Skip to main content

Advertisement

Log in

Stem Cells as Target for Prostate cancer Therapy: Opportunities and Challenges

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Cancer stem cells (CSCs) and cells in a cancer stem cell-like (CSCL) state have proven to be responsible for tumor initiation, growth, and relapse in Prostate Cancer (PCa) and other cancers; therefore, new strategies are being developed to target such cellular populations. TLR3 activation-based immunotherapy using Polyinosinic:Polycytidylic acid (PIC) has been proposed to be used as a concomitant strategy to first-line treatment. This strategy is based on the induction of apoptosis and an inflammatory response in tumor cells. In combination with retinoids like 9cRA, this treatment can induce CSCs differentiation and apoptosis. A limitation in the use of this combination is the common decreased expression of TLR3 and its main positive regulator p53. observed in many patients suffering of different cancer types such as PCa. Importantly, human exposure to certain toxicants, such as iAs, not only has proven to enrich CSCs population in an in vitro model of human epithelial prostate cells, but additionally, it can also lead to a decreased p53, TLR3 and RA receptor (RARβ), expression/activation and thus hinder this treatment efficacy. Therefore, here we point out the relevance of evaluating the TLR3 and P53 status in PCa patients before starting an immunotherapy based on the use of PIC +9cRA to determine whether they will be responsive to treatment. Additionally, the use of strategies to overcome the lower TLR3, RARβ or p53 expression in PCa patients, like the inclusion of drugs that increase p53 expression, is encouraged, to potentiate the use of PIC+RA based immunotherapy in these patients.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians, 71(3), 209–249.

    Google Scholar 

  2. Ferlay, J., Colombet, M., Soerjomataram, I., Mathers, C., Parkin, D. M., Piñeros, M., et al. (2018). Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. International Journal of Cancer, 144(9), 1941–1953.

    PubMed  Google Scholar 

  3. American Cancer Society (2022). 2022-cancer-facts-and-figures. Atlanta: American Cancer Society. Retrieved from https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2022.html

  4. Ferlay J, Shin HR, Bray F, et al. (2010). Cancer incidence and mortality worldwide: IARC CancerBase No. 10.

  5. P, A.-H. (2009). Diagnóstico y Tratamiento del Cáncer de Próstata en el Segundo y Tercer Nivel de Atención. Guía de Práctica Clínica GPC, 1–102.

  6. Heidenreich, A., Bellmunt, J., Bolla, M., Joniau, S., Mason, M., Matveev, V., … Zattoni, F. (2011). EAU guidelines on prostate cancer. Part I: Screening, diagnosis, and treatment of clinically localised disease. Actas Urológicas Españolas (English Edition), 35(9), 501–514. https://doi.org/10.1016/j.acuroe.2011.12.003

  7. Heidenreich, A., Aus, G., Bolla, M., Joniau, S., Matveev, V. B., Schmid, H. P., & Zattoni, F. (2008). European Association of Urology EAU guidelines on prostate cancer. European Urology, 53(1), 68–80. https://doi.org/10.1016/j.eururo.2007.09.002

    Article  PubMed  Google Scholar 

  8. Bluethmann, S. M., Wang, M., Wasserman, E., Chen, C., Zaorsky, N. G., Hohl, R. J., & McDonald, A. C. (2020). Prostate cancer in Pennsylvania: The role of older age at diagnosis, aggressiveness, and environmental risk factors on treatment and mortality using data from the Pennsylvania Cancer Registry. Cancer Med, 9(10), 3623–3633. https://doi.org/10.1002/cam4.3003

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lewis, C. W., Qazi, J., Hippe, D. S., et al. (2019). Patterns of distant metastases in 215 Merkelcell carcinoma patients: Implications for prognosisand surveillance. Cancer Medicine, 00, 1–9. https://doi.org/10.1002/cam4.2781

    Article  Google Scholar 

  10. Butler, S. S., Muralidhar, V., Zhao, S. G., Sanford, N. N., Franco, I., Fullerton, Z. H., ... & Nguyen, P. L. (2020). Prostate cancer incidence across stage, NCCN risk groups, and age before and after USPSTF grade D recommendations against prostate-specific antigen screening in 2012. Cancer, 126(4), 717–724.

  11. DeSantis, C. E., Miller, K. D., Dale, W., Mohile, S. G., Cohen, H. J., Leach, C. R., ... & Siegel, R. L. (2019). Cancer statistics for adults aged 85 years and older, 2019. CA: a Cancer Journal for Clinicians, 69(6), 452–467.

  12. Hyslop, J., Paul, A., Seddon, J., & Hopper, J. (2008). Last updated: 15 December 2021. Prostate cancer: diagnosis and treatment, full guideline. National Institute for Health and Clinical Excellence. London. https://www.nice.org.uk/guidance/ng131

  13. Macías-Abraham, C., del Valle-Pérez, L. O., Hernández-Ramírez, P., & Ballester-Santovenia, J. M. (2010). Características fenotípicas y funcionales de las células madre mesenquimales y endoteliales. Revista Cubana de Hematología, Inmunología y Hemoterapia, 26(4), 256–275.

    Google Scholar 

  14. Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., … Stewart, R. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–1920.

  15. Gu, G., Yuan, J., Wills, M., & Kasper, S. (2007). Prostate cancer cells with stem cell characteristics reconstitute the original human tumor in vivo. Cancer Research, 67(10), 4807–4815.

    Article  CAS  PubMed  Google Scholar 

  16. Hou, Y., Chao, Y., Tung, H., Wang, H., & Shan, Y. (2014). Coexpression of CD44-positive/CD133-positive cancer stem cells and CD204-positive tumor-associated macrophages is a predictor of survival in pancreatic ductal adenocarcinoma. Cancer, 120(17), 2766–2777.

    Article  CAS  PubMed  Google Scholar 

  17. Tokar, E. J., Ancrile, B. B., Cunha, G. R., & Webber, M. M. (2005). Stem/progenitor and intermediate cell types and the origin of human prostate cancer. Differentiation, 73(9–10), 463–473.

    Article  CAS  PubMed  Google Scholar 

  18. Tokar, E. J., Qu, W., Liu, J., Liu, W., Webber, M. M., Phang, J. M., & Waalkes, M. P. (2010). Arsenic-specific stem cell selection during malignant transformation. Journal of the National Cancer Institute, 102(9), 638–649. https://doi.org/10.1093/jnci/djq093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dubrovska, A., Kim, S., Salamone, R. J., Walker, J. R., Maira, S.-M., García-Echeverría, C., … Reddy, V. A. (2009). The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proceedings of the National Academy of Sciences, 106(1), 268–273.

  20. Tokar, E. J., Diwan, B. A., & Waalkes, M. P. (2010). Arsenic exposure transforms human epithelial stem/progenitor cells into a cancer stem-like phenotype. Environmental Health Perspectives, 118(1), 108–115. https://doi.org/10.1289/ehp.0901059

    Article  CAS  PubMed  Google Scholar 

  21. Tsao, T., Beretov, J., Ni, J., Bai, X., Bucci, J., Graham, P., & Li, Y. (2019). Cancer stem cells in prostate cancer radioresistance. Cancer Letters, 465(August), 94–104. https://doi.org/10.1016/j.canlet.2019.08.020

    Article  CAS  PubMed  Google Scholar 

  22. Kalantari, E., Saadi, F. H., Asgari, M., Shariftabrizi, A., Roudi, R., & Madjd, Z. (2017). Increased expression of ALDH1A1 in prostate Cancer is correlated with tumor aggressiveness: A tissue microarray study of Iranian patients. Applied Immunohistochemistry and Molecular Morphology, 25(8), 592–598. https://doi.org/10.1097/PAI.0000000000000343

    Article  CAS  PubMed  Google Scholar 

  23. Kalantari, E., Asgari, M., Nikpanah, S., Salarieh, N., Asadi Lari, M. H., & Madjd, Z. (2017). Co-expression of putative Cancer stem cell markers CD44 and CD133 in prostate carcinomas. Pathology and Oncology Research, 23(4), 793–802. https://doi.org/10.1007/s12253-016-0169-z

    Article  CAS  PubMed  Google Scholar 

  24. Tu, S. M., & Lin, S. H. (2012). Prostate cancer stem cells. Clinical Genitourinary Cancer, 10(2), 69–76. https://doi.org/10.1016/j.clgc.2012.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ramirez, N. E., Zhang, Z., Madamanchi, A., Boyd, K. L., O’Rear, L. D., Nashabi, A., … Zutter, M. M. (2011). The α2β1 integrin is a metastasis suppressor in mouse models and human cancer. Journal of Clinical Investigation, 121(1), 226–237. https://doi.org/10.1172/JCI42328.

  26. Cojoc, M., Mäbert, K., Muders, M. H., & Dubrovska, A. (2015). A role for cancer stem cells in therapy resistance: Cellular and molecular mechanisms. Seminars in Cancer Biology, 31, 16–27. https://doi.org/10.1016/j.semcancer.2014.06.004

    Article  CAS  PubMed  Google Scholar 

  27. Lee, E., Yang, J., Ku, M., Kim, N. H., Park, Y., Park, C. B., … Cheong, J. H. (2015). Metabolic stress induces a Wnt-dependent cancer stem cell-like state transition. Cell Death and Disease, 6, 1–10. https://doi.org/10.1038/cddis.2015.171.

  28. Gupta, P. B., Onder, T. T., Jiang, G., Tao, K., Kuperwasser, C., Weinberg, R. A., & Lander, E. S. (2009). Identification of selective inhibitors of Cancer stem cells by high-throughput screening. Cell, 138(4), 645–659. https://doi.org/10.1016/j.cell.2009.06.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu, T., Xu, F., Du, X., Lai, D., Liu, T., Zhao, Y., … Liu, Z. (2010). Establishment and characterization of multi-drug resistant, prostate carcinoma-initiating stem-like cells from human prostate cancer cell lines 22RV1. Molecular and Cellular Biochemistry, 340(1–2), 265–273. https://doi.org/10.1007/s11010-010-0426-5.

  30. Di Zazzo, E., Galasso, G., Giovannelli, P., Di Donato, M., Di Santi, A., Cernera, G., … Sinisi, A. A. (2016). Prostate cancer stem cells: The role of androgen and estrogen receptors. Oncotarget, 7(1), 193.

  31. Collins, A. T., Berry, P. A., Hyde, C., Stower, M. J., & Maitland, N. J. (2005). Prospective identification of tumorigenic prostate cancer stem cells. Cancer Research, 65(23), 10946–10951. https://doi.org/10.1158/0008-5472.CAN-05-2018

    Article  CAS  PubMed  Google Scholar 

  32. Signoretti, S., Waltregny, D., Dilks, J., Isaac, B., Lin, D., Garraway, L., … Loda, M. (2000). P63 is a prostate basal cell marker and is required for prostate development. American Journal of Pathology, 157(6), 1769–1775. https://doi.org/10.1016/S0002-9440(10)64814-6.

  33. Lee, J. K., Phillips, J. W., Smith, B. A., Park, J. W., Stoyanova, T., McCaffrey, E. F., … Witte, O. N. (2016). N-Myc drives neuroendocrine prostate Cancer initiated from human prostate epithelial cells. Cancer Cell, 29(4), 536–547. https://doi.org/10.1016/j.ccell.2016.03.001.

  34. Ponti, D., Costa, A., Zaffaroni, N., Pratesi, G., Petrangolini, G., Coradini, D., … Daidone, M. G. (2005). Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Research, 65(13), 5506–5511.

  35. Rajasekhar, V. K., Studer, L., Gerald, W., Socci, N. D., & Scher, H. I. (2011). Tumour-initiating stem-like cells in human prostate cancer exhibit increased NF-κB signalling. Nature Communications, 2(1), 1–13.

    Article  Google Scholar 

  36. Sampayo, R. G., & Bissell, M. J. (2019). Cancer stem cells in breast and prostate: Fact or fiction? In Advances in cancer research (Vol. 144, pp. 315–341). Elsevier.

  37. Borovski, T., Felipe De Sousa, E. M., Vermeulen, L., & Medema, J. P. (2011). Cancer stem cell niche: The place to be. Cancer Research, 71(3), 634–639.

    Article  CAS  PubMed  Google Scholar 

  38. Takebe, N., Harris, P. J., Warren, R. Q., & Ivy, S. P. (2011). Targeting cancer stem cells by inhibiting Wnt, Notch, and hedgehog pathways. Nature Reviews Clinical oncology, 8(2), 97–106.

    Article  CAS  PubMed  Google Scholar 

  39. Leao, R., Domingos, C., Figueiredo, A., Hamilton, R., Tabori, U., & Castelo-Branco, P. (2017). Cancer stem cells in prostate cancer: Implications for targeted therapy. Urologia Internationalis, 99(2), 125–136.

    Article  PubMed  Google Scholar 

  40. Hussain, S., Lawrence, M. G., Taylor, R. A., Lo, C. Y. W., BioResource, A. P. C., Frydenberg, M., … Risbridger, G. P. (2012). Estrogen receptor β activation impairs prostatic regeneration by inducing apoptosis in murine and human stem/progenitor enriched cell populations. PLoS One, 7(7). https://doi.org/10.1371/journal.pone.0040732.

  41. Patra, S. K., Patra, A., Zhao, H., & Dahiya, R. (2002). DNA methyltransferase and demethylase in human prostate cancer. Molecular Carcinogenesis, 33(3), 163–171. https://doi.org/10.1002/mc.10033

    Article  CAS  PubMed  Google Scholar 

  42. Oo, A. K. K., Calle, A. S., Nair, N., Mahmud, H., Vaidyanath, A., Yamauchi, J., et al. (2018). Up-regulation of PI 3-kinases and the activation of PI3K-Akt signaling pathway in Cancer stem-like cells through DNA Hypomethylation mediated by the Cancer microenvironment. Translational Oncology, 11(3), 653–663. https://doi.org/10.1016/j.tranon.2018.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  43. Jain, A. L., Sidana, A., Maruf, M., Sugano, D., Calio, B., Wood, B. J., & Pinto, P. A. (2019). Analyzing the current practice patterns and views among urologists regarding focal therapy for prostate cancer. In Urologic Oncology: Seminars and Original Investigations (Vol. 37, pp. 182-1e1). Elsevier.

  44. Nyberg, T., Frost, D., Barrowdale, D., Evans, D. G., Bancroft, E., Adlard, J., … Brewer, C. (2020). Prostate cancer risks for male BRCA1 and BRCA2 mutation carriers: A prospective cohort study. European Urology, 77(1), 24–35.

  45. Watts, E. L., Goldacre, R., Key, T. J., Allen, N. E., Travis, R. C., & Perez-Cornago, A. (2020). Hormone-related diseases and prostate cancer: An English national record linkage study. International Journal of Cancer, 147(3), 803–810. https://doi.org/10.1002/ijc.32808

    Article  CAS  PubMed  Google Scholar 

  46. Feng, X., Song, M., Preston, M. A., Ma, W., Hu, Y., Pernar, C. H., … Zhang, Y. (2020). The association of diabetes with risk of prostate cancer defined by clinical and molecular features. British Journal of Cancer, 1–9.

  47. Singh, K. P., Kumari, R., Treas, J., & Dumond, J. W. (2011). Chronic exposure to arsenic causes increased cell survival, DNA damage, and increased expression of mitochondrial transcription factor a (mtTFA) in human prostate epithelial cells. Chemical Research in Toxicology, 24(3), 340–349. https://doi.org/10.1021/tx1003112

    Article  CAS  PubMed  Google Scholar 

  48. Roh, T., Lynch, C. F., Weyer, P., Wang, K., Kelly, K. M., & Ludewig, G. (2017). Low-level arsenic exposure from drinking water is associated with prostate cancer in Iowa. Environmental Research, 159, 338–343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Carey, M., Meharg, C., Williams, P., Marwa, E., Jiujin, X., Farias, J. G., … Meharg, A. A. (2019). Global sourcing of low-inorganic arsenic Rice grain. Exposure and Health. https://doi.org/10.1007/s12403-019-00330-y.

  50. Benbrahim-Tallaa, L., & Waalkes, M. P. (2008). Inorganic arsenic and human prostate cancer. Environmental Health Perspectives, 116(2), 158–164.

    Article  CAS  PubMed  Google Scholar 

  51. Chen, C.-J., & Wang, C.-J. (1990). Ecological correlation between arsenic level in well water and age-adjusted mortality from malignant neoplasms. Cancer Research, 50(17), 5470–5474.

    CAS  PubMed  Google Scholar 

  52. Ahn, J., Boroje, I. J., Ferdosi, H., Kramer, Z. J., & Lamm, S. H. (2020). Prostate Cancer incidence in US counties and low levels of arsenic in drinking water. International Journal of Environmental Research and Public Health, 17(3), 960.

    Article  CAS  PubMed Central  Google Scholar 

  53. Tokar, E. J., Qu, W., & Waalkes, M. P. (2011). Arsenic, stem cells, and the developmental basis of adult cancer. Toxicological Sciences, 120(SUPPL.1), 192–203. https://doi.org/10.1093/toxsci/kfq342

    Article  CAS  Google Scholar 

  54. Achanzar, W. E., Brambila, E. M., Diwan, B. A., Webber, M. M., & Waalkes, M. P. (2002). Inorganic arsenite-induced malignant transformation of human prostate epithelial cells. Journal of the National Cancer Institute, 94(24), 1888–1891.

    Article  CAS  PubMed  Google Scholar 

  55. Ngalame, N. N. O., Tokar, E. J., Person, R. J., & Waalkes, M. P. (2014). Silencing KRAS overexpression in arsenic-transformed prostate epithelial and stem cells partially mitigates malignant phenotype. Toxicological Sciences, 142(2), 489–496. https://doi.org/10.1093/toxsci/kfu201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Thomsen, F. B., Sandin, F., Garmo, H., Lissbrant, I. F., Ahlgren, G., Van Hemelrijck, M., … Stattin, P. (2017). Gonadotropin-releasing hormone agonists, orchiectomy, and risk of cardiovascular disease: Semi-ecologic, nationwide, population-based study. European Urology, 72(6), 920–928.

  57. Pajonk, F., Vlashi, E., & McBride, W. H. (2010). Radiation resistance of cancer stem cells: The 4 R’s of radiobiology revisited. Stem Cells, 28(4), 639–648.

    Article  CAS  PubMed  Google Scholar 

  58. Venkitaraman, R., Lorente, D., Murthy, V., Thomas, K., Parker, L., Ahiabor, R., … Parker, C. (2015). A randomised phase 2 trial of dexamethasone versus prednisolone in castration-resistant prostate cancer. European Urology, 67(4), 673–679.

  59. Lu, X., Yang, F., Chen, D., Zhao, Q., Chen, D., Ping, H., & Xing, N. (2020). Quercetin reverses docetaxel resistance in prostate cancer via androgen receptor and PI3K/Akt signaling pathways. International Journal of Biological Sciences, 16(7), 1121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cha, H.-R., Lee, J. H., & Ponnazhagan, S. (2020). Revisiting immunotherapy: A focus on prostate cancer. Cancer Research, 80(8), 1615–1623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Monjazeb, A. M., Hsiao, H.-H., Sckisel, G. D., & Murphy, W. J. (2012). The role of antigen-specific and non-specific immunotherapy in the treatment of cancer. Journal of Immunotoxicology, 9(3), 248–258.

    Article  CAS  PubMed  Google Scholar 

  62. Graff, J. N., & Chamberlain, E. D. (2015). Sipuleucel-T in the treatment of prostate cancer: An evidence-based review of its place in therapy. Core Evidence, 10, 1.

    PubMed  Google Scholar 

  63. Bilusic, M., Heery, C., & Madan, R. A. (2011). Immunotherapy in prostate cancer: Emerging strategies against a formidable foe. Vaccine, 29(38), 6485–6497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Patel, P. H., & Kockler, D. R. (2008). Sipuleucel-T: A vaccine for metastatic, asymptomatic, androgen-independent prostate cancer. Annals of Pharmacotherapy, 42(1), 91–98.

    Article  PubMed  Google Scholar 

  65. Kawasaki, B. T., Mistree, T., Hurt, E. M., Kalathur, M., & Farrar, W. L. (2007). Co-expression of the toleragenic glycoprotein, CD200, with markers for cancer stem cells. Biochemical and Biophysical Research Communications, 364(4), 778–782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Harashima, N., Inao, T., Imamura, R., Okano, S., Suda, T., & Harada, M. (2012). Roles of the PI3K/Akt pathway and autophagy in TLR3 signaling-induced apoptosis and growth arrest of human prostate cancer cells. Cancer Immunology, Immunotherapy, 61(5), 667–676.

    Article  CAS  PubMed  Google Scholar 

  67. Stewart, C. F., Leggas, M., Schuetz, J. D., Panetta, J. C., Cheshire, P. J., Peterson, J., … Germain, G. S. (2004). Gefitinib enhances the antitumor activity and oral bioavailability of irinotecan in mice. Cancer Research, 64(20), 7491–7499.

  68. Shukla, S., Ohnuma, S., Ambudkar, V., & S. (2011). Improving Cancer chemotherapy with modulators of ABC drug transporters. Current Drug Targets, 12(5), 621–630. https://doi.org/10.2174/138945011795378540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Du, F.-Y., Zhou, Q.-F., Sun, W.-J., & Chen, G.-L. (2019). Targeting cancer stem cells in drug discovery: Current state and future perspectives. World Journal of Stem Cells, 11(7), 398.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Di Corato, R., Gazeau, F., Le Visage, C., Fayol, D., Levitz, P., Lux, F., … Wilhelm, C. (2013). High-resolution cellular MRI: Gadolinium and iron oxide nanoparticles for in-depth dual-cell imaging of engineered tissue constructs. ACS Nano, 7(9), 7500–7512. https://doi.org/10.1021/nn401095p.

  71. Bonnet, S., Archer, S. L., Allalunis-Turner, J., Haromy, A., Beaulieu, C., Thompson, R., … Michelakis, E. D. (2007). A mitochondria-K+ channel Axis is suppressed in Cancer and its normalization promotes apoptosis and inhibits Cancer growth. Cancer Cell, 11(1), 37–51. https://doi.org/10.1016/j.ccr.2006.10.020.

  72. Cufí, S., Vazquez-Martin, A., Oliveras-Ferraros, C., Martin-Castillo, B., Vellon, L., & Menendez, J. A. (2011). Autophagy positively regulates the CD44+CD24−/low breast cancer stem-like phenotype. Cell Cycle, 10(22), 3871–3885. https://doi.org/10.4161/cc.10.22.17976

    Article  CAS  PubMed  Google Scholar 

  73. Kim, K.-Y., Yu, S.-N., Lee, S.-Y., Chun, S.-S., Choi, Y.-L., Park, Y.-M., … Ahn, S.-C. (2011). Salinomycin-induced apoptosis of human prostate cancer cells due to accumulated reactive oxygen species and mitochondrial membrane depolarization. Biochemical and Biophysical Research Communications, 413(1), 80–86.

  74. Song, K. S., Kim, J. S., Yun, E. J., Kim, Y. R., Seo, K. S., Park, J. H., … Hwang, B. D. (2008). Rottlerin induces autophagy and apoptotic cell death through a PKC-δ-independent pathway in HT1080 human fibrosarcoma cells: The protective role of autophagy in apoptosis. Autophagy, 4(5), 650–658. https://doi.org/10.4161/auto.6057.

  75. Singh, B. N., Kumar, D., Shankar, S., & Srivastava, R. K. (2012). Rottlerin induces autophagy which leads to apoptotic cell death through inhibition of PI3K/Akt/mTOR pathway in human pancreatic cancer stem cells. Biochemical Pharmacology, 84(9), 1154–1163.

    Article  CAS  PubMed  Google Scholar 

  76. Kim, H. N., Kim, D. H., Kim, E. H., Lee, M. H., Kundu, J. K., Na, H. K., … Surh, Y. J. (2014). Sulforaphane inhibits phorbol ester-stimulated IKK-NF-κB signaling and COX-2 expression in human mammary epithelial cells by targeting NF-κB activating kinase and ERK. Cancer Letters, 351(1), 41–49. https://doi.org/10.1016/j.canlet.2014.03.037.

  77. Urvalek, A. M., & Gudas, L. J. (2014). Retinoic acid and histone deacetylases regulate epigenetic changes in embryonic stem cells. Journal of Biological Chemistry, 289(28), 19519–19530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Taddei, A., Roche, D., Bickmore, W. A., & Almouzni, G. (2005). The effects of histone deacetylase inhibitors on heterochromatin: Implications for anticancer therapy? EMBO Reports, 6(6), 520–524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fritz, K., Tiplica, G. S., Salavastru, C., & Onder, M. (2013). Alitretinoin und off-label-use. Hautarzt, 64(10), 748–751. https://doi.org/10.1007/s00105-013-2593-2

    Article  CAS  PubMed  Google Scholar 

  80. Vahlquist, A., & Rollman, O. (1987). Clinical pharmacology of 3 generations of retinoids. Dermatology, 175(Suppl. 1), 20–27.

    Article  Google Scholar 

  81. Yoham, A. L., & Casadesus, D. (2020). Tretinoin. In StatPearls [Internet]. StatPearls Publishing.

  82. Xiao, J.-H., Durand, B., Chambon, P., & Voorhees, J. J. (1995). Endogenous retinoic acid receptor (RAR)-retinoid X receptor (RXR) Heterodimers are the major functional forms regulating retinoid-responsive elements in adult human keratinocytes binding of  ligands to rar  only is sufficient for rar• rxr heterodimers to co. Journal of Biological Chemistry, 270(7), 3001–3011.

    Article  CAS  PubMed  Google Scholar 

  83. Tomita, A., Kiyoi, H., & Naoe, T. (2013). Mechanisms of action and resistance to all-trans retinoic acid (ATRA) and arsenic trioxide (as 2 O 3) in acute promyelocytic leukemia. International Journal of Hematology, 97(6), 717–725.

    Article  CAS  PubMed  Google Scholar 

  84. Allenby, G., Janocha, R., Kazmer, S., Speck, J., Grippo, J. F., & Levin, A. A. (1994). Binding of 9-cis-retinoic acid and all-trans-retinoic acid to retinoic acid receptors alpha, beta, and gamma. Retinoic acid receptor gamma binds all-trans-retinoic acid preferentially over 9-cis-retinoic acid. Journal of Biological Chemistry, 269(24), 16689–16695.

    Article  CAS  PubMed  Google Scholar 

  85. Bushue, N., & Wan, Y. J. Y. (2010). Retinoid pathway and cancer therapeutics. Advanced Drug Delivery Reviews, 62(13), 1285–1298. https://doi.org/10.1016/j.addr.2010.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Xu, X., Chai, S., Wang, P., Zhang, C., Yang, Y., Yang, Y., & Wang, K. (2015). Aldehyde dehydrogenases and cancer stem cells. Cancer Letters, 369(1), 50–57. https://doi.org/10.1016/j.canlet.2015.08.018

    Article  CAS  PubMed  Google Scholar 

  87. Kawasaki, T., & Kawai, T. (2014). Toll-like receptor signaling pathways. Frontiers in Immunology, 5(SEP), 1–8. https://doi.org/10.3389/fimmu.2014.00461

    Article  CAS  Google Scholar 

  88. Kawai, T., & Akira, S. (2006). TLR signaling. Cell Death & Differentiation, 13(5), 816–825.

    Article  CAS  Google Scholar 

  89. Heidarzadeh, M., Roodbari, F., Hassanpour, M., Ahmadi, M., Saberianpour, S., & Rahbarghazi, R. (2020). Toll-like receptor bioactivity in endothelial progenitor cells. Cell and tissue Research, 1–8.

  90. Barton, G. M., & Medzhitov, R. (2003). Toll-like receptor signaling pathways. Science, 300(5625), 1524–1525.

    Article  CAS  PubMed  Google Scholar 

  91. Premkumar, V., Dey, M., Dorn, R., & Raskin, I. (2010). MyD88-dependent and independent pathways of toll-like receptors are engaged in biological activity of triptolide in ligand-stimulated macrophages. BMC Chemical Biology, 10. https://doi.org/10.1186/1472-6769-10-3

  92. Estornes, Y., Micheau, O., Renno, T., & Lebecque, S. (2013). Dual role of TLR3 in inflammation and cancer cell apoptosis. World’s largest Science, Technology & Medicine Open Access book publisher, 247–270.

  93. Adams, S. (2009). Toll-like receptor agonists in cancer therapy. Immunotherapy, 1(6), 949–964.

    Article  CAS  PubMed  Google Scholar 

  94. Sharma, S., Zhu, L., Davoodi, M., Harris-White, M., Lee, J. M., St John, M., … Dubinett, S. (2013). TLR3 agonists and proinflammatory antitumor activities. Expert Opinion on Therapeutic Targets, 17(5), 481–483.

  95. Brackett, C. M., Kojouharov, B., Veith, J., Greene, K. F., Burdelya, L. G., Gollnick, S. O., … Gudkov, A. V. (2016). Toll-like receptor-5 agonist, entolimod, suppresses metastasis and induces immunity by stimulating an NK-dendritic-CD8+ T-cell axis. Proceedings of the National Academy of Sciences, 113(7), E874–E883.

  96. Cheng, Y., & Xu, F. (2010). Anticancer function of polyinosinic-polycytidylic acid. Cancer Biology & Therapy, 10(12), 1219–1223.

    Article  CAS  Google Scholar 

  97. Zhao, S., Zhang, Y., Zhang, Q., Wang, F., & Zhang, D. (2014). Toll-like receptors and prostate cancer. Frontiers in Immunology, 5(JUL), 1–6. https://doi.org/10.3389/fimmu.2014.00352

    Article  CAS  Google Scholar 

  98. Kolla, V., Lindner, D. J., Weihua, X., Borden, E. C., & Kalvakolanu, D. V. (1996). Modulation of interferon (IFN)-inducible gene expression by retinoic acid up-regulation of STAT1 protein in IFN-unresponsive cells. Journal of Biological Chemistry, 271(18), 10508–10514.

    Article  CAS  PubMed  Google Scholar 

  99. Liu, J., Guo, Y. M., Hirokawa, M., Iwamoto, K., Ubukawa, K., Michishita, Y., … Sawada, K. (2012). A synthetic double-stranded RNA, poly I: C, induces a rapid apoptosis of human CD34+ cells. Experimental Hematology, 40(4), 330–341. https://doi.org/10.1016/j.exphem.2011.12.002.

  100. Colapicchioni, V., Palchetti, S., Pozzi, D., Marini, E. S., Riccioli, A., Ziparo, E., … Caracciolo, G. (2015). Killing cancer cells using nanotechnology: Novel poly (I: C) loaded liposome–silica hybrid nanoparticles. Journal of Materials Chemistry B, 3(37), 7408–7416.

  101. Galli, R., Paone, A., Fabbri, M., Zanesi, N., Calore, F., Cascione, L., … Lovat, F. (2013). Toll-like receptor 3 (TLR3) activation induces microRNA-dependent reexpression of functional RARβ and tumor regression. Proceedings of the National Academy of Sciences, 110(24), 9812–9817.

  102. Bernardo, A. R., Cosgaya, J. M., Aranda, A., & Jiménez-Lara, A. M. (2013). Synergy between RA and TLR3 promotes type I IFN- dependent apoptosis through upregulation of TRAIL pathway in breast cancer cells. Cell Death and Disease, 4(1), 1–10. https://doi.org/10.1038/cddis.2013.5

    Article  Google Scholar 

  103. Paone, A., Starace, D., Galli, R., Padula, F., De Cesaris, P., Filippini, A., … Riccioli, A. (2008). Toll-like receptor 3 triggers apoptosis of human prostate cancer cells through a PKC-α-dependent mechanism. Carcinogenesis, 29(7), 1334–1342.

  104. Le Naour, J., Galluzzi, L., Zitvogel, L., Kroemer, G., & Vacchelli, E. (2020). Trial watch: TLR3 agonists in cancer therapy. OncoImmunology, 9(1), 1771143.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Gonza, L. O., & Gonza, M. (2011). Study of TLR3 , TLR4 , and TLR9 in prostate carcinomas and their association with biochemical recurrence, 217–226. https://doi.org/10.1007/s00262-010-0931-0.

  106. Chen, Y., Luo, L., Zhang, S. G., Ding, R., Zhou, J., & Yang, C. (2020). A porous co(II)–MOF for selective C2H2/CO2 separation and treatment activity on virus-induced COPD via reducing tlr3 gene expression. Journal of Coordination Chemistry, 73(9), 1450–1463. https://doi.org/10.1080/00958972.2020.1786886

    Article  CAS  Google Scholar 

  107. Kozul, C. D., Hampton, T. H., Davey, J. C., Gosse, J. A., Nomikos, A. P., Eisenhauer, P. L., … Hamilton, J. W. (2009). Chronic exposure to arsenic in the drinking water alters the expression of immune response genes in mouse lung. Environmental Health Perspectives, 117(7), 1108–1115. https://doi.org/10.1289/ehp.0800199.

  108. Todt, J. C., Freeman, C. M., Brown, J. P., Sonstein, J., Ames, T. M., McCubbrey, A. L., … Curtis, J. L. (2013). Smoking decreases the response of human lung macrophages to double-stranded RNA by reducing TLR3 expression. Respiratory Research, 14(1), 1–15. https://doi.org/10.1186/1465-9921-14-33.

  109. Alvarado-Morales, I., Olivares-Illana, V., Arenas-Huertero, C., Reynaga-Hernández, E., Layseca-Espinosa, E., Tokar, E. J., & Escudero-Lourdes, C. (2021). Human prostate epithelial cells and prostate-derived stem cells malignantly transformed in vitro with sodium arsenite show impaired toll like receptor-3 (TLR3)-associated anti-tumor pathway. Toxicology Letters, 350, 185–193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Taura, M., Eguma, A., Suico, M. A., Shuto, T., Koga, T., Komatsu, K., … Li, J.-D. (2008). p53 regulates toll-like receptor 3 expression and function in human epithelial cell lines. Molecular and Cellular Biology, 28(21), 6557–6567.

  111. Menendez, D., Shatz, M., Azzam, K., Garantziotis, S., Fessler, M. B., & Resnick, M. A. (2011). The toll-like receptor gene family is integrated into human DNA damage and p53 networks. PLoS Genetics, 7(3). https://doi.org/10.1371/journal.pgen.1001360

  112. Strohmeyer, D., Rössing, C., Bauerfeind, A., Kaufmann, O., Schlechte, H., Bartsch, G., & Loening, S. (2000). Vascular endothelial growth factor and its correlation with angiogenesis and p53 expression in prostate cancer. The Prostate, 45(3), 216–224.

    Article  CAS  PubMed  Google Scholar 

  113. Zhang, Z., Li, M., Wang, H., Agrawal, S., & Zhang, R. (2003). Antisense therapy targeting MDM2 oncogene in prostate cancer: Effects on proliferation, apoptosis, multiple gene expression, and chemotherapy. Proceedings of the National Academy of Sciences of the United States of America, 100(20), 11636–11641. https://doi.org/10.1073/pnas.1934692100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Logan, I. R., McNeill, H. V., Cook, S., Lu, X., Lunec, J., & Robson, C. N. (2007). Analysis of the MDM2 antagonist nutlin-3 in human prostate cancer cells. The Prostate, 67(8), 900–906.

    Article  CAS  PubMed  Google Scholar 

  115. Menendez, D., Shatz, M., & Resnick, M. A. (2013). Interactions between the tumor suppressor p53 and immune responses. Current Opinion in Oncology, 25(1), 85–92.

    Article  CAS  PubMed  Google Scholar 

  116. Mrass, P., Rendl, M., Mildner, M., Gruber, F., Lengauer, B., Ballaun, C., … Tschachler, E. (2004). Retinoic acid increases the expression of p53 and proapoptotic caspases and sensitizes keratinocytes to apoptosis: A possible explanation for tumor preventive action of retinoids. Cancer Research, 64(18), 6542–6548.

  117. MacPherson, C. W., Shastri, P., Mathieu, O., Tompkins, T. A., & Burguière, P. (2017). Genome-wide immune modulation of TLR3-mediated inflammation in intestinal epithelial cells differs between single and multi-strain probiotic combination. PLoS One, 12(1), 1–18. https://doi.org/10.1371/journal.pone.0169847

    Article  CAS  Google Scholar 

  118. Chanda, S., Dasgupta, U. B., GuhaMazumder, D., Gupta, M., Chaudhuri, U., Lahiri, S., … Chatterjee, D. (2006). DNA hypermethylation of promoter of gene p53 and p16 in arsenic-exposed people with and without malignancy. Toxicological Sciences, 89(2), 431–437. https://doi.org/10.1093/toxsci/kfj030.

  119. Quinn, D. I., Stricker, P. D., Kench, J. G., Grogan, J., Haynes, A. M., Henshall, S. M., … Mahon, K. L. (2019). P53 nuclear accumulation as an early Indicator of lethal prostate Cancer. British Journal of Cancer, 121(7), 578–583. https://doi.org/10.1038/s41416-019-0549-8.

  120. Saito, H., Kitagawa, K., Yoneda, T., Fukui, Y., Fujsawa, M., Bautista, D., & Shirakawa, T. (2017). Combination of p53-DC vaccine and rAd-p53 gene therapy induced CTLs cytotoxic against p53-deleted human prostate cancer cells in vitro. Cancer Gene Therapy, 24(7), 289–296. https://doi.org/10.1038/cgt.2017.21

    Article  CAS  PubMed  Google Scholar 

  121. Tang, G., Cho, M., & Wang, X. (2022). OncoDB: An interactive online database for analysis of gene expression and viral infection in cancer. Nucleic Acids Research, 50(D1), D1334–D1339.

    Article  CAS  PubMed  Google Scholar 

  122. Rahman, M., Jackson, L. K., Johnson, W. E., Li, D. Y., Bild, A. H., & Piccolo, S. R. (2015). Alternative preprocessing of RNA-sequencing data in the Cancer genome atlas leads to improved analysis results. Bioinformatics, 31(22), 3666–3672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 1–21.

    Article  Google Scholar 

  124. Jo, J., Choi, S., Oh, J., Lee, S.-G., Choi, S. Y., Kim, K. K., & Park, C. (2019). Conventionally used reference genes are not outstanding for normalization of gene expression in human cancer research. BMC Bioinformatics, 20(10), 13–21.

    Google Scholar 

  125. Carceles-Cordon, M., Kelly, W. K., Gomella, L., Knudsen, K. E., Rodriguez-Bravo, V., & Domingo-Domenech, J. (2020). Cellular rewiring in lethal prostate cancer: The architect of drug resistance. Nature Reviews Urology. https://doi.org/10.1038/s41585-020-0298-8

  126. Shen, M. M., & Abate-Shen, C. (2010). Molecular genetics of prostate cancer: New prospects for old challenges. Genes and Development. Cold Spring Harbor Laboratory Press. https://doi.org/10.1101/gad.1965810.

  127. Basil, P., Robertson, M. J., Bingman, W. E., Dash, A. K., Krause, W. C., Shafi, A. A., … Weigel, N. L. (2022). Cistrome and transcriptome analysis identifies unique androgen receptor (AR) and AR-V7 splice variant chromatin binding and transcriptional activities. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-09371-x.

  128. Veldscholte, J., Ris-Stalpers, C., Kuiper, G., Jenster, G., Berrevoets, C., Claassen, E., … Mulder, E. (1990). A mutation in the ligand binding domain of the androgen receptor of human INCaP cells affects steroid binding characteristics and response to anti-androgens. Biochemical and Biophysical Research Communications, 173(2), 534–540.

  129. Wang, Q., Li, W., Zhang, Y., Yuan, X., Xu, K., Yu, J., … Brown, M. (2009). Androgen receptor regulates a distinct transcription program in androgen-independent prostate Cancer. Cell, 138(2), 245–256. https://doi.org/10.1016/j.cell.2009.04.056.

  130. Carver, B. S., Chapinski, C., Wongvipat, J., Hieronymus, H., Chen, Y., Chandarlapaty, S., … Scher, H. (2011). Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell, 19(5), 575–586.

  131. Festuccia, C., Gravina, G. L., Muzi, P., Pomante, R., Ventura, L., Vessella, R. L., … Bologna, M. (2007). Bicalutamide increases phospho-Akt levels through Her2 in patients with prostate cancer. Endocrine-Related Cancer, 14(3), 601–611. https://doi.org/10.1677/ERC-07-0118.

  132. Somarelli, J. A., Armstrong, A. J., Sheth, M. U., Ware, K. E., & Jolly, M. K. (2020). Phenotypic plasticity and lineage switching in prostate cancer. In Phenotypic Switching: Implications in Biology and Medicine (pp. 591–615). Elsevier. https://doi.org/10.1016/B978-0-12-817996-3.00021-9.

  133. Xia, L., Han, Q., Duan, X., Zhu, Y., Pan, J., Dong, B., … Sha, J. (2022). m6A-induced repression of SIAH1 facilitates alternative splicing of androgen receptor variant 7 by regulating CPSF1. Molecular Therapy - Nucleic Acids, 28, 219–230. https://doi.org/10.1016/j.omtn.2022.03.008.

  134. Dutta, S., Polavaram, N. S., Islam, R., Bhattacharya, S., Bodas, S., Mayr, T., … Darehshouri, A. (2022). Neuropilin-2 regulates androgen-receptor transcriptional activity in advanced prostate cancer. Oncogene, 1–14.

  135. Polkinghorn, W. R., Parker, J. S., Lee, M. X., Kass, E. M., Spratt, D. E., Iaquinta, P. J., … Sawyers, C. L. (2013). Androgen receptor signaling regulates DNA repair in prostate cancers. Cancer Discovery, 3(11), 1245–1253. https://doi.org/10.1158/2159-8290.CD-13-0172.

  136. Tang, D. G. (2022). Understanding and targeting prostate cancer cell heterogeneity and plasticity. Seminars in Cancer Biology. Academic Press. https://doi.org/10.1016/j.semcancer.2021.11.001.

  137. Kong, D., Sethi, S., Li, Y., Chen, W., Sakr, W. A., Heath, E., & Sarkar, F. H. (2015). Androgen receptor splice variants contribute to prostate cancer aggressiveness through induction of EMT and expression of stem cell marker genes. Prostate, 75(2), 161–174. https://doi.org/10.1002/pros.22901

    Article  CAS  PubMed  Google Scholar 

  138. Zhang, J., Chen, M., Zhu, Y., Dai, X., Dang, F., Ren, J., … Gan, W. (2019). SPOP promotes nanog destruction to suppress stem cell traits and prostate cancer progression. Developmental Cell, 48(3), 329–344.

  139. Wang, X., Jin, J., Wan, F., Zhao, L., Chu, H., Chen, C., … Teng, H. (2019). AMPK promotes SPOP-mediated NANOG degradation to regulate prostate cancer cell stemness. Developmental Cell, 48(3), 345–360.

  140. Bianchi, F., Milione, M., Casalini, P., Centonze, G., le Noci, V. M., Storti, C., … Pastorino, U. (2019). Toll-like receptor 3 as a new marker to detect high risk early stage non-small-cell lung Cancer patients. Scientific Reports, 9(1), 1–10.

Download references

Acknowledgements

Authors acknowledge the contribution of Jesús Gómez Montalvo, member of the RNA Metabolism and Extracellular Vesicles Consortium, National Institute of Genomic Medicine, (INMEGEN), Mexico City, for the rigorous analysis done from various databases to determine the expression of TLR3 and RARβ in clinical samples from patients with PCa.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Claudia Escudero-Lourdes, identified the opportunity to make this review and set up the corresponding structure and specific objectives of the manuscript. She conducted the analysis and final writing of most part of the manuscript, designed the figures and prepared the revised version of it and the answer to the reviewers’ comments.

Dr. Ildemar Alvarado-Morales, under the supervision of the corresponding author, worked in the acquisition and extraction of information from literature, manage the references database, and shaped the final version of the images.

Dr. Erick Tokar, discussed the scientific and conceptual framework of the article and provided substantial contributions in stylistic/grammatical issues.

Corresponding author

Correspondence to Claudia Escudero-Lourdes.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

The authors declare that they have given their consent to participate in the preparation of this article.

Consent for Publication

The authors declare that they have given their consent for this article to be published.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escudero-Lourdes, C., Alvarado-Morales, I. & Tokar, E.J. Stem Cells as Target for Prostate cancer Therapy: Opportunities and Challenges. Stem Cell Rev and Rep 18, 2833–2851 (2022). https://doi.org/10.1007/s12015-022-10437-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-022-10437-6

Keywords

Navigation