Skip to main content

Advertisement

Log in

Effects of Magnetite Nanoparticles and Static Magnetic Field on Neural Differentiation of Pluripotent Stem Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Neurodevelopmental processes of pluripotent cells, such as proliferation and differentiation, are influenced by external natural forces. Despite the presence of biogenic magnetite nanoparticles in the central nervous system and constant exposure to the Earth’s magnetic fields and other sources, there is scant knowledge regarding the role of electromagnetic stimuli in neurogenesis. Moreover, emerging applications of electrical and magnetic stimulation to treat neurological disorders emphasize the relevance of understanding the impact and mechanisms behind these stimuli. Here, the effects of magnetic nanoparticles (MNPs) in polymeric coatings and the static external magnetic field (EMF) were investigated on neural induction of murine embryonic stem cells (mESCs) and human induced pluripotent stem cells (hiPSCs). The results show that the presence of 0.5% MNPs in collagen-based coatings facilitates the migration and neuronal maturation of mESCs and hiPSCs in vitro. Furthermore, the application of 0.4 Tesla EMF perpendicularly to the cell culture plane, discernibly stimulates proliferation and guide fate decisions of the pluripotent stem cells, depending on the origin of stem cells and their developmental stage. Mechanistic analysis reveals that modulation of ionic homeostasis and the expression of proteins involved in cytostructural, liposomal and cell cycle checkpoint functions provide a principal underpinning for the impact of electromagnetic stimuli on neural lineage specification and proliferation. These findings not only explore the potential of the magnetic stimuli as neural differentiation and function modulator but also highlight the risks that immoderate magnetic stimulation may affect more susceptible neurons, such as dopaminergic neurons.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Erdmann, W., Kmita, H., Kosicki, J. Z., & Kaczmarek, Ł. (2021). How the Geomagnetic Field Influences Life on Earth - An Integrated Approach to Geomagnetobiology. Origins of Life and Evolution of the Biosphere: The Journal of the International Society for the Study of the Origin of Life, 51(3), 231–257. https://doi.org/10.1007/s11084-021-09612-5

    Article  Google Scholar 

  2. Buis, A. (2021). [online] Available at: https://climate.nasa.gov/news/3105/earths-magnetosphere-protecting-our-planet-from-harmful-space-energy NASA's Jet Propulsion Laboratory, 2021. [Accessed 21 Nov. 2021].

  3. Kirschvink, J. L., Kobayashi-kirschvink, A., & Woodford, B. J. (1992). Magnetite biomineralization in the human brain, 89(August), 7683–7687.

  4. Kenneth, J. (2010). Magnetic-field perception. Nature Q&A, 464(22), 1140–1142.

    Google Scholar 

  5. Størmer, F. C., Mysterud, I., & Slagsvold, T. (2011). Evolution and possible storage of information in a magnetite system of significance for brain development. Medical Hypotheses, 76(6), 901–904. https://doi.org/10.1016/j.mehy.2011.03.004

    Article  CAS  PubMed  Google Scholar 

  6. Gieré, R. (2016). Magnetite in the human body: Biogenic vs. anthropogenic. Proceedings of the National Academy of Sciences, 113(43), 11986–11987. https://doi.org/10.1073/pnas.1613349113

    Article  CAS  Google Scholar 

  7. Dobson, J. (2002). Investigation of age-related variations in biogenic magnetite levels in the human hippocampus. Experimental Brain Research, 144(1), 122–126. https://doi.org/10.1007/s00221-002-1066-0

    Article  CAS  PubMed  Google Scholar 

  8. Brooks, J., Everett, J., Lermyte, F., Tjendana Tjhin, V., Sadler, P. J., Telling, N., & Collingwood, J. F. (2020). Analysis of neuronal iron deposits in Parkinson’s disease brain tissue by synchrotron x-ray spectromicroscopy. Journal of trace elements in medicine and biology: organ of the Society for Minerals and Trace Elements (GMS), 62, 126555. https://doi.org/10.1016/j.jtemb.2020.126555

    Article  CAS  Google Scholar 

  9. Mo, W. chuan, Zhang, Z. jian, Liu, Y., Bartlett, P. F., & He, R. qiao. (2013). Magnetic Shielding Accelerates the Proliferation of Human Neuroblastoma Cell by Promoting G1-Phase Progression. PLoS One, 8(1), 1–11. https://doi.org/10.1371/journal.pone.0054775.

  10. Semeano, A. T., Glaser, T., Ulrich, H., & Petri, D. F. S. P. (2016). Scaffolds for Embryonic Stem Cell Growth and Differentiation. In Working with Stem Cells (pp. 347–365).

  11. Pacini, S., Vannelli, G. B., Barni, T., Ruggiero, M., Sardi, I., Pacini, P., & Gulisano, M. (1999). Effect of 0.2 T static magnetic field on human neurons: Remodeling and inhibition of signal transduction without genome instability. Neuroscience Letters, 267(3), 185–188. https://doi.org/10.1016/S0304-3940(99)00362-6

  12. Kaebisch, C., Schipper, D., Babczyk, P., & Tobiasch, E. (2015). The role of purinergic receptors in stem cell differentiation. Computational and Structural Biotechnology Journal, 13, 75–84. https://doi.org/10.1016/j.csbj.2014.11.003

    Article  CAS  PubMed  Google Scholar 

  13. Tabar, V., & Studer, L. (2014). Pluripotent stem cells in regenerative medicine : challenges and recent progress. Nature Publishing Group, 15(2), 82–92. https://doi.org/10.1038/nrg3563

    Article  CAS  Google Scholar 

  14. Trounson, A., & Dewitt, N. D. (2016). Pluripotent stem cells progressing to the clinic st l S S e. Nature Publishing Group, 17(3), 194–200. https://doi.org/10.1038/nrm.2016.10

    Article  CAS  Google Scholar 

  15. Krishna, L., Dhamodaran, K., Jayadev, C., Chatterjee, K., Shetty, R., & Khora, S. S. (2016). Nanostructured scaffold as a determinant of stem cell fate. Stem Cell Research & Therapy, 1–12. https://doi.org/10.1186/s13287-016-0440-y

  16. da Silva, A. C., Semeano, A. T. S., Dourado, A. H. B., Ulrich, H., & Cordoba de Torresi, S. I. (2018). Novel Conducting and Biodegradable Copolymers with Noncytotoxic Properties toward Embryonic Stem Cells. ACS Omega, 3(5), 5593–5604. https://doi.org/10.1021/acsomega.8b00510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fornazari, M., Nascimento, I. C., Nery, A. A., da Silva, C. C. C., Kowaltowski, A. J., & Ulrich, H. (2011). Neuronal differentiation involves a shift from glucose oxidation to fermentation. Journal of Bioenergetics and Biomembranes, 43(5), 531–539. https://doi.org/10.1007/s10863-011-9374-3

    Article  CAS  PubMed  Google Scholar 

  18. Glaser, T., de Oliveira, S. L. B., Cheffer, A., Beco, R., Martins, P., Fornazari, M., et al. (2014). Modulation of mouse embryonic stem cell proliferation and neural differentiation by the P2X7 receptor. PLoS One, 9(5), e96281. https://doi.org/10.1371/journal.pone.0096281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tofoli, F. de A., Chien, H. F., Barbosa, E. R., & Pereira, L. V. (2019). Generation of 5 hiPSC lines derived from three unrelated idiopathic Parkinson disease patients and two unrelated healthy control individuals. Stem Cell Research, 41, 101640. https://doi.org/10.1016/j.scr.2019.101640

    Article  CAS  Google Scholar 

  20. Tofoli, F. A., Semeano, A. T. S., Oliveira-Giacomelli, Á., Gonçalves, M. C. B., Ferrari, M. F. R., Veiga Pereira, L., & Ulrich, H. (2019). Midbrain Dopaminergic Neurons Differentiated from Human-Induced Pluripotent Stem Cells. Methods in Molecular Biology (Clifton, N.J.), 1919, 97–118. https://doi.org/10.1007/978-1-4939-9007-8_8.

  21. Bueno, V. B., Silva, A. M., Barbosa, L. R. S., Catalani, L. H., Teixeira-Neto, É., Cornejo, D. R., & Petri, D. F. S. (2013). Hybrid composites of xanthan and magnetic nanoparticles for cellular uptake. Chemical Communications, 49(85), 9911–9913. https://doi.org/10.1039/C3CC42277A

    Article  CAS  PubMed  Google Scholar 

  22. Strober, W. (2015). Trypan Blue Exclusion Test of Cell Viability. Current Protocols in Immunology, 111, A3.B.1-A3.B.3. https://doi.org/10.1002/0471142735.ima03bs111.

  23. Martins, A. H. B., Resende, R. R., Majumder, P., Faria, M., Casarini, D. E., Tárnok, A., et al. (2005). Neuronal differentiation of P19 embryonal carcinoma cells modulates kinin B2 receptor gene expression and function. The Journal of Biological Chemistry, 280(20), 19576–19586. https://doi.org/10.1074/jbc.M502513200

    Article  CAS  PubMed  Google Scholar 

  24. Kundu, A., Patel, A., & Pal, A. (2013). Defining reference genes for qPCR normalization to study biotic and abiotic stress responses in Vigna mungo. Plant Cell Reports, 32(10), 1647–1658. https://doi.org/10.1007/s00299-013-1478-2

    Article  CAS  PubMed  Google Scholar 

  25. Mootha, V. K., Lindgren, C. M., Eriksson, K.-F., Subramanian, A., Sihag, S., Lehar, J., et al. (2003). PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature Genetics, 34(3), 267–273. https://doi.org/10.1038/ng1180

    Article  CAS  PubMed  Google Scholar 

  26. Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., … Mesirov, J. P. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences, 102(43), 15545–15550. https://doi.org/10.1073/pnas.0506580102

  27. Glaser, T., Shimojo, H., Ribeiro, D. E., Martins, P. P. L., Beco, R. P., Kosinski, M., et al. (2021). ATP and spontaneous calcium oscillations control neural stem cell fate determination in Huntington’s disease: a novel approach for cell clock research. Molecular Psychiatry, 26(6), 2633–2650. https://doi.org/10.1038/s41380-020-0717-5

    Article  CAS  PubMed  Google Scholar 

  28. Glaser, T., Andrejew, R., Oliveira-Giacomelli, Á., Ribeiro, D. E., Bonfim Marques, L., Ye, Q., et al. (2020). Purinergic Receptors in Basal Ganglia Diseases: Shared Molecular Mechanisms between Huntington’s and Parkinson’s Disease. Neuroscience Bulletin, 36(11), 1299–1314. https://doi.org/10.1007/s12264-020-00582-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Flierl, A., Oliveira, L. M. A., Falomir-Lockhart, L. J., Mak, S. K., Hesley, J., Soldner, F., et al. (2014). Higher vulnerability and stress sensitivity of neuronal precursor cells carrying an alpha-synuclein gene triplication. PLoS One, 9(11), e112413. https://doi.org/10.1371/journal.pone.0112413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Viegas, A. D. C., Geshev, J., Schmidt, J. E., & Ferrari, E. F. (1998). Giant magnetoresistance and remanence in granular CoCu codeposited films. Journal of Applied Physics, 83(11), 7007–7009. https://doi.org/10.1063/1.367808

    Article  CAS  Google Scholar 

  31. Glaser, T., Bueno, V. B., Cornejo, D. R., Petri, D. F. S., & Ulrich, H. (2015). Neuronal adhesion, proliferation and differentiation of embryonic stem cells on hybrid scaffolds made of xanthan and magnetite nanoparticles. Biomedical Materials (Bristol), 10(4). https://doi.org/10.1088/1748-6041/10/4/045002

  32. Castro, P. S., Bertotti, M., Naves, A. F., Catalani, L. H., Cornejo, D. R., Bloisi, G. D., & Petri, D. F. S. (2017). Hybrid magnetic scaffolds: The role of scaffolds charge on the cell proliferation and Ca2+ ions permeation. Colloids and Surfaces B: Biointerfaces, 156, 388–396. https://doi.org/10.1016/j.colsurfb.2017.05.046

    Article  CAS  PubMed  Google Scholar 

  33. Singh, N., Jenkins, G. J. S., Asadi, R., & Doak, S. H. (2010). Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Reviews, 1. https://doi.org/10.3402/nano.v1i0.5358

  34. Wahajuddin, null, & Arora, S. (2012). Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. International Journal of Nanomedicine, 7, 3445–3471. https://doi.org/10.2147/IJN.S30320

    Article  CAS  Google Scholar 

  35. Yu, D., Neeley, W. L., Pritchard, C. D., Slotkin, J. R., Woodard, E. J., Langer, R., & Teng, Y. D. (2009). Blockade of peroxynitrite-induced neural stem cell death in the acutely injured spinal cord by drug-releasing polymer. Stem Cells, 27(5), 1212–1222. https://doi.org/10.1002/stem.26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mounsey, R. B., & Teismann, P. (2012). Chelators in the treatment of iron accumulation in Parkinson’s disease. International journal of cell biology, 2012, 983245. https://doi.org/10.1155/2012/983245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim, S., Im, W. S., Kang, L., Lee, S. T., Chu, K., & Kim, B. I. (2008). The application of magnets directs the orientation of neurite outgrowth in cultured human neuronal cells. Journal of Neuroscience Methods, 174(1), 91–96. https://doi.org/10.1016/j.jneumeth.2008.07.005

    Article  PubMed  Google Scholar 

  38. Mo, W.-C., Zhang, Z.-J., Wang, D.-L., Liu, Y., Bartlett, P. F., & He, R.-Q. (2016). Shielding of the Geomagnetic Field Alters Actin Assembly and Inhibits Cell Motility in Human Neuroblastoma Cells. Scientific Reports, 6(1), 22624. https://doi.org/10.1038/srep22624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, Z., Hao, F., Ding, C., Yang, Z., & Shang, P. (2014). Effects of static magnetic field on cell biomechanical property and membrane ultrastructure. Bioelectromagnetics, 35(4), 251–261. https://doi.org/10.1002/bem.21847

    Article  CAS  PubMed  Google Scholar 

  40. Wang, Z., Sarje, A., Che, P. L., & Yarema, K. J. (2009). Moderate strength (0.23-0.28 T) static magnetic fields (SMF) modulate signaling and differentiation in human embryonic cells. BMC Genomics, 10, 1–23. https://doi.org/10.1186/1471-2164-10-356

    Article  CAS  Google Scholar 

  41. Wang, Z., Che, P.-L., Du, J., Ha, B., & Yarema, K. J. (2010). Static Magnetic Field Exposure Reproduces Cellular Effects of the Parkinson’s Disease Drug Candidate ZM241385. PLoS One, 5(11), e13883. https://doi.org/10.1371/journal.pone.0013883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lew, W.-Z., Huang, Y.-C., Huang, K.-Y., Lin, C.-T., Tsai, M.-T., & Huang, H.-M. (2016). Static magnetic fields enhance dental pulp stem cell proliferation by activating the p38 mitogen-activated protein kinase pathway as its putative mechanism. Journal of Tissue Engineering and Regenerative Medicine, 12(1), 19–29. https://doi.org/10.1002/term.2333

    Article  CAS  Google Scholar 

  43. Papke, D., Gonzalez-Gutierrez, G., & Grosman, C. (2011). Desensitization of neurotransmitter-gated ion channels during high-frequency stimulation: A comparative study of Cys-loop, AMPA and purinergic receptors. Journal of Physiology, 589(7), 1571–1585. https://doi.org/10.1113/jphysiol.2010.203315

    Article  CAS  Google Scholar 

  44. Hao, J., & Delmas, P. (2010). Multiple desensitization mechanisms of mechanotransducer channels shape firing of mechanosensory neurons. Journal of Neuroscience, 30(40), 13384–13395. https://doi.org/10.1523/JNEUROSCI.2926-10.2010

    Article  CAS  PubMed  Google Scholar 

  45. Graczyk, E. L., Delhaye3, B. P., Schiefer, M. A., Bensmaia, S. J., & Tyler, D. J. (2019). Sensory adaptation to electrical stimulation of the somatosensory nerves. Journal of Neural Engineering, 15(4), 1–15. https://doi.org/10.1088/1741-2552/aab790.Sensory.

  46. Li, H., Mapolelo, D. T., Randeniya, S., Johnson, M. K., & Outten, C. E. (2012). Human glutaredoxin 3 forms [2Fe-2S]-bridged complexes with human BolA2. Biochemistry, 51(8), 1687–1696. https://doi.org/10.1021/bi2019089.

  47. Banci, L., Camponeschi, F., Ciofi-Baffoni, S., & Muzzioli, R. (2015). Elucidating the Molecular Function of Human BOLA2 in GRX3-Dependent Anamorsin Maturation Pathway. Journal of the American Chemical Society, 137(51), 16133–16143. https://doi.org/10.1021/jacs.5b10592

    Article  CAS  PubMed  Google Scholar 

  48. Frey, A. G., Palenchar, D. J., Wildemann, J. D., & Philpott, C. C. (2016). A Glutaredoxin·BolA Complex Serves as an Iron-Sulfur Cluster Chaperone for the Cytosolic Cluster Assembly Machinery. The Journal of Biological Chemistry, 291(43), 22344–22356. https://doi.org/10.1074/jbc.M116.744946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nuttle, X., Giannuzzi, G., Duyzend, M. H., Schraiber, J. G., Narvaiza, I., Sudmant, P. H., et al. (2016). Emergence of a Homo sapiens-specific gene family and chromosome 16p11.2 CNV susceptibility. Nature, 536(7615), 205–209. https://doi.org/10.1038/nature19075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ghiani, C. A., Starcevic, M., Rodriguez-Fernandez, I. A., Nazarian, R., Cheli, V. T., Chan, L. N., … Dell’Angelica, E. C. (2010). The dysbindin-containing complex (BLOC-1) in brain: developmental regulation, interaction with SNARE proteins and role in neurite outgrowth. Molecular Psychiatry, 15(2), 115, 204–215. https://doi.org/10.1038/mp.2009.58.

  51. Fraldi, A., Klein, A. D., Medina, D. L., & Settembre, C. (2016). Brain Disorders Due to Lysosomal Dysfunction. Annual Review of Neuroscience, 39, 277–295. https://doi.org/10.1146/annurev-neuro-070815-014031

    Article  CAS  PubMed  Google Scholar 

  52. Fivenson, E. M., Lautrup, S., Sun, N., Scheibye-Knudsen, M., Stevnsner, T., Nilsen, H., et al. (2017). Mitophagy in neurodegeneration and aging. Neurochemistry International, 109, 202–209. https://doi.org/10.1016/j.neuint.2017.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Okarmus, J., Bogetofte, H., Schmidt, S. I., Ryding, M., García-López, S., Ryan, B. J., et al. (2020). Lysosomal perturbations in human dopaminergic neurons derived from induced pluripotent stem cells with PARK2 mutation. Scientific Reports, 10(1), 1–16. https://doi.org/10.1038/s41598-020-67091-6

    Article  CAS  Google Scholar 

  54. Demers-Lamarche, J., Guillebaud, G., Tlili, M., Todkar, K., Bélanger, N., Grondin, M., et al. (2016). Loss of mitochondrial function impairs Lysosomes∗. Journal of Biological Chemistry, 291(19), 10263–10276. https://doi.org/10.1074/jbc.M115.695825

    Article  CAS  Google Scholar 

  55. Bergmann, F., & Keller, B. U. (2004). Impact of mitochondrial inhibition on excitability and cytosolic Ca2+ levels in brainstem motoneurones from mouse. The Journal of Physiology, 555(Pt 1), 45–59. https://doi.org/10.1113/jphysiol.2003.053900

    Article  CAS  PubMed  Google Scholar 

  56. Liu, Y., & Zhang, Y. (2019). ETV5 is Essential for Neuronal Differentiation of Human Neural Progenitor Cells by Repressing NEUROG2 Expression. Stem Cell Reviews and Reports, 15(5), 703–716. https://doi.org/10.1007/s12015-019-09904-4.

  57. Adami, R., & Bottai, D. (2019). Spinal Muscular Atrophy Modeling and Treatment Advances by Induced Pluripotent Stem Cells Studies. Stem Cell Reviews and Reports, 15(6), 795–813. https://doi.org/10.1007/s12015-019-09910-6

    Article  PubMed  Google Scholar 

  58. Hansena, S. M., Berezinb, V., & Bockb, E. (2008). Signaling mechanisms of neurite outgrowth induced by the cell adhesion molecules NCAM and N-Cadherin. Cellular and Molecular Life Sciences, 65, 3809–3821. https://doi.org/10.1007/s00018-008-8290-0

    Article  CAS  Google Scholar 

  59. Ghashghaei, H. T., Lai, C., & Anton, E. S. (2007). Neuronal migration in the adult brain : are we there yet ?, 8(February), 141–151. https://doi.org/10.1038/nrn2074.

  60. Zablotskii, V., Polyakova, T., Lunov, O., & Dejneka, A. (2016). How a High-Gradient Magnetic Field Could Affect Cell Life. Scientific Reports, 6, 37407. https://doi.org/10.1038/srep37407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kirschvink, J. L. (1989). Magnetite biomineralization and geomagnetic sensitivity in higher animals: an update and recommendations for future study. Bioelectromagnetics, 10(3), 239–259. https://doi.org/10.1002/bem.2250100304

    Article  CAS  PubMed  Google Scholar 

  62. Yarjanli, Z., Ghaedi, K., Esmaeili, A., Rahgozar, S., & Zarrabi, A. (2017). Iron oxide nanoparticles may damage to the neural tissue through iron accumulation, oxidative stress, and protein aggregation. BMC Neuroscience, 18(1), 1–12. https://doi.org/10.1186/s12868-017-0369-9

    Article  CAS  Google Scholar 

  63. Goldman, S. (2003). Glia as neural progenitor cells. Trends in Neurosciences, 26(11), 590–596. https://doi.org/10.1016/j.tins.2003.09.011

    Article  CAS  PubMed  Google Scholar 

  64. Luarte, A., Cisternas, P., Caviedes, A., Batiz, L. F., Lafourcade, C., Wyneken, U., & Henzi, R. (2017). Astrocytes at the Hub of the Stress Response: Potential Modulation of Neurogenesis by miRNAs in Astrocyte-Derived Exosomes. Stem Cells International, 2017, 1719050. https://doi.org/10.1155/2017/1719050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Song, H., Stevens, C. F., & Gage, F. H. (2002). Astroglia induce neurogenesis from adult neural stem cells. Nature, 417(6884), 39–44. https://doi.org/10.1038/417039a

    Article  CAS  PubMed  Google Scholar 

  66. Salter, M. W., & Hicks, J. L. (1995). ATP causes release of intracellular Ca2+ via the phospholipase Cβ/IP3 pathway in astrocytes from the dorsal spinal cord. Journal of Neuroscience, 15(4), 2961–2971. https://doi.org/10.1523/jneurosci.15-04-02961.1995

    Article  CAS  PubMed  Google Scholar 

  67. Spitzer, N. C., Root, C. M., & Borodinsky, L. N. (2004). Orchestrating neuronal differentiation: Patterns of Ca2+ spikes specify transmitter choice. Trends in Neurosciences, 27(7), 415–421. https://doi.org/10.1016/j.tins.2004.05.003

    Article  CAS  PubMed  Google Scholar 

  68. Resende, R. R., Alves, A. S., Britto, L. R. G., & Ulrich, H. (2008). Role of acetylcholine receptors in proliferation and differentiation of P19 embryonal carcinoma cells. Experimental Cell Research, 314(7), 1429–1443. https://doi.org/10.1016/j.yexcr.2008.01.003

    Article  CAS  PubMed  Google Scholar 

  69. Sarichelou, I., Cappuccio, I., Ferranti, F., Mosillo, P., Ciceroni, C., Sale, P., et al. (2008). Metabotropic glutamate receptors regulate differentiation of embryonic stem cells into GABAergic neurons. Cell Death and Differentiation, 15(4), 700–707. https://doi.org/10.1038/sj.cdd.4402298

    Article  CAS  PubMed  Google Scholar 

  70. Giannuzzi, G., Schmidt, P. J., Porcu, E., Willemin, G., Munson, K. M., Nuttle, X., et al. (2019). The Human-Specific BOLA2 Duplication Modifies Iron Homeostasis and Anemia Predisposition in Chromosome 16p11.2 Autism Individuals. American Journal of Human Genetics, 105(5), 947–958. https://doi.org/10.1016/j.ajhg.2019.09.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

HU acknowledges grant support by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, proj. No. 2018/07366-4). DFSP acknowledges grant support by FAPESP (2018/134942-2). ATS is grateful for a doctorate fellowship granted by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, proj. No. 163310/2014-9). LVP acknowledges grant support FAPESP/CEPID 2013/08135-2. FTA is grateful for a doctorate fellowship granted by FAPESP (2014/25487-3), Conselho Nacional de Desenvolvimento Científico e Tecnológico Departamento de Ciência e Tecnologia do Ministério da Saúde (Neurodegenerative Diseases Study - chamada CNPq/MS/DECIT- 24/2014), Banco Nacional de Desenvolvimento Economico e Social (BNDES), Fundação de Apoio à Universidade de São Paulo (FUSP – project 2358) and Sanofi Genzyme Coorporation (Gaucher Generation 2010 grant program - GZ-2011-10731). MFRF acknowledges grant support by FAPESP (project No. 2013/08028-1; 2018/07592-4). RRC received a scholarship from FAPESP (project No. 2016/14513-8). JC-V was funded by a postdoctoral fellowship of the INCT-REGENERA (National Institute of Science and Technology in Regenerative Medicine). APJS is grateful for a doctorate fellowship and an exchange doctorate fellowship financed by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES, proj. No. 88882.332985/2018-01 and 8881.186506/2018-01). ÁO-G is grateful for a postdoctoral fellowship granted by FAPESP (2019/26852-0). Y.D.T. acknowledges funding by The US AMRMC (W81XWH-15-1-0621), The SCI Trust Fund of The Commonwealth of Massachusetts, The Gordon Project to Cure Clinical Paralysis, The Cele H. and William B. Rubin Family Fund, and The Roosevelt Warm Springs Foundation. The authors thank Prof. Daniel R. Cornejo, Institute of Physics, University of São Paulo, for the magnetization measurements. The graphical abstract and Fig. 1 were created using Biorender.com.

Availability of Data and Material

Data are available on request from Dr. Ana T. Semeano, Prof. Denise F.S. Petri and Prof. Henning Ulrich.

Author information

Authors and Affiliations

Authors

Contributions

ATSS, FTA, HU and DFSP conceived conceptual ideas; ATSS, FTA JC-V, APJS and RRC performed the experiments and data interpretation; ÁO-G, MAP, MFRF, ELR and GR performed data analysis; ATSS wrote the manuscript under supervision of HU and DSP; HU, DFSP, YDT, LVP, FTA, ÁO-G and MFRF made suggestions on manuscript, revised and edited the manuscript; HU, DFSP and LVP obtained financing of the project and supervised the experimental work.

Corresponding authors

Correspondence to Denise F. S. Petri or Henning Ulrich.

Ethics declarations

Ethics’ Approval

The project was submitted to the Ethics Committee in Research of the University of Sao Paulo (USP-CEP) and approved for human research (Protocol: 112/2010) and for experiments with animals (Protocol: 116/2010). It was also approved by the Departmental Board of the Genetics Department and Evolutionary Biology of Biosciences Institute (BI) - USP (Order N°: 354–2011, Meeting: 399, Item N°: 3.2, Date: 02.03.2011; by the Ethics Committee for Analysis of Research Projects (CAPPesq) of the Hospital das Clínicas (N° 0754/11) by CEP Hemorio (Project No. 251/11,Date:03/15/2011); and by the Brazilian National Committee of Ethics in Research (CONEP) - 071/2013, registry n° 16.899, process No. 25000.069088–2012-57.

Consent for Publication

This manuscript has been approved by all authors and is solely the work of the authors named.

Conflict of Interest

H.U. obtains consulting fees from TissueGnostics, Vienna, Austria. This did not influence data acquisition and analysis and drawn conclusions. The other authors declare that they have no known competing financial interests or personal relationships that influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Special Issue on Neurogenesis and Neurodegeneration: Basic Research and Clinic Applications

Guest Editor: Henning Ulrich

Supplementary Information

Table S1

Final concentrations of the reagents used to supplement dopaminergic neural differentiation medium (PNG 69 kb)

High Resolution (TIF 2209 kb)

Table S2

Sequences of primers used in real-time PCR assays (PNG 65 kb)

High Resolution (TIF 1065 kb)

Table S3

Primary antibodies used in immunocytochemistry (CI) and flow cytometry (CF) assays (PNG 63 kb)

High Resolution (TIF 1838 kb)

Table S4

Secondary antibodies used in immunocytochemistry (CI) and flow cytometry (CF) assays (PNG 38 kb)

High Resolution (TIF 988 kb)

Table S5

Complementary characteristics of hiPSCs samples. The study was performed with 3 samples of peripheral blood mononuclear cells (PBMNC) collected and reprogrammed into iPSC (PNG 25 kb)

High Resolution (TIF 917 kb)

Fig. S1

Chronological representation of the culture and neuronal differentiation of embryonic stem cells. E14TG2a mouse embryonic stem cells (ESCs) were maintained in a pluripotency stage due to the presence of leukemia inhibitory factor (LIF) during (Step 0). After at least two passages in this stage, we proceeded to Step 1 with the formation of EBs in non-adherent culture for 2 days, followed by the induction of neural differentiation with retinoic acid (RA) for another 4 days. On the 6th day of differentiation, Step 2 begins. In this step 2, embryoid bodies (EBs) were seeded onto adherent polymeric substrates, promoting cell migration for 2 days, and neuronal differentiation was induced by culture medium supplementation with basic fibroblast growth factor (bFGF) and N-2 for another 12 days, with exchanging for fresh medium every 2 days. The representative images of each stage, presented in (A), (B) and (C) show, respectively, the colonies of undifferentiated ESCs (400μm calibration bar), suspended EBs (1050 μm calibration bar) and cell migration and differentiation from the adhered EBs (400 μm calibration bar) (PNG 274 kb)

High Resolution (TIF 5684 kb)

Fig. S2

Chronological representation of the culture and dopaminergic neuronal differentiation. Undifferentiated human induced pluripotent stem cells (iPSCs) were grown in E8 medium until reaching 90% confluence, proceeding with daily medium refreshment containing 1x penicillin/ streptomycin antibiotics and 1x Glutamax and additionally supplemented with the factors schematically detailed in this timeline: cAMP: cyclic adenosine monophosphate; AA: Ascorbic Acid (vitamin C); BDNF: brain derived neurotrophic factor, CHIR: CHIR99021: DAPT: γ-secretase inhibitor; FGF-8: fibroblast growth factor 8; GDNF: glial cell-line derived neurotrophic factor; LDN: LDN193189; Pur.: purmorphamine; SB: SB431542; SHH: sonic hedgehog; TGFβ3: transforming growth factor beta 3. Respective concentrations dare detailed in Table S1. On day 20 of differentiation (DIV 20), cell passages of 2x105 cells/ well are performed into 12-well plates previously treated with 2x Geltrex coating. The cells were grown at 37 °C in KnockOut™ Serum Replacement (KRS) medium in a controlled atmosphere of 5% CO2 and 95% humidity. Representative images taken on DIV 2 ((A), 1,000 μm scale bar), DIV 20 ((B), 400 μm scale bar) and DIV 36 ((C), 400 μm scale bar) (PNG 407 kb)

High Resolution (TIF 6125 kb)

Fig. S3

Influence of the polymeric substrate and the presence of MNPs on adhesion of EBs. EBs were seeded on gelatin, poly-L-lysine, xanthan and polymer blend CPAM: xanthan (1: 10) coating matrices, with and without 1 wt% MNPs in the polymeric substrate composition. Cell adhesion was quantified by the percentage of adhered EBs. Data are reported as mean values ± SD; * p < 0.05 and ** p < 0.001 for culture on substrates in the presence of MNPs compared to culture on their substrates in the absence of MNPs (control) (PNG 89 kb)

High Resolution (TIF 4652 kb)

Fig. S4

Alignment of MNPs surrounding EBs and accumulating along neural processes. The red and white arrows show the orientation of MNPs along neural elongations and EBs, respectively (PNG 380 kb)

High Resolution (TIF 2244 kb)

Fig. S5

Morphology of cell culture stimulated with EMF (N/S) during Stage I, Stage II or both (I=II). Scale bar 60 μm (PNG 297 kb)

High Resolution (TIF 3216 kb)

Fig. S6

Illustrative images of cells labeled with LysoSensor blue-yellow. Acidic vesicles were labeled in yellow, and less acidic vesicles were blue. A-C control cells; D-E cells under EMF (PNG 148 kb)

High Resolution (TIF 1541 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semeano, A.T., Tofoli, F.A., Corrêa-Velloso, J.C. et al. Effects of Magnetite Nanoparticles and Static Magnetic Field on Neural Differentiation of Pluripotent Stem Cells. Stem Cell Rev and Rep 18, 1337–1354 (2022). https://doi.org/10.1007/s12015-022-10332-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-022-10332-0

Keywords

Navigation