Skip to main content

Advertisement

Log in

Nestin is a New Partner in Endothelial Colony Forming Cell Angiogenic Potential

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Nestin, an intermediate filament protein expressed by progenitor cells, is associated with tissue regeneration. Although nestin expression has been reported in poorly differentiated and newly formed blood vessels, its role in endothelial cells remains unclear. In this study, we investigated the involvement of nestin in the angiogenic properties of endothelial colony-forming cells (ECFCs) derived from human umbilical cord blood. Our results demonstrate that ECFCs express high levels of nestin, and that its inhibition by small interfering RNAs decreased ECFC proliferation, migration in response to SDF-1 and VEGF-A, tubulogenesis, and adhesion on collagen. These effects are associated with modulation of focal adhesion kinase phosphorylation. Furthermore, nestin silencing resulted in reduced revascularization in a mouse hindlimb ischemia model. In conclusion, these findings provide evidence that nestin more than being a structural protein, is an active player in ECFC angiogenic properties.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability

Raw data are available upon request.

References

  1. Wiese, C., Rolletschek, A., Kania, G., Blyszczuk, P., Tarasov, K. V., Tarasova, Y., & Wobus, A. M. (2004). Nestin expression–a property of multi-lineage progenitor cells? Cellular and molecular life sciences: CMLS, 61(19–20), 2510–2522. https://doi.org/10.1007/s00018-004-4144-6.

    Article  CAS  PubMed  Google Scholar 

  2. Vaittinen, S., Lukka, R., Sahlgren, C., Rantanen, J., Hurme, T., Lendahl, U., & Kalimo, H. (1999). Specific and innervation-regulated expression of the intermediate filament protein nestin at neuromuscular and myotendinous junctions in skeletal muscle. The American Journal of Pathology, 154(2), 591–600. https://doi.org/10.1016/S0002-9440(10)65304-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wen, D., Ni, L., You, L., Zhang, L., Gu, Y., Hao, C. M., & Chen, J. (2012). Upregulation of nestin in proximal tubules may participate in cell migration during renal repair. American Journal of Physiology Renal Physiology, 303(11), F1534–1544. https://doi.org/10.1152/ajprenal.00083.2012.

    Article  CAS  PubMed  Google Scholar 

  4. Mokrý, J., Cízková, D., Filip, S., Ehrmann, J., Osterreicher, J., Kolár, Z., & English, D. (2004). Nestin expression by newly formed human blood vessels. Stem Cells and Development, 13(6), 658–664. https://doi.org/10.1089/scd.2004.13.658.

    Article  PubMed  Google Scholar 

  5. Nowak, A., Grzegrzółka, J., Kmiecik, A., Piotrowska, A., Matkowski, R., & Dzięgiel, P. (2018). Role of nestin expression in angiogenesis and breast cancer progression. International Journal of Oncology, 52(2), 527–535. https://doi.org/10.3892/ijo.2017.4223.

    Article  CAS  PubMed  Google Scholar 

  6. Nowak, A., Grzegrzolka, J., Paprocka, M., Piotrowska, A., Rys, J., Matkowski, R., & Dziegiel, P. (2017). Nestin-positive microvessel density is an independent prognostic factor in breast cancer. International Journal of Oncology, 51(2), 668–676. https://doi.org/10.3892/ijo.2017.4057.

    Article  CAS  PubMed  Google Scholar 

  7. Chabowski, M., Nowak, A., Grzegrzolka, J., Piotrowska, A., Janczak, D., & Dziegiel, P. (2018). Comparison of Microvessel Density using nestin and CD34 in Colorectal Cancer. Anticancer Research, 38(7), 3889–3895. https://doi.org/10.21873/anticanres.12673.

    Article  CAS  PubMed  Google Scholar 

  8. Han, E., Kim, J., Jung, M. J., Chin, S., Lee, J. H., Won, K. Y., & Moon, A. (2021). ERG and nestin: Useful markers of immature vessels and novel prognostic markers in renal cell carcinoma. International Journal of Clinical and Experimental Pathology, 14(1), 116–125.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Smadja, D. M., Melero-Martin, J. M., Eikenboom, J., Bowman, M., Sabatier, F., & Randi, A. M. (2019). Standardization of methods to quantify and culture endothelial colony-forming cells derived from peripheral blood: Position paper from the International Society on thrombosis and haemostasis SSC. Journal of thrombosis and haemostasis: JTH, 17(7), 1190–1194. https://doi.org/10.1111/jth.14462.

    Article  PubMed  Google Scholar 

  10. Rossi, E., Poirault-Chassac, S., Bieche, I., Chocron, R., Schnitzler, A., Lokajczyk, A., & Smadja, D. M. (2019). Human endothelial colony forming cells Express Intracellular CD133 that modulates their Vasculogenic Properties. Stem Cell Reviews and Reports, 15(4), 590–600. https://doi.org/10.1007/s12015-019-09881-8.

    Article  CAS  PubMed  Google Scholar 

  11. Domingues, A., Rossi, E., Bujko, K., Detriche, G., Richez, U., Blandinieres, A., & Ratajczak, M. Z. (2022). Human CD34 + very small embryonic-like stem cells can give rise to endothelial colony-forming cells with a multistep differentiation strategy using UM171 and nicotinamide acid. Leukemia. https://doi.org/10.1038/s41375-022-01517-0.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Melero-Martin, J. M. (2022). Human Endothelial Colony-Forming Cells. Cold Spring Harbor Perspectives in Medicine, a041154. https://doi.org/10.1101/cshperspect.a041154.

  13. Paschalaki, K. E., & Randi, A. M. (2018). Recent advances in endothelial colony forming cells toward their use in clinical translation. Frontiers in Medicine, 5, 295. https://doi.org/10.3389/fmed.2018.00295.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Blandinières, A., Gendron, N., Bacha, N., Bièche, I., Chocron, R., Nunes, H., & Smadja, D. M. (2019). Interleukin-8 release by endothelial colony-forming cells isolated from idiopathic pulmonary fibrosis patients might contribute to their pathogenicity. Angiogenesis, 22(2), 325–339. https://doi.org/10.1007/s10456-018-09659-5.

    Article  CAS  PubMed  Google Scholar 

  15. Smadja, D. M. (2019). Vasculogenic stem and progenitor cells in Human: Future cell therapy product or Liquid Biopsy for Vascular Disease. Advances in Experimental Medicine and Biology, 1201, 215–237. https://doi.org/10.1007/978-3-030-31206-0_11.

    Article  CAS  PubMed  Google Scholar 

  16. Lee, H., & Kang, K. T. (2021). Differential angiogenic responses of human endothelial colony-forming cells to different molecular subtypes of breast Cancer cells. Journal of Lipid and Atherosclerosis, 10(1), 111–122. https://doi.org/10.12997/jla.2021.10.1.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pagan, J., Przybyla, B., Jamshidi-Parsian, A., Gupta, K., & Griffin, R. (2013). Blood outgrowth endothelial cells increase Tumor Growth Rates and modify Tumor Physiology: Relevance for therapeutic targeting. Cancers, 5(4), 205–217. https://doi.org/10.3390/cancers5010205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moccia, F., Zuccolo, E., Poletto, V., Cinelli, M., Bonetti, E., Guerra, G., & Rosti, V. (2015). Endothelial progenitor cells support tumour growth and metastatisation: Implications for the resistance to anti-angiogenic therapy. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine, 36(9), 6603–6614. https://doi.org/10.1007/s13277-015-3823-2.

    Article  CAS  PubMed  Google Scholar 

  19. Nevo, N., Lecourt, S., Bièche, I., Kucia, M., Cras, A., Blandinieres, A., & Smadja, D. M. (2020). Valproic acid decreases endothelial colony forming cells differentiation and induces endothelial-to-mesenchymal transition-like process. Stem Cell Reviews and Reports, 16(2), 357–368. https://doi.org/10.1007/s12015-019-09950-y.

    Article  CAS  PubMed  Google Scholar 

  20. d’Audigier, C., Susen, S., Blandinieres, A., Mattot, V., Saubamea, B., Rossi, E., & Smadja, D. M. (2018). Egfl7 represses the vasculogenic potential of human endothelial progenitor cells. Stem Cell Reviews and Reports, 14(1), 82–91. https://doi.org/10.1007/s12015-017-9775-8.

    Article  CAS  PubMed  Google Scholar 

  21. Billoir, P., Blandinières, A., Gendron, N., Chocron, R., Gunther, S., Philippe, A., & Smadja, D. M. (2021). Endothelial colony-forming cells from idiopathic pulmonary fibrosis patients have a high Procoagulant potential. Stem Cell Reviews and Reports, 17(2), 694–699. https://doi.org/10.1007/s12015-020-10043-4.

    Article  CAS  PubMed  Google Scholar 

  22. Détriché, G., Gendron, N., Philippe, A., Gruest, M., Billoir, P., Rossi, E., & Smadja, D. M. (2022). Gonadotropins as novel active partners in vascular diseases: Insight from angiogenic properties and thrombotic potential of endothelial colony-forming cells. Journal of thrombosis and haemostasis: JTH, 20(1), 230–237. https://doi.org/10.1111/jth.15549.

    Article  CAS  PubMed  Google Scholar 

  23. Chou, Y. H., Khuon, S., Herrmann, H., & Goldman, R. D. (2003). Nestin promotes the phosphorylation-dependent disassembly of vimentin intermediate filaments during mitosis. Molecular Biology of the Cell, 14(4), 1468–1478. https://doi.org/10.1091/mbc.e02-08-0545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sahlgren, C. M., Mikhailov, A., Hellman, J., Chou, Y. H., Lendahl, U., Goldman, R. D., & Eriksson, J. E. (2001). Mitotic reorganization of the intermediate filament protein nestin involves phosphorylation by cdc2 kinase. The Journal of Biological Chemistry, 276(19), 16456–16463. https://doi.org/10.1074/jbc.M009669200.

