Skip to main content

Advertisement

Log in

Spatio-Temporal Metabolokinetics and Efficacy of Human Placenta-Derived Mesenchymal Stem/Stromal Cells on Mice with Refractory Crohn’s-like Enterocutaneous Fistula

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Crohn’s disease (CD) with externally fistulizing openings indicates the aggressive and relapsing manifestation and results in undesirable long-term outcomes of patients. MSC-based approach combined with multidisciplinary strategy has mandated a redefinition of the administration and management of numerous recurrent and refractory diseases whereas the spatio-temporal evaluation of the metabolokinetics and efficacy of MSCs on intractable CD with enterocutaneous fistula (EF) are largely inaccessible and dauntingly complex. Herein, we primitively established dual-fluorescence expressing placenta-derived MSCs (DF-MSCs) and explored their multidimensional attributes, including cytomorphology, immunophenotying, multilineage differentiation and long-term proliferation, together with the recognition of bifluorescence intensity (BLI). Then, with the aid of in vivo living imaging, clinicopathological or inflammatory cytokine examinations and in vitro analyses, we systematically and meticulously dissected the metabolokinetics and curative effect of MSCs on mice with refractory Crohn’s-like EF (EF mice), together with revealing the underlying mechanism including reactive oxygen species (ROS) and neovascularization. Strikingly, the DF-MSCs exhibited stabilized BLI and biological properties. The spatio-temporal distribution and therapeutic process of MSCs in EF mice were intuitively delineated. Meanwhile, our data indicated the curative mechanisms of DF-MSCs by simultaneously downregulating ROS and accelerating neovascularization. Collectively, we systematically illuminated the spatio-temporal biofunction and mechanism of DF-MSCs on EF mice. Our findings have supplied new references for safety and effectiveness assessments as well as the establishment of guidelines for optimal administrations of MSC-based cytotherapy in preclinical studies, which collectively indicates the prospect of P-MSC administration in clinical trials during a wide spectrum of disease remodeling including the fistulizing CD.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aguirre, A., & Nugent, C. A. (2015). Images in clinical medicine: oral manifestation of Crohn’s disease. The New England Journal of Medicine, 373(13), 1250. https://doi.org/10.1056/NEJMicm1413715.

    Article  CAS  PubMed  Google Scholar 

  2. Alicka, M., Major, P., Wysocki, M., & Marycz, K. (2019). Adipose-derived mesenchymal stem cells isolated from patients with type 2 diabetes show reduced “stemness” through an altered secretome profile, impaired anti-oxidative protection, and mitochondrial dynamics deterioration. Journal of Clinical Medicine, 8(6). https://doi.org/10.3390/jcm8060765.

  3. Baksh, D., Yao, R., & Tuan, R. S. (2007). Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells, 25(6), 1384–1392. https://doi.org/10.1634/stemcells.2006-0709.

    Article  CAS  PubMed  Google Scholar 

  4. Cao, H., Yue, Z., Gao, H., Chen, C., Cui, K., Zhang, K., Cheng, Y., Shao, G., Kong, D., Li, Z., Ding, D., & Wang, Y. (2019). In vivo real-time imaging of extracellular vesicles in liver regeneration via aggregation-induced emission luminogens. ACS Nano, 13(3), 3522–3533. https://doi.org/10.1021/acsnano.8b09776.

    Article  CAS  PubMed  Google Scholar 

  5. Cho, Y. B., Park, K. J., Yoon, S. N., Song, K. H., Kim, D. S., Jung, S. H., Kim, M., Jeong, H. Y., & Yu, C. S. (2015). Long-term results of adipose-derived stem cell therapy for the treatment of Crohn’s fistula. Stem Cells Translational Medicine, 4(5), 532–537. https://doi.org/10.5966/sctm.2014-0199.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ciccocioppo, R., Gallia, A., Sgarella, A., Kruzliak, P., Gobbi, P. G., & Corazza, G. R. (2015). Long-term follow-up of Crohn disease fistulas after local injections of bone marrow-derived mesenchymal stem cells. Mayo Clinic Proceedings, 90(6), 747–755. https://doi.org/10.1016/j.mayocp.2015.03.023.

    Article  PubMed  Google Scholar 

  7. Dalal, J., Gandy, K., & Domen, J. (2012). Role of mesenchymal stem cell therapy in Crohn’s disease. Pediatric Research, 71(4 Pt 2), 445–451. https://doi.org/10.1038/pr.2011.56.

    Article  CAS  PubMed  Google Scholar 

  8. de la Guardia, R. D., Lopez-Millan, B., Roca-Ho, H., Bueno, C., Gutierrez-Aguera, F., Fuster, J. L., et al. (2019). Bone marrow mesenchymal stem/stromal cells from risk-stratified acute myeloid leukemia patients are anti-inflammatory in in vivo preclinical models of hematopoietic reconstitution and severe colitis. Haematologica, 104(2), e54–e58. https://doi.org/10.3324/haematol.2018.196568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Du, W., Li, X., Chi, Y., Ma, F., Li, Z., Yang, S., et al. (2016). VCAM-1+ placenta chorionic villi-derived mesenchymal stem cells display potent pro-angiogenic activity. Stem Cell Research & Therapy, 7, 49. https://doi.org/10.1186/s13287-016-0297-0.

    Article  CAS  Google Scholar 

  10. El Moshy, S., Radwan, I. A., Rady, D., Abbass, M. M. S., El-Rashidy, A. A., Sadek, K. M., et al. (2020). Dental stem cell-derived secretome/conditioned medium: the future for regenerative therapeutic applications. Stem Cells International, 2020, 7593402–7593429. https://doi.org/10.1155/2020/7593402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Garrido-Trigo, A., & Salas, A. (2019). Molecular structure and function of Janus kinases: implications for the development of inhibitors. Journal of Crohn’s & Colitis, 14, S713–S724. https://doi.org/10.1093/ecco-jcc/jjz206.

    Article  Google Scholar 

  12. Huo, J., Zhang, L., Ren, X., Li, C., Li, X., Dong, P., Zheng, X., Huang, J., Shao, Y., Ge, M., Zhang, J., Wang, M., Nie, N., Jin, P., & Zheng, Y. (2020). Multifaceted characterization of the signatures and efficacy of mesenchymal stem/stromal cells in acquired aplastic anemia. Stem Cell Research & Therapy, 11(1), 59. https://doi.org/10.1186/s13287-020-1577-2.

    Article  CAS  Google Scholar 

  13. Kfoury, Y., & Scadden, D. T. (2015). Mesenchymal cell contributions to the stem cell niche. Cell Stem Cell, 16(3), 239–253. https://doi.org/10.1016/j.stem.2015.02.019.

    Article  CAS  PubMed  Google Scholar 

  14. Klionsky, D. J. (2009). Crohn’s disease, autophagy, and the Paneth cell. The New England Journal of Medicine, 360(17), 1785–1786. https://doi.org/10.1056/NEJMcibr0810347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lai, P., Chen, X., Guo, L., Wang, Y., Liu, X., Liu, Y., Zhou, T., Huang, T., Geng, S., Luo, C., Huang, X., Wu, S., Ling, W., du, X., He, C., & Weng, J. (2018). A potent immunomodulatory role of exosomes derived from mesenchymal stromal cells in preventing cGVHD. Journal of Hematology & Oncology, 11(1), 135. https://doi.org/10.1186/s13045-018-0680-7.

    Article  CAS  Google Scholar 

  16. Lim, M., Wang, W., Liang, L., Han, Z. B., Li, Z., Geng, J., Zhao, M., Jia, H., Feng, J., Wei, Z., Song, B., Zhang, J., Li, J., Liu, T., Wang, F., Li, T., Li, J., Fang, Y., Gao, J., & Han, Z. (2018). Intravenous injection of allogeneic umbilical cord-derived multipotent mesenchymal stromal cells reduces the infarct area and ameliorates cardiac function in a porcine model of acute myocardial infarction. Stem Cell Research & Therapy, 9(1), 129. https://doi.org/10.1186/s13287-018-0888-z.

    Article  CAS  Google Scholar 

  17. Murphy, M. B., Moncivais, K., & Caplan, A. I. (2013). Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Experimental & Molecular Medicine, 45, e54. https://doi.org/10.1038/emm.2013.94.

    Article  CAS  Google Scholar 

  18. Neurath, M. F. (2017). Current and emerging therapeutic targets for IBD. Nature Reviews. Gastroenterology & Hepatology, 14(5), 269–278. https://doi.org/10.1038/nrgastro.2016.208.

    Article  CAS  Google Scholar 

  19. Nombela-Arrieta, C., Ritz, J., & Silberstein, L. E. (2011). The elusive nature and function of mesenchymal stem cells. Nature Reviews. Molecular Cell Biology, 12(2), 126–131. https://doi.org/10.1038/nrm3049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Panes, J., Garcia-Olmo, D., Van Assche, G., Colombel, J. F., Reinisch, W., Baumgart, D. C., et al. (2016). Expanded allogeneic adipose-derived mesenchymal stem cells (Cx601) for complex perianal fistulas in Crohn’s disease: a phase 3 randomised, double-blind controlled trial. Lancet, 388(10051), 1281–1290. https://doi.org/10.1016/S0140-6736(16)31203-X.

    Article  PubMed  Google Scholar 

  21. Ryan, P. L., Youngblood, R. C., Harvill, J., & Willard, S. T. (2005). Photonic monitoring in real time of vascular endothelial growth factor receptor 2 gene expression under relaxin-induced conditions in a novel murine wound model. Annals of the New York Academy of Sciences, 1041, 398–414. https://doi.org/10.1196/annals.1282.061.

    Article  CAS  PubMed  Google Scholar 

  22. Samsonraj, R. M., Raghunath, M., Nurcombe, V., Hui, J. H., van Wijnen, A. J., & Cool, S. M. (2017). Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine. Stem Cells Translational Medicine, 6(12), 2173–2185. https://doi.org/10.1002/sctm.17-0129.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tao, H., Chen, X., Cao, H., Zheng, L., Li, Q., Zhang, K., Han, Z., Han, Z. C., Guo, Z., Li, Z., & Wang, L. (2019). Mesenchymal stem cell-derived extracellular vesicles for corneal wound repair. Stem Cells International, 2019, 5738510–5738519. https://doi.org/10.1155/2019/5738510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, L., Liu, T., Liang, R., Wang, G., Liu, Y., Zou, J., Liu, N., Zhang, B., Liu, Y., Ding, X., Cai, X., Wang, Z., Xu, X., Ricordi, C., Wang, S., & Shen, Z. (2020). Mesenchymal stem cells ameliorate beta cell dysfunction of human type 2 diabetic islets by reversing beta cell dedifferentiation. EBioMedicine, 51, 102615. https://doi.org/10.1016/j.ebiom.2019.102615.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wei, Y., Hou, H., Zhang, L., Zhao, N., