Skip to main content
Log in

Endothelial Colony-Forming Cells from Idiopathic Pulmonary Fibrosis Patients Have a High Procoagulant Potential

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Idiopathic pulmonary fibrosis (IPF) is a severe, progressive and irreversible lung disease constantly associated with a major vascular remodeling process. Endothelial colony-forming cells (ECFCs) are human vasculogenic cells proposed as a cell therapy product or liquid biopsy in vascular disorders. Since the link between IPF and thrombosis has been largely proposed, the aim of our study was to explore hypercoagulability states in ECFCs from patients with IPF. We performed Thrombin generation assay (TGA) in cord blood (CB)-ECFCs, peripheral blood (PB)-ECFCs and IPF-ECFCs. Endogenous thrombin potential and peak were higher in IPF-ECFCs compared to CB-ECFCs and PB-ECFCs. As thrombin generation in ECFCs was increased, we evaluated anticoagulant proteins expressed on ECFCs membrane and identified thrombomodulin and EPCR. We found a significant decrease of both anticoagulant proteins at membrane using flow cytometry. This study is the first to examine ECFC thrombin generation in IPF. This new finding strongly argues for a role of ECFC in IPF pathophysiology and thrombotic related disorders in IPF.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Lederer, D. J., & Martinez, F. J. (2018 Aug 23). Idiopathic pulmonary fibrosis. The New England Journal of Medicine, 379(8), 797–798.

    PubMed  Google Scholar 

  2. Ebina, M., Shimizukawa, M., Shibata, N., Kimura, Y., Suzuki, T., Endo, M., Sasano, H., Kondo, T., & Nukiwa, T. (2004 Jun 1). Heterogeneous increase in CD34-positive alveolar capillaries in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine, 169(11), 1203–1208.

    Article  Google Scholar 

  3. Ackermann, M., Stark, H., Neubert, L., Schubert, S., Borchert, P., Linz, F., et al. (2020 Mar). Morphomolecular motifs of pulmonary neoangiogenesis in interstitial lung diseases. European Respiratory Journal, 55(3), 1900933. https://doi.org/10.1183/13993003.00933-2019

  4. Smadja, D. M., Mauge, L., Nunes, H., d’Audigier, C., Juvin, K., Borie, R., et al. (2013 Jan). Imbalance of circulating endothelial cells and progenitors in idiopathic pulmonary fibrosis. Angiogenesis, 16(1), 147–157.

    Article  CAS  Google Scholar 

  5. Smadja, D. M., Melero-Martin, J. M., Eikenboom, J., Bowman, M., Sabatier, F., & Randi, A. M. (2019 Jul). Standardization of methods to quantify and culture endothelial colony-forming cells derived from peripheral blood: Position paper from the international society on thrombosis and Haemostasis SSC. Journal of Thrombosis and Haemostasis, 17(7), 1190–1194.

    Article  Google Scholar 

  6. Guerin, C. L., Loyer, X., Vilar, J., Cras, A., Mirault, T., Gaussem, P., Silvestre, J. S., & Smadja, D. M. (2015 May). Bone-marrow-derived very small embryonic-like stem cells in patients with critical leg ischaemia: Evidence of vasculogenic potential. Thrombosis and Haemostasis, 113(5), 1084–1094.

    Article  Google Scholar 

  7. Smadja, D. M. (2017 Apr). Bone marrow very small embryonic-like stem cells: New generation of autologous cell therapy soon ready for prime time? Stem Cell Reviews, 13(2), 198–201.

    Article  Google Scholar 

  8. Ratajczak, M. Z., Ratajczak, J., Suszynska, M., Miller, D. M., Kucia, M., & Shin, D. M. (2017 Jan 06). A novel view of the adult stem cell compartment from the perspective of a quiescent population of very small embryonic-like stem cells. Circulation Research, 120(1), 166–178.

    Article  CAS  Google Scholar 

  9. Blandinieres, A., Gendron, N., Bacha, N., Bieche, I., Chocron, R., Nunes, H., et al. (2019 Jan). Interleukin-8 release by endothelial colony-forming cells isolated from idiopathic pulmonary fibrosis patients might contribute to their pathogenicity. Angiogenesis, 3.

  10. Bacha, N. C., Blandinieres, A., Rossi, E., Gendron, N., Nevo, N., Lecourt, S., et al. (2017 Apr). Endothelial microparticles are associated to pathogenesis of idiopathic pulmonary fibrosis. Stem Cell Reviews, 14(2), 223–235.

    Article  Google Scholar 

  11. Crooks, M. G., & Hart, S. P. (2015 Sep). Coagulation and anticoagulation in idiopathic pulmonary fibrosis. European Respiratory Review, 24(137), 392–399.

    Article  Google Scholar 

  12. Alvarado-Moreno, J. A., Hernandez-Lopez, R., Chavez-Gonzalez, A., Yoder, M. C., Rangel-Corona, R., Isordia-Salas, I., Hernandez-Juarez, J., Cerbulo-Vazquez, A., Gonzalez-Jimenez, M. A., & Majluf-Cruz, A. (2016 Jan). Endothelial colony-forming cells: Biological and functional abnormalities in patients with recurrent, unprovoked venous thromboembolic disease. Thrombosis Research, 137, 157–168.

    Article  CAS  Google Scholar 

  13. Raghu, G., Rochwerg, B., Zhang, Y., Garcia, C. A., Azuma, A., Behr, J., Brozek, J. L., Collard, H. R., Cunningham, W., Homma, S., Johkoh, T., Martinez, F. J., Myers, J., Protzko, S. L., Richeldi, L., Rind, D., Selman, M., Theodore, A., Wells, A. U., Hoogsteden, H., Schünemann, H. J., American Thoracic Society, European Respiratory Society, Japanese Respiratory Society, & Latin American Thoracic Association. (2015 Jul 15). An official ATS/ERS/JRS/ALAT clinical practice guideline: Treatment of idiopathic pulmonary fibrosis. An update of the 2011 clinical practice guideline. American Journal of Respiratory and Critical Care Medicine, 192(2), e3–e19.

  14. Raghu, G., Remy-Jardin, M., Myers, J. L., Richeldi, L., Ryerson, C. J., Lederer, D. J., Behr, J., Cottin, V., Danoff, S. K., Morell, F., Flaherty, K. R., Wells, A., Martinez, F. J., Azuma, A., Bice, T. J., Bouros, D., Brown, K. K., Collard, H. R., Duggal, A., Galvin, L., Inoue, Y., Jenkins, R. G., Johkoh, T., Kazerooni, E. A., Kitaichi, M., Knight, S. L., Mansour, G., Nicholson, A. G., Pipavath, S. N. J., Buendía-Roldán, I., Selman, M., Travis, W. D., Walsh, S. L. F., & Wilson, K. C. (2018 Sep 1). Diagnosis of idiopathic pulmonary fibrosis. An official ATS/ERS/JRS/ALAT clinical practice guideline. American Journal of Respiratory and Critical Care Medicine, 198(5), e44–e68.

    Article  Google Scholar 

  15. d’Audigier, C., Susen, S., Blandinieres, A., Mattot, V., Saubamea, B., Rossi, E., et al. (2018 Feb). Egfl7 represses the Vasculogenic potential of human endothelial progenitor cells. Stem Cell Reviews, 14(1), 82–91.

    Article  Google Scholar 

  16. Rossi, E., Poirault-Chassac, S., Bieche, I., Chocron, R., Schnitzler, A., Lokajczyk, A., et al. (2019 Mar). Human endothelial Colony forming cells express intracellular CD133 that modulates their Vasculogenic properties. Stem Cell Reviews, 16.

  17. Miranda, S., Billoir, P., Damian, L., Thiebaut, P. A., Schapman, D., Le Besnerais, M., et al. (2019). Hydroxychloroquine reverses the prothrombotic state in a mouse model of antiphospholipid syndrome: Role of reduced inflammation and endothelial dysfunction. PLoS One, 14(3), e0212614.

    Article  CAS  Google Scholar 

  18. Smadja, D. M., Bieche, I., Helley, D., Laurendeau, I., Simonin, G., Muller, L., et al. (2007 Sep-Oct). Increased VEGFR2 expression during human late endothelial progenitor cells expansion enhances in vitro angiogenesis with up-regulation of integrin alpha(6). Journal of Cellular and Molecular Medicine, 11(5), 1149–1161.

    Article  CAS  Google Scholar 

  19. Dalleywater, W., Powell, H. A., Fogarty, A. W., Hubbard, R. B., & Navaratnam, V. (2014 Dec). Venous thromboembolism in people with idiopathic pulmonary fibrosis: A population-based study. The European Respiratory Journal, 44(6), 1714–1715.

    Article  Google Scholar 

  20. Lin, C., Borensztajn, K., & Spek, C. A. (2017 Apr). Targeting coagulation factor receptors - protease-activated receptors in idiopathic pulmonary fibrosis. Journal of Thrombosis and Haemostasis, 15(4), 597–607.

    Article  CAS  Google Scholar 

  21. Alagha, K., Secq, V., Pahus, L., Sofalvi, T., Palot, A., Bourdin, A., & Chanez, P. (2015 Apr 15). We should prohibit warfarin in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine, 191(8), 958–960.

    Article  CAS  Google Scholar 

  22. Tran, T., & Stewart, A. G. (2003 Mar). Protease-activated receptor (PAR)-independent growth and pro-inflammatory actions of thrombin on human cultured airway smooth muscle. British Journal of Pharmacology, 138(5), 865–875.

    Article  CAS  Google Scholar 

  23. Hernandez-Rodriguez, N. A., Cambrey, A. D., Harrison, N. K., Chambers, R. C., Gray, A. J., Southcott, A. M., et al. (1995 Oct 21). Role of thrombin in pulmonary fibrosis. Lancet, 346(8982), 1071–1073.

    Article  CAS  Google Scholar 

  24. Shea, B. S., Probst, C. K., Brazee, P. L., Rotile, N. J., Blasi, F., Weinreb, P. H., et al. (2017 May). Uncoupling of the profibrotic and hemostatic effects of thrombin in lung fibrosis. JCI Insight., 4, 2(9).

    Google Scholar 

  25. Billoir, P., Miranda, S., Damian, L., Richard, V., Benhamou, Y., & Le Cam Duchez, V. (2018 Sep). Development of a thrombin generation test in cultured endothelial cells: Evaluation of the prothrombotic effects of antiphospholipid antibodies. Thrombosis Research, 169, 87–92.

    Article  CAS  Google Scholar 

  26. Dargaud, Y., Wolberg, A. S., Gray, E., Negrier, C., & Hemker, H. C. (2017 Aug). Proposal for standardized preanalytical and analytical conditions for measuring thrombin generation in hemophilia: Communication from the SSC of the ISTH. Journal of Thrombosis and Haemostasis, 15(8), 1704–1707.

    Article  CAS  Google Scholar 

  27. Yasui, H., Gabazza, E. C., Taguchi, O., Risteli, J., Risteli, L., Wada, H., Yuda, H., Kobayashi, T., Kobayashi, H., Suzuki, K., & Adachi, Y. (2000 Oct). Decreased protein C activation is associated with abnormal collagen turnover in the intraalveolar space of patients with interstitial lung disease. Clinical and Applied Thrombosis/Hemostasis, 6(4), 202–205.

    Article  CAS  Google Scholar 

  28. Lin, C., von der Thusen, J., van der Poll, T., Borensztajn, K., & Spek, C. A. (2015 Nov 15). Increased mortality during Bleomycin-induced pulmonary fibrosis due to low endogenous activated protein C levels. American Journal of Respiratory and Critical Care Medicine, 192(10), 1257–1259.

    Article  CAS  Google Scholar 

  29. Yasui, H., Gabazza, E. C., Tamaki, S., Kobayashi, T., Hataji, O., Yuda, H., et al. (2001 Jun). Intratracheal administration of activated protein C inhibits bleomycin-induced lung fibrosis in the mouse. American Journal of Respiratory and Critical Care Medicine, 163(7), 1660–1668.

    Article  CAS  Google Scholar 

  30. Kataoka, K., Taniguchi, H., Kondoh, Y., Nishiyama, O., Kimura, T., Matsuda, T., Yokoyama, T., Sakamoto, K., & Ando, M. (2015 Aug). Recombinant human Thrombomodulin in acute exacerbation of idiopathic pulmonary fibrosis. Chest, 148(2), 436–443.

    Article  Google Scholar 

  31. Alagha, K., Bourdin, A., & Chanez, P. (2015 Nov 15). Reply: Increased mortality during Bleomycin-induced pulmonary fibrosis due to low endogenous activated protein C levels. American Journal of Respiratory and Critical Care Medicine, 192(10), 1259–1260.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by grants of the PROMEX STIFTUNG FUR DIE FORSCHUNG Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Smadja.

Ethics declarations

Conflict of Interest

Authors have nothing to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 13.3 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Billoir, P., Blandinières, A., Gendron, N. et al. Endothelial Colony-Forming Cells from Idiopathic Pulmonary Fibrosis Patients Have a High Procoagulant Potential. Stem Cell Rev and Rep 17, 694–699 (2021). https://doi.org/10.1007/s12015-020-10043-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-020-10043-4

Keywords

Navigation