    Article  CAS  PubMed  Google Scholar 

  25. Daniel, C., Albrecht, H., Lüdke, A., & Hugo, C. (2008). Nestin expression in repopulating mesangial cells promotes their proliferation. Laboratory Investigation; a Journal of Technical Methods and Pathology, 88(4), 387–397. https://doi.org/10.1038/labinvest.2008.5.

    Article  CAS  PubMed  Google Scholar 

  26. Xue, X. J., & Yuan, X. B. (2010). Nestin is essential for mitogen-stimulated proliferation of neural progenitor cells. Molecular and Cellular Neurosciences, 45(1), 26–36. https://doi.org/10.1016/j.mcn.2010.05.006.

    Article  CAS  PubMed  Google Scholar 

  27. Li, J., Wang, R., Yang, L., Wu, Q., Wang, Q., Nie, Z., & Pan, Q. (2015). Knockdown of nestin inhibits proliferation and migration of colorectal cancer cells. International Journal of Clinical and Experimental Pathology, 8(6), 6377–6386.

    PubMed  PubMed Central  Google Scholar 

  28. Liang, Z. W., Wang, Z., Chen, H., Li, C., Zhou, T., Yang, Z., & Cai, W. (2015). Nestin-mediated cytoskeletal remodeling in endothelial cells: Novel mechanistic insight into VEGF-induced cell migration in angiogenesis. American Journal of Physiology Cell Physiology, 308(5), C349–358. https://doi.org/10.1152/ajpcell.00121.2014.

    Article  CAS  PubMed  Google Scholar 

  29. Matsuda, Y., Naito, Z., Kawahara, K., Nakazawa, N., Korc, M., & Ishiwata, T. (2011). Nestin is a novel target for suppressing pancreatic cancer cell migration, invasion and metastasis. Cancer Biology & Therapy, 11(5), 512–523. https://doi.org/10.4161/cbt.11.5.14673.

    Article  CAS  Google Scholar 

  30. Kleeberger, W., Bova, G. S., Nielsen, M. E., Herawi, M., Chuang, A. Y., Epstein, J. I., & Berman, D. M. (2007). Roles for the stem Cell–Associated Intermediate Filament nestin in prostate Cancer Migration and Metastasis. Cancer Research, 67(19), 9199–9206. https://doi.org/10.1158/0008-5472.CAN-07-0806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hsia, D. A., Mitra, S. K., Hauck, C. R., Streblow, D. N., Nelson, J. A., Ilic, D., & Schlaepfer, D. D. (2003). Differential regulation of cell motility and invasion by FAK. The Journal of Cell Biology, 160(5), 753–767. https://doi.org/10.1083/jcb.200212114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hyder, C. L., Lazaro, G., Pylvänäinen, J. W., Roberts, M. W. G., Qvarnström, S. M., & Eriksson, J. E. (2014). Nestin regulates prostate cancer cell invasion by influencing the localisation and functions of FAK and integrins. Journal of Cell Science, 127(Pt 10), 2161–2173. https://doi.org/10.1242/jcs.125062.

    Article  CAS  PubMed  Google Scholar 

  33. Pan, Y., Jing, R., Pitre, A., Williams, B. J., & Skalli, O. (2008). Intermediate filament protein synemin contributes to the migratory properties of astrocytoma cells by influencing the dynamics of the actin cytoskeleton. FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 22(9), 3196–3206. https://doi.org/10.1096/fj.08-106187.

    Article  CAS  PubMed  Google Scholar 

  34. Jia, Y., Wu, S. L., Isenberg, J. S., Dai, S., Sipes, J. M., Field, L., & Roberts, D. D. (2010). Thiolutin inhibits endothelial cell adhesion by perturbing Hsp27 interactions with components of the actin and intermediate filament cytoskeleton. Cell Stress & Chaperones, 15(2), 165–181. https://doi.org/10.1007/s12192-009-0130-0.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by AP-HP, Université de Paris Cité and Inserm.

Author information

Authors and Affiliations

Authors

Contributions

AC and DMS designed the study and wrote the paper. AC, ER and AB performed the experiments and analyzed data. AC, JL, PG and DMS interpreted and discussed results. Authors declare that the submitted work is original and has not been published before (neither in English nor in any other language) and that the work is not under consideration for publication elsewhere.

Corresponding author

Correspondence to David M. Smadja.

Ethics declarations

Ethical Approval

Human umbilical cord blood were provided by Saint-Louis Hospital Biological Resources Center - Cord Blood Bank after information and consent of mothers, under French Health Ministry authorization (n°AC-2016-2759).

Consent to Participate

NA.

Consent to Publish

NA.

Competing Interests

Authors declare no conflict of interest related to this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cras, A., Larghero, J., Rossi, E. et al. Nestin is a New Partner in Endothelial Colony Forming Cell Angiogenic Potential. Stem Cell Rev and Rep 19, 2541–2550 (2023). https://doi.org/10.1007/s12015-023-10587-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-023-10587-1

Keywords

Navigation