Skip to main content

Advertisement

Log in

METTL3-Mediated lncRNA m6A Modification in the Osteogenic Differentiation of Human Adipose-Derived Stem Cells Induced by NEL-Like 1 Protein

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

An Author Correction to this article was published on 16 October 2021

This article has been updated

Abstract

Objectives

This study aimed to explore the regulatory mechanism of methyltransferase3 (METTL3) -mediated long non-coding RNA (lncRNA) N6-methyladenosine (m6A) modification in the osteogenic differentiation of human adipose-derived stem cells (hASCs) induced by NEL-like 1 protein (NELL-1).

Materials and Methods

Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and high- throughput sequencing for RNA (RNA-seq) were performed on hASCs. Osteogenic ability was detected by alkaline phosphatase (ALP) staining, Alizarin Red S(ARS) staining, ALP quantification and Quantitative real-time polymerase chain reaction analysis (qRT-PCR). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis predicted the osteogenesis-related pathways enriched for the lncRNAs and identified the target lncRNAs. After overexpression and knockdown of METTL3, methylated RNA immunoprecipitation-qPCR (MeRIP-qPCR) and qRT-PCR were used to detect the levels of m6A modification and the expression of the target lncRNA, and the binding of both was confirmed by RNA binding protein immunoprecipitation (RIP) assay. The effects of lncRNA and METTL3 on phosphorylation of the key proteins of the pathway were detected by western blot analysis.

Results

In vitro experiments showed that METTL3 can promote osteogenic differentiation and that its expression level is upregulated. KEGG pathway analysis predicted that lncRNAs with differentially upregulated methylated peaks were enriched mostly in the mitogen-activated protein kinase (MAPK) signaling pathway, in which Serine/threonine protein kinase 3 (STK3) was the predicted target gene of the lncRNA RP11-44 N12.5. The m6A modification and expression of RP11-44 N12.5 were both regulated by METTL3. Subsequently, lncRNA RP11-44 N12.5 and METTL3 were found to regulate the phosphorylation levels of three key proteins in the MAPK signaling pathway, ERK, JNK and p38.

Conclusions

This study shows, for the first time, that METTL3 can activate the MAPK signaling pathway by regulating the m6A modification and expression of a lncRNA, thereby enhancing the osteogenic differentiation of hASCs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this article and its supplementary materials.

Change history

Abbreviations

lncRNA:

long non-coding RNA

m6A:

N6-methyladenosine

hASCs:

human adipose-derived stem cells

NELL-1:

NEL-like 1 protein

BMSCs:

bone marrow-derived mesenchymal stem cells

TGF:

transforming growth factor

RUNX2:

Runt-related transcription factor 2

BSP:

bone sialoprotein

METTL14:

methyltransferase 14

METTL3:

methyltransferase 3

FTO:

fat-mass and obesity-associated protein

ALKBH5:

ALKB homologue 5

ERK:

extracellular signal-regulated kinase

MAPK:

mitogen-activated protein kinase

JNK:

c-Jun N-terminal kinase

STK3:

Serine/threonine protein kinase 3

GCK II:

germinal centre kinase II

ALP:

alkaline phosphatase

ARS:

alizarin red

qRT-PCR:

quantitative real-time polymerase chain reaction analysis

KEGG:

Kyoto Encyclopedia of Genes and Genomes

RIP:

RNA binding protein immunoprecipitation

NFIC:

nuclear factor I-C

MeRIP-seq:

methylated RNA immunoprecipitation sequencing

MeRIP-qPCR:

methylated RNA immunoprecipitation-qPCR

RNA-seq:

high- throughput sequencing for RNA

ncRNAs:

noncoding RNAs

dhASC:

differentiated hASC

NELL1-dhASC:

rhNELL-1-induced osteogenic differentiated hASC

IPP:

immunoprecipitation

DREME:

Discriminative Regular Expression Motif Elicitation

PBS:

phosphate buffered saline

sodium dodecyl sulfate-polyacrylamide gel electrophoresis:

SDS-PAGE

References

  1. Zhang, Z. (2011). Bone regeneration by stem cell and tissue engineering in oral and maxillofacial region. Frontiers in Medicine, 5(4), 401–413.

    Article  CAS  Google Scholar 

  2. Eμler de Souza Lucena, E., et al. (2014). Experimental considerations concerning the use of stem cells and tissue engineering for facial nerve regeneration: a systematic review. J Oral Maxillofac Surg, 72(5), 1001–1012.

    Article  Google Scholar 

  3. Chun, S. Y., Lim, J. O., Lee, E. H., Han, M. H., Ha, Y. S., Lee, J. N., Kim, B. S., Park, M. J., Yeo, M. G., Jung, B., & Kwon, T. G. (2019). Preparation and characterization of human adipose tissue-derived Extracellμlar matrix, growth factors, and stem cells: A concise review. Tissue Eng Regen Med, 16(4), 385–393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rivera-Izquierdo, M., Cabeza, L., Láinez-Ramos-Bossini, A., Quesada, R., Perazzoli, G., Alvarez, P., Prados, J., & Melguizo, C. (2019). An updated review of adipose derived-mesenchymal stem cells and their applications in muscμloskeletal disorders. Expert Opinion on Biological Therapy, 19(3), 233–248.

    Article  CAS  PubMed  Google Scholar 

  5. Smieszek, A., et al. (2018). Metformin Promotes Osteogenic Differentiation of Adipose-Derived Stromal Cells and Exerts Pro-Osteogenic Effect Stimμlating Bone Regeneration. Journal of Clinical Medicine, 7(12), 482.

    Article  PubMed Central  Google Scholar 

  6. Mohamed-Ahmed, S., Yassin, M. A., Rashad, A., Espedal, H., Idris, S. B., Finne-Wistrand, A., Mustafa, K., Vindenes, H., & Fristad, I. (2021). Comparison of bone regenerative capacity of donor-matched human adipose-derived and bone marrow mesenchymal stem cells. Cell and Tissue Research, 383(3), 1061–1075.

    Article  CAS  PubMed  Google Scholar 

  7. Yoshida, Y., Matsubara, H., Fang, X., Hayashi, K., Nomura, I., Ugaji, S., Hamada, T., & Tsuchiya, H. (2019). Adipose-derived stem cell sheets accelerate bone healing in rat femoral defects. PLoS One, 14(3), e0214488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li, W., Zara, J. N., Siu, R. K., Lee, M., Aghaloo, T., Zhang, X., Wu, B. M., Gertzman, A. A., Ting, K., & Soo, C. (2011). Nell-1 enhances bone regeneration in a rat critical-sized femoral segmental defect model. Plastic and Reconstructive Surgery, 127(2), 580–587.

    Article  CAS  PubMed  Google Scholar 

  9. James, A. W., Shen, J., Zhang, X., Asatrian, G., Goyal, R., Kwak, J. H., Jiang, L., Bengs, B., Culiat, C. T., Turner, A. S., Seim III, H. B., Wu, B. M., Lyons, K., Adams, J. S., Ting, K., & Soo, C. (2015). NELL-1 in the treatment of osteoporotic bone loss. Nature Communications, 6, 7362.

    Article  CAS  PubMed  Google Scholar 

  10. Wang, J., Liao, J., Zhang, F., Song, D., Lu, M., Liu, J., Wei, Q., Tang, S., Liu, H., Fan, J., Zou, Y., Guo, D., Huang, J., Liu, F., Ma, C., Hu, X., Li, L., Qu, X., Chen, L., et al. (2017). NEL-like Molecμle-1 (Nell1) is regulated by bone morphogenetic protein 9 (BMP9) and potentiates BMP9-induced osteogenic differentiation at the expense of Adipogenesis in mesenchymal stem cells. Cellular Physiology and Biochemistry, 41(2), 484–500.

    Article  CAS  PubMed  Google Scholar 

  11. Yu, L., Cen, X., Xia, K., Huang, X., Sun, W., Zhao, Z., & Liu, J. (2020). microRNA expression profiles and the potential competing endogenous RNA networks in NELL-1-induced human adipose-derived stem cell osteogenic differentiation. Journal of Cellular Biochemistry, 121(11), 4623–4641.

    Article  CAS  PubMed  Google Scholar 

  12. Huang, X., Cen, X., Zhang, B., Liao, Y., Zhao, Z., Zhu, G., Zhao, Z., & Liu, J. (2019). The roles of circRFWD2 and circINO80 during NELL-1-induced osteogenesis. Journal of Cellular and Molecular Medicine, 23(12), 8432–8441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rathinam, E., Rajasekharan, S., Chitturi, R. T., Martens, L., & de Coster, P. (2015). Gene expression profiling and Molecμlar signaling of dental Pμlp cells in response to Tricalcium silicate cements: A systematic review. Journal of Endodontia, 41(11), 1805–1817.

    Article  Google Scholar 

  14. Boμleftour, W., et al. (2017). Bone shaft Revascμlarization after marrow ablation is dramatically accelerated in BSP−/− mice, along with faster hematopoietic recolonization. Journal of Cellular Physiology, 232(9), 2528–2537.

    Article  Google Scholar 

  15. Vu, L. P., Cheng, Y., & Kharas, M. G. (2019). The biology of m(6)a RNA methylation in Normal and malignant hematopoiesis. Cancer Discovery, 9(1), 25–33.

    Article  CAS  PubMed  Google Scholar 

  16. Wang, P., Doxtader, K. A., & Nam, Y. (2016). Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Molecular Cell, 63(2), 306–317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shen, L., Song, C. X., He, C., & Zhang, Y. (2014). Mechanism and function of oxidative reversal of DNA and RNA methylation. Annual Review of Biochemistry, 83, 585–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pinello, N., Sun, S., & Wong, J. J. (2018). Aberrant expression of enzymes regulating m(6)a mRNA methylation: Implication in cancer. Cancer Biology & Medicine, 15(4), 323–334.

    Article  CAS  Google Scholar 

  19. Zhong, X., et al. (2018). Circadian Clock Regulation of Hepatic Lipid Metabolism by Modμlation of m(6)A mRNA Methylation. Cell Report, 25(7), 1816–1828.e4.

    Article  CAS  Google Scholar 

  20. Sweatt, J. D. (2017). Layered-up regulation in the developing brain. Nature, 551(7681), 448–449.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhao, B. S., Wang, X., Beadell, A. V., Lu, Z., Shi, H., Kuuspalu, A., Ho, R. K., & He, C. (2017). M(6)A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. Nature, 542(7642), 475–478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Geμla, S., et al. (2015). Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. Science, 347(6225), 1002–1006.

    Article  Google Scholar 

  23. Yan, G., Yuan, Y., He, M., Gong, R., Lei, H., Zhou, H., Wang, W., du, W., Ma, T., Liu, S., Xu, Z., Gao, M., Yu, M., Bian, Y., Pang, P., Li, X., Yu, S., Yang, F., Cai, B., & Yang, L. (2020). M(6)a methylation of precursor-miR-320/RUNX2 controls osteogenic potential of bone marrow-derived mesenchymal stem cells. Molecular Therapy--Nucleic Acids, 19, 421–436.

    Article  CAS  PubMed  Google Scholar 

  24. Yao, Y., Bi, Z., Wu, R., Zhao, Y., Liu, Y., Liu, Q., Wang, Y., & Wang, X. (2019). METTL3 inhibits BMSC adipogenic differentiation by targeting the JAK1/STAT5/C/EBPβ pathway via an m(6)A-YTHDF2-dependent manner. The FASEB Journal, 33(6), 7529–7544.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, Q., Riddle, R. C., Yang, Q., Rosen, C. R., Guttridge, D. C., Dirckx, N., Faugere, M. C., Farber, C. R., & Clemens, T. L. (2019). The RNA demethylase FTO is required for maintenance of bone mass and functions to protect osteoblasts from genotoxic damage. Proceedings of the National Academy of Sciences of the United States of America, 116(36), 17980–17989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Beermann, J., Piccoli, M. T., Viereck, J., & Thum, T. (2016). Non-coding RNAs in development and disease: Background, mechanisms, and therapeutic approaches. Physiological Reviews, 96(4), 1297–1325.

    Article  CAS  PubMed  Google Scholar 

  27. Shen, J. J., Zhang, C. H., Chen, Z. W., Wang, Z. X., Yang, D. C., Zhang, F. L., & Feng, K. H. (2019). LncRNA HOTAIR inhibited osteogenic differentiation of BMSCs by regulating Wnt/β-catenin pathway. European Review for Medical and Pharmacological Sciences, 23(17), 7232–7246.

    PubMed  Google Scholar 

  28. Zheng, S., Wang, Y. B., Yang, Y. L., Chen, B. P., Wang, C. X., Li, R. H., & Huang, D. (2019). LncRNA MALAT1 inhibits osteogenic differentiation of mesenchymal stem cells in osteoporosis rats through MAPK signaling pathway. European Review for Medical and Pharmacological Sciences, 23(11), 4609–4617.

    CAS  PubMed  Google Scholar 

  29. Liu, R., Li, Z., Song, E., Hu, P., Yang, Q., Hu, Y., Liu, H., & Jin, A. (2020). LncRNA HOTTIP enhances human osteogenic BMSCs differentiation via interaction with WDR5 and activation of Wnt/β-catenin signaling pathway. Biochemical and Biophysical Research Communications, 524(4), 1037–1043.

    Article  CAS  PubMed  Google Scholar 

  30. Xia, K., Cen, X., Yu, L., Huang, X., Sun, W., Zhao, Z., & Liu, J. (2020). Long noncoding RNA expression profiles during the NEL-like 1 protein-induced osteogenic differentiation. Journal of Cellular Physiology, 235(9), 6010–6022.

    Article  CAS  PubMed  Google Scholar 

  31. Xin, B. C., Wu, Q. S., Jin, S., Luo, A. H., Sun, D. G., & Wang, F. (2020). Berberine promotes osteogenic differentiation of human dental Pμlp stem cells through activating EGFR-MAPK-Runx2 pathways. Pathology Oncology Research, 26(3), 1677–1685.

    Article  PubMed  Google Scholar 

  32. Tsang, E. J., Wu, B., & Zuk, P. (2018). MAPK signaling has stage-dependent osteogenic effects on human adipose-derived stem cells in vitro. Connective Tissue Research, 59(2), 129–146.

    Article  CAS  PubMed  Google Scholar 

  33. James, A. W., Pan, A., Chiang, M., Zara, J. N., Zhang, X., Ting, K., & Soo, C. (2011). A new function of Nell-1 protein in repressing adipogenic differentiation. Biochemical and Biophysical Research Communications, 411(1), 126–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang, Y., Liu, T., Meyer, C. A., Eeckhoute, J., Johnson, D. S., Bernstein, B. E., Nussbaum, C., Myers, R. M., Brown, M., Li, W., & Liu, X. S. (2008). Model-based analysis of ChIP-Seq (MACS). Genome Biology, 9(9), R137.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Meyer, K. D., Saletore, Y., Zumbo, P., Elemento, O., Mason, C. E., & Jaffrey, S. R. (2012). Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. Cell, 149(7), 1635–1646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L., Osenberg, S., Cesarkas, K., Jacob-Hirsch, J., Amariglio, N., Kupiec, M., Sorek, R., & Rechavi, G. (2012). Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature, 485(7397), 201–206.

    Article  CAS  PubMed  Google Scholar 

  37. Pan, Y., Ma, P., Liu, Y., Li, W., & Shu, Y. (2018). Mμltiple functions of m(6)a RNA methylation in cancer. Journal of Hematology & Oncology, 11(1), 48.

    Article  Google Scholar 

  38. Pan, T. (2013). N6-methyl-adenosine modification in messenger and long non-coding RNA. Trends in Biochemical Sciences, 38(4), 204–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Niu, Y., Zhao, X., Wu, Y. S., Li, M. M., Wang, X. J., & Yang, Y. G. (2013). N6-methyl-adenosine (m6A) in RNA: An old modification with a novel epigenetic function. Genomics, Proteomics & Bioinformatics, 11(1), 8–17.

    Article  CAS  Google Scholar 

  40. Wang, H. F., Kuang, M. J., Han, S. J., Wang, A. B., Qiu, J., Wang, F., Tan, B. Y., & Wang, D. C. (2020). BMP2 modified by the m(6)a demethylation enzyme ALKBH5 in the ossification of the ligamentum Flavum through the AKT signaling pathway. Calcified Tissue International, 106(5), 486–493.

    Article  CAS  PubMed  Google Scholar 

  41. Sun, Z., Wang, H., Wang, Y., Yuan, G., Yu, X., Jiang, H., Wu, Q., Yang, B., Hu, Z., Shi, F., Cao, X., Zhang, S., Guo, T., & Zhao, J. (2021). MiR-103-3p targets the m(6) a methyltransferase METTL14 to inhibit osteoblastic bone formation. Aging Cell, 20(2), e13298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wu, Y., Xie, L., Wang, M., Xiong, Q., Guo, Y., Liang, Y., Li, J., Sheng, R., Deng, P., Wang, Y., Zheng, R., Jiang, Y., Ye, L., Chen, Q., Zhou, X., Lin, S., & Yuan, Q. (2018). Mettl3-mediated m(6)a RNA methylation regulates the fate of bone marrow mesenchymal stem cells and osteoporosis. Nature Communications, 9(1), 4772.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Liu, H., Xu, Y., Yao, B., Sui, T., Lai, L., & Li, Z. (2020). A novel N6-methyladenosine (m6A)-dependent fate decision for the lncRNA THOR. Cell Death & Disease, 11(8), 613.

    Article  CAS  Google Scholar 

  44. Wu, Y., et al. (2019). m(6)A-induced lncRNA RP11 triggers the dissemination of colorectal cancer cells via upregulation of Zeb1. Molecular Cancer, 18(1), 87.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ni, W., Yao, S., Zhou, Y., Liu, Y., Huang, P., Zhou, A., Liu, J., Che, L., & Li, J. (2019). Long noncoding RNA GAS5 inhibits progression of colorectal cancer by interacting with and triggering YAP phosphorylation and degradation and is negatively regulated by the m(6)a reader YTHDF3. Molecular Cancer, 18(1), 143.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Coker, H., Wei, G., & Brockdorff, N. (2019). m6A modification of non-coding RNA and the control of mammalian gene expression. Biochimica et Biophysica Acta, Gene Regulatory Mechanisms, 1862(3), 310–318.

    Article  CAS  PubMed  Google Scholar 

  47. Wang, Y., Lu, J. H., Wu, Q. N., Jin, Y., Wang, D. S., Chen, Y. X., Liu, J., Luo, X. J., Meng, Q., Pu, H. Y., Wang, Y. N., Hu, P. S., Liu, Z. X., Zeng, Z. L., Zhao, Q., Deng, R., Zhu, X. F., Ju, H. Q., & Xu, R. H. (2019). LncRNA LINRIS stabilizes IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer. Molecular Cancer, 18(1), 174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lu, Z., Liu, J., Yuan, C., Jin, M., Quan, K., Chu, M., & Wei, C. (2021). M(6)a mRNA methylation analysis provides novel insights into heat stress responses in the liver tissue of sheep. Genomics, 113(1 Pt 2), 484–492.

    Article  CAS  PubMed  Google Scholar 

  49. Zhou, Y., Hambly, B. D., Simmons, D., & McLachlan, C. S. (2020). RUNX1T1 rs34269950 is associated with obesity and metabolic syndrome. Qjm.

  50. Tian, C., et al. (2019). Mettl3 Regulates Osteogenic Differentiation and Alternative Splicing of Vegfa in Bone Marrow Mesenchymal Stem Cells. International Journal of Molecular Sciences, 20(3).

  51. Sheng, R., Wang, Y., Wu, Y., Wang, J., Zhang, S., Li, Q., Zhang, D., Qi, X., Xiao, Q., Jiang, S., & Yuan, Q. (2021). METTL3-mediated m(6) a mRNA methylation Modμlates tooth root formation by affecting NFIC translation. Journal of Bone and Mineral Research, 36(2), 412–423.

    Article  CAS  PubMed  Google Scholar 

  52. Zhou, T., Han, D., Liu, J., Shi, J., Zhu, P., Wang, Y., & Dong, N. (2021). Factors influencing osteogenic differentiation of human aortic valve interstitial cells. The Journal of Thoracic and Cardiovascular Surgery, 161(2), e163–e185.

    Article  PubMed  Google Scholar 

  53. Li, D., et al. (2020). METTL3 Modμlates Osteoclast Differentiation and Function by Controlling RNA Stability and Nuclear Export. International Journal of Molecular Sciences, 21(5), 1660.

    Article  CAS  PubMed Central  Google Scholar 

  54. Yu, J., Shen, L., Liu, Y., Ming, H., Zhu, X., Chu, M., & Lin, J. (2020). The m6A methyltransferase METTL3 cooperates with demethylase ALKBH5 to regulate osteogenic differentiation through NF-κB signaling. Molecular and Cellular Biochemistry, 463(1–2), 203–210.

    Article  CAS  PubMed  Google Scholar 

  55. Lawrence, M. C., Jivan, A., Shao, C., Duan, L., Goad, D., Zaganjor, E., Osborne, J., McGlynn, K., Stippec, S., Earnest, S., Chen, W., & Cobb, M. H. (2008). The roles of MAPKs in disease. Cell Research, 18(4), 436–442.

    Article  CAS  PubMed  Google Scholar 

  56. Sun, Y., Liu, W. Z., Liu, T., Feng, X., Yang, N., & Zhou, H. F. (2015). Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. Journal of Receptor and Signal Transduction Research, 35(6), 600–604.

    Article  CAS  PubMed  Google Scholar 

  57. Raman, M., Chen, W., & Cobb, M. H. (2007). Differential regulation and properties of MAPKs. Oncogene, 26(22), 3100–3112.

    Article  CAS  PubMed  Google Scholar 

  58. Zhu, J. H., Liao, Y. P., Li, F. S., Hu, Y., Li, Q., Ma, Y., Wang, H., Zhou, Y., He, B. C., & Su, Y. X. (2018). Wnt11 promotes BMP9-induced osteogenic differentiation through BMPs/Smads and p38 MAPK in mesenchymal stem cells. Journal of Cellular Biochemistry, 119(11), 9462–9473.

    Article  CAS  PubMed  Google Scholar 

  59. Matsushita, T., Chan, Y. Y., Kawanami, A., Balmes, G., Landreth, G. E., & Murakami, S. (2009). Extracellμlar signal-regulated kinase 1 (ERK1) and ERK2 play essential roles in osteoblast differentiation and in supporting osteoclastogenesis. Molecular and Cellular Biology, 29(21), 5843–5857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang, X., Zhou, C., Zha, X., Xu, Z., Li, L., Liu, Y., Xu, L., Cui, L., Xu, D., & Zhu, B. (2015). Apigenin promotes osteogenic differentiation of human mesenchymal stem cells through JNK and p38 MAPK pathways. Molecular and Cellular Biochemistry, 407(1–2), 41–50.

    Article  CAS  PubMed  Google Scholar 

  61. Zhang, Y., et al. (2019). METTL3 Regulates Osteoblast Differentiation and Inflammatory Response via Smad Signaling and MAPK Signaling. International Journal of Molecular Sciences, 21(1), 199.

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Natural Science Foundation of China (81870743, 82170934 and 81771048). And we appreciated Cloud-seq Company (Shanghai, China) that provided MeRIP-Seq and lncRNA sequencing service.

Code Availability

Not applicable.

Funding

National Natural Science Foundation of China (81870743, 82170934 and 81771048).

Author information

Authors and Affiliations

Authors

Contributions

Yidan Song and Yihua Pan mainly carried out the experimental operations. Yidan Song, Mengsong Wu, Wentian Sun and Liangyu Luo analyzed and interpreted the data. Yidan Song wrote the manuscript. Jun Liu and Zhihe Zhao designed the experiments and revised the manuscript.

Corresponding author

Correspondence to Jun Liu.

Ethics declarations

Conflicts of Interest

None.

Ethics Approval

Not applicable.

Consent to Participate

All authors read and approved the final manuscript.

Consent for Publication

All authors agreed to publish.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PNG 25 kb)

High Resolution image (TIF 67 kb)

ESM 2

(PNG 35 kb)

High Resolution image (TIF 667 kb)

ESM 3

(PNG 34 kb)

High Resolution image (TIF 662 kb)

ESM 4

(PNG 36 kb)

High Resolution image (TIF 673 kb)

ESM 5

(PNG 36 kb)

High Resolution image (TIF 676 kb)

ESM 6

(PNG 36 kb)

High Resolution image (TIF 679 kb)

ESM 7

(PNG 32 kb)

High Resolution image (TIF 646 kb)

ESM 8

(PNG 39 kb)

High Resolution image (TIF 689 kb)

ESM 9

(PNG 39 kb)

High Resolution image (TIF 679 kb)

ESM 10

(PNG 29 kb)

High Resolution image (TIF 628 kb)

ESM 11

(PNG 29 kb)

High Resolution image (TIF 628 kb)

ESM 12

(PNG 32 kb)

High Resolution image (TIF 638 kb)

ESM 13

(PNG 589 kb)

High Resolution image (TIF 17341 kb)

ESM 14

(PNG 456 kb)

High Resolution image (TIF 17328 kb)

ESM 15

(PNG 596 kb)

High Resolution image (TIF 17340 kb)

ESM 16

(PNG 520 kb)

High Resolution image (TIF 17327 kb)

ESM 17

(PNG 510 kb)

High Resolution image (TIF 17326 kb)

ESM 18

(PNG 501 kb)

High Resolution image (TIF 17328 kb)

ESM 19

(PNG 512 kb)

High Resolution image (TIF 17328 kb)

ESM 20

(PNG 405 kb)

High Resolution image (TIF 17332 kb)

ESM 21

(PNG 474 kb)

High Resolution image (TIF 17327 kb)

ESM 22

(PNG 504 kb)

High Resolution image (TIF 17329 kb)

ESM 23

(PNG 527 kb)

High Resolution image (TIF 17326 kb)

ESM 24

(PNG 503 kb)

High Resolution image (TIF 17331 kb)

ESM 25

(PNG 522 kb)

High Resolution image (TIF 17342 kb)

ESM 26

(PNG 525 kb)

High Resolution image (TIF 17328 kb)

ESM 27

(PNG 420 kb)

High Resolution image (TIF 17326 kb)

ESM 28

(PNG 544 kb)

High Resolution image (TIF 17332 kb)

ESM 29

(PNG 510 kb)

High Resolution image (TIF 17340 kb)

ESM 30

(PNG 436 kb)

High Resolution image (TIF 17337 kb)

ESM 31

(PNG 506 kb)

High Resolution image (TIF 2348 kb)

ESM 32

(PNG 502 kb)

High Resolution image (TIF 17328 kb)

ESM 33

(PNG 438 kb)

High Resolution image (TIF 17336 kb)

ESM 34

(PNG 479 kb)

High Resolution image (TIF 2338 kb)

ESM 35

(PNG 493 kb)

High Resolution image (TIF 17332 kb)

ESM 36

(PNG 411 kb)

High Resolution image (TIF 17331 kb)

ESM 37

(PNG 472 kb)

High Resolution image (TIF 17334 kb)

ESM 38

(PNG 533 kb)

High Resolution image (TIF 17345 kb)

ESM 39

(PNG 509 kb)

High Resolution image (TIF 17338 kb)

ESM 40

(PNG 511 kb)

High Resolution image (TIF 17334 kb)

ESM 41

(PNG 516 kb)

High Resolution image (TIF 17335 kb)

ESM 42

(PNG 59 kb)

High Resolution image (TIF 17333 kb)

ESM 43

(PNG 474 kb)

High Resolution image (TIF 427 kb)

ESM 44

(DOCX 14 kb)

ESM 45

(DOCX 15 kb)

ESM 46

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Pan, Y., Wu, M. et al. METTL3-Mediated lncRNA m6A Modification in the Osteogenic Differentiation of Human Adipose-Derived Stem Cells Induced by NEL-Like 1 Protein. Stem Cell Rev and Rep 17, 2276–2290 (2021). https://doi.org/10.1007/s12015-021-10245-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-021-10245-4

Keywords

Navigation