polymorphisms and clinical manifestations in Japanese patients with Sjogren's syndrome. Ann Rheum Dis 62:1117–1118

    Article  PubMed  CAS  Google Scholar 

  33. Font J, Garcia-Carrasco M, Ramos-Casals M, Aldea AI, Cervera R, Ingelmo M, Vives J, Yague J (2002) The role of interleukin-10 promoter polymorphisms in the clinical expression of primary Sjogren's syndrome. Rheumatology 41:1025–1030

    Article  PubMed  CAS  Google Scholar 

  34. Rischmueller M, Limaye V, Lester S, al E (2000) Polymorphisms of the interleukin 10 gene promoter are not associated with anti-Ro autoantibodies in primary Sjogren's syndrome. J Rheumatol 27:2945–2946

    PubMed  Google Scholar 

  35. Tsutsumi A, Sasaki K, Wakamiya N, Ichikawa K, Atsumi T, Ohtani K, Suzuki Y, Koike T, Sumida T (2001) Mannose-binding lectin gene: polymorphisms in Japanese patients with systemic lupus erythematosus, rheumatoid arthritis and Sjogren's syndrome. Genes Immun 2:99–104

    Article  PubMed  CAS  Google Scholar 

  36. Aittoniemi J, Pertovaara M, Hulkkonen J, Pasternack A, Hurme M, Laippala P, Antonen J (2002) The significance of mannan-binding lectin gene alleles in patients with primary Sjogren's syndrome. Scand J Rheumatol 31:362–365

    Article  PubMed  CAS  Google Scholar 

  37. Nakken B, Jonsson R, Bolstad AI (2001) Polymorphisms of the Ro52 Gene Associated with Anti-Ro 52-kd Autoantibodies in Patients With Primary Sjogren's Syndrome Arthritis Rheum 44:636–638

    Article  Google Scholar 

  38. Imanishi T, Morinobu A, Hayashi N, Kanagawa S, Koshiba M, Kondo S, Kumagai S (2005) A novel polymorphism of the SSA1 gene is associated with anti-SS-A/Ro52 autoantibody in Japanese patients with primary Sjogren's syndrome. Clin Exp Rheumatol 23:521–524

    PubMed  CAS  Google Scholar 

  39. Lawson CA, Donaldson IJ, Bowman SJ, Shefta J, Morgan AW, Gough A, Isaacs JD, Griffiths B, Emery P, Pease CT, Boylston AW (2005) Analysis of the insertion/deletion related polymorphism within T cell antigen receptor beta variable genes in primary Sjogren’s syndrome. Ann Rheum Dis 64:468–470

    Article  PubMed  CAS  Google Scholar 

  40. Salomonsson S, Larsson P, Tengner P, Mellquist E, Hjelmstrom P, Wahren-Herlenius M (2002) Expression of the B cell-attracting chemokine CXCL13 in the target organ and autoantibody production in ectopic lymphoid tissue in the chronic inflammatory disease Sjogren’s syndrome. Scand J Immunol 55:336–342

    Article  PubMed  CAS  Google Scholar 

  41. Haneji N, Nakamura T, Takio K, Yanagi K, Higashiyama H, Saito I, Noji S, Sugino H, Hayashi Y (1997) Identification of alpha-fodrin as a candidate autoantigen in primary Sjogren’s syndrome. Science 276:604–607

    Article  PubMed  CAS  Google Scholar 

  42. Kuwana M, Okano T, Ogawa Y, Kaburaki J, Kawakami Y (2001) Autoantibodies to the amino-terminal fragment of beta-fodrin expressed in glandular epithelial cells in patients with Sjogren’s syndrome. J Immunol 167:5449–5456

    PubMed  CAS  Google Scholar 

  43. Billaut-Mulot O, Cocude C, Kolesnitchenko V, Truong MJ, Chan EK, Hachula E, de la Tribonniere X, Capron A, Bahr GM (2001) SS-56, a novel cellular target of autoantibody responses in Sjogren’s syndrome and systemic lupus erythematosus. J Clin Invest 108:861–869

    Article  PubMed  CAS  Google Scholar 

  44. Tanaka AR, Ikeda Y, Abe-Dohmae S, Arakawa R, Sadanami K, Kidera A, Nakagawa S, Nagase T, Aoki R, Kioka N, Amachi T, Yokoyama S, Ueda K (2001) Human ABCA1 contains a large amino-terminal extracellular domain homologous to an epitope of Sjogren’s syndrome. Biochem Biophys Res Commun 283:1019–1025

    Article  PubMed  CAS  Google Scholar 

  45. Tsukada Y, Ichikawa H, Chai Z, Lai FP, Dunster K, Sentry JW, Toh BH (2000) Novel variant of p230 trans-Golgi network protein identified by serum from Sjogren’s syndrome patient. Eur J Cell Biol 79:790–794

    Article  PubMed  CAS  Google Scholar 

  46. Griffith KJ, Chan EK, Lung CC, Hamel JC, Guo X, Miyachi K, Fritzler MJ (1997) Molecular cloning of a novel 97-kd Golgi complex autoantigen associated with Sjogren’s syndrome. Arthritis Rheum 40:1693–1702

    Article  PubMed  CAS  Google Scholar 

  47. Matsumoto I, Maeda T, Takemoto Y, Hashimoto Y, Kimura F, Iwamoto I, Saito Y, Nishioka K, Sumida T (1999) Alpha-amylase functions as a salivary gland-specific self T cell epitope in patients with Sjogren’s syndrome. Int J Mol Med 3:485–490

    PubMed  CAS  Google Scholar 

  48. Beroukas D, Goodfellow R, Hiscock J, Jonsson R, Gordon TP, Waterman SA (2002) Up-regulation of M3-muscarinic receptors in labial salivary gland acini in primary Sjogren’s syndrome. Lab Invest 82:203–210

    PubMed  CAS  Google Scholar 

  49. Tapinos NI, Polihronis M, Thyphronitis G, Moutsopoulos HM (2002) Characterization of the cysteine-rich secretory protein 3 gene as an early-transcribed gene with a putative role in the pathophysiology of Sjogren’s syndrome. Arthritis Rheum 46:215–222

    Article  PubMed  CAS  Google Scholar 

  50. Steinfeld S, Cogan E, King LS, Agre P, Kiss R, Delporte C (2001) Abnormal distribution of aquaporin-5 water channel protein in salivary glands from Sjogren's syndrome patients. Lab Invest 81:143–148

    PubMed  CAS  Google Scholar 

  51. Cavill D, Waterman SA, Gordon TP (2002) Failure to detect antibodies to extracellular loop peptides of the muscarinic M3 receptor in primary Sjogren's syndrome. J Rheumatol 29:1342–1344

    PubMed  Google Scholar 

  52. Tominaga M, Migita K, Sano H, Fukui W, Kohno M, Tsubouchi Y, Honda S, Fukuda T, Nakamura H, Yamasaki S, Kawabe Y, Kawakami A, Eguchi K (2000) Expression of cyclooxygenase-1 (COX-1) in labial salivary glands of Sjogren's syndrome. Clin Exp Immunol 122:459–463

    Article  PubMed  CAS  Google Scholar 

  53. Boulard O, Fluteau G, Eloy L, Damotte D, Bedossa P, Garchon H-J (2002) Genetic analysis of autoimmune sialadenitis in nonobese diabetic mice: a major susceptibility region on chromosome 1. J Immunol 168:4192–4201

    PubMed  CAS  Google Scholar 

  54. Brayer J, Lowry J, Cha S, Robinson CP, Yamachika S, Peck AB, Humphreys-Beher MG (2000) Alleles from chromosomes 1 and 3 of NOD mice combine to influence Sjogren's syndrome-like autoimmune exocrinopathy. J Rheumatol 27:1896–1904

    PubMed  CAS  Google Scholar 

  55. Johansson ACM, Nakken B, Sundler M, Lindqvist A-KB, Johannesson M, Alarcon-Riquelme M, Bolstad AI, Humphreys-Beher MG, Jonsson R, Skarstein K, Holmdahl R (2002) The genetic control of sialadenitis versus arthritis in a NOD.QxB10.Q F2 cross. Eur J Immunol 32:243–250

    Article  PubMed  CAS  Google Scholar 

  56. Esch TR, Poveromo JD, Aikins MC, Levanos VA (2002) A novel lacrimal gland autoantigen in the NOD mouse model of Sjogren's syndrome. Scand J Immunol 55:304–310

    Article  PubMed  CAS  Google Scholar 

  57. Yamachika S, Nanni JM, Nguyen KH, Garces L, Lowry JM, Robinson CP, Brayer J, Oxford GE, da Silveira A, Kerr M, Peck AB, Humphreys-Beher MG (1998) Excessive synthesis of matrix metalloproteinases in exocrine tissues of NOD mouse models for Sjogren's syndrome. J Rheumatol 25:2371–2380

    PubMed  CAS  Google Scholar 

  58. Robinson CP, Yamachika S, Alford CE, Cooper C, Pichardo EL, Shah N, Peck AB, Humphreys-Beher MG (1997) Elevated levels of cysteine protease activity in saliva and salivary glands of the nonobese diabetic (NOD) mouse model for Sjogren syndrome. Proc Natl Acad Sci U S A 94:5767–5771

    Article  PubMed  CAS  Google Scholar 

  59. Humphreys-Beher MG (1996) Animal models for autoimmune disease-associated xerostomia and xerophthalmia. Adv Dent Res 10:73–75

    Article  PubMed  CAS  Google Scholar 

  60. Yanagi K, Ishimaru N, Haneji N, Saegusa K, Saito I, Hayashi Y (1998) Anti-120-kDa alpha-fodrin immune response with Th1-cytokine profile in the NOD mouse model of Sjogren's syndrome. Eur J Immunol 28:3336–33450

    Article  PubMed  CAS  Google Scholar 

  61. Robinson CP, Brayer J, Yamachika S, Esch TR, Peck AB, Stewart CA, Peen E, Jonsson R, Humphreys-Beher MG (1998) Transfer of human serum IgG to nonobese diabetic Igmu null mice reveals a role for autoantibodies in the loss of secretory function of exocrine tissues in Sjogren's syndrome. Proc Natl Acad Sci U S A 95:7538–7543

    Article  PubMed  CAS  Google Scholar 

  62. Robinson CP, Yamachika S, Bounous DI, Brayer J, Jonsson R, Holmdahl R, Peck AB, Humphreys-Beher MG (1998) A novel NOD-derived murine model of primary Sjogren's syndrome. Arthritis Rheum 41:150–156

    Article  PubMed  CAS  Google Scholar 

  63. Singh AK (1995) Lupus in the Fas lane? J R Coll Physicians Lond 29:475–478

    PubMed  CAS  Google Scholar 

  64. Haneji N, Hamano H, Yanagi K, Hayashi Y (1994) A new animal model for primary Sjogren's syndrome in NFS/sld mutant mice. J Immunol 153:2769–2777

    PubMed  CAS  Google Scholar 

  65. Fujita H, Fujihara T, Takeuchi T, Saito I, Tsubota K (1998) Lacrimation and salivation are not related to lymphocytic infiltration in lacrimal and salivary glands in MRL lpr/lpr mice. Adv Exp Med Biol 438:941–948

    PubMed  CAS  Google Scholar 

  66. Wahren M, Skarstein K, Blange I, Pettersson I, Jonsson R (1994) MRL/lpr mice produce anti-Ro 52,000 MW antibodies: detection, analysis of specificity and site of production. Immunology 83:9–15

    PubMed  CAS  Google Scholar 

  67. Kimura T, Suzuki K, Inada S, Hayashi A, Saito H, Miyai T, Ohsugi Y, Matsuzaki Y, Tanaka N, Osuga T et al (1994) Induction of autoimmune disease by graft-versus-host reaction across MHC class II difference: modification of the lesions in IL-6 transgenic mice. Clin Exp Immunol 95:525–529

    Article  PubMed  CAS  Google Scholar 

  68. Koike K, Moriya K, Ishibashi K, Yotsuyanagi H, Shintani Y, Fujie H, Kurokawa K, Matsuura Y, Miyamura T (1997) Sialadenitis histologically resembling Sjogren syndrome in mice transgenic for hepatitis C virus envelope genes. Proc Natl Acad Sci U S A 94:233–236

    Article  PubMed  CAS  Google Scholar 

  69. Ramos-Casals M, Garcia-Carrasco M, Cervera R, Font J (1999) Sjogren's syndrome and hepatitis C virus. Clin Rheumatol 18:93–100

    Article  PubMed  CAS  Google Scholar 

  70. Tsubata R, Tsubata T, Hiai H, Shinkura R, Matsumura R, Sumida T, Miyawaki S, Ishida H, Kumagai S, Nakao K, Honjo T (1996) Autoimmune disease of exocrine organs in immunodeficient alymphoplasia mice: a spontaneous model for Sjogren's syndrome. Eur J Immunol 26:2742–2748

    Article  PubMed  CAS  Google Scholar 

  71. Fleck M, Kern ER, Zhou T, Lang B, Mountz JD (1998) Murine cytomegalovirus induces a Sjogren's syndrome-like disease in C57Bl/6-lpr/lpr mice. Arthritis Rheum 41:2175–2184

    Article  PubMed  CAS  Google Scholar 

  72. Lodde BM, Mineshiba F, Wang J, Cotrim AP, Afione S, Tak PP, Baum BJ (2006) Effect of human vasoactive intestinal peptide gene transfer in a murine model of Sjogren's syndrome. Ann Rheum Dis 65:195–200

    Article  PubMed  CAS  Google Scholar 

  73. Delgado M, Munoz-Elias EJ, Gomariz RP, Ganea D (1999) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide enhance IL-10 production by murine macrophages: in vitro and in vivo studies. J Immunol 162:1707–1716

    PubMed  CAS  Google Scholar 

  74. Delgado M, Abad C, Martinez C, Juarranz MG, Arranz A, Gomariz RP, Leceta J (2002) Vasoactive intestinal peptide in the immune system: potential therapeutic role in inflammatory and autoimmune diseases. J Mol Med 80:16–24

    Article  PubMed  CAS  Google Scholar 

  75. Pozo D, Delgado M, Martinez M, Guerrero JM, Leceta J, Gomariz RP, Calvo JR (2000) Immunobiology of vasoactive intestinal peptide (VIP)[erratum appears in Immunol Today 2000 Apr;21(4):191]. Immunol Today 21:7–11

    Article  PubMed  CAS  Google Scholar 

  76. Grimm MC, Newman R, Hassim Z, Cuan N, Connor SJ, Le Y, Wang JM, Oppenheim JJ, Lloyd AR (2003) Cutting edge: vasoactive intestinal peptide acts as a potent suppressor of inflammation in vivo by trans-deactivating chemokine receptors. J Immunol 171:4990–4994

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We appreciate support of the NIH grants AR42460, AR12253, AI24717, AI31584, AR049084, RR020143, AR048940, and DE015223 (JBH), NIH grant number P20-RR015577 from the National Center for Research Resources (AHS), and US Department of Veteran Affairs (CC103) for our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John B. Harley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, P.H., Cobb, B.L., Namjou, B. et al. Horizons in Sjögren’s Syndrome Genetics. Clinic Rev Allerg Immunol 32, 201–209 (2007). https://doi.org/10.1007/s12016-007-8002-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-007-8002-9

Keywords

Navigation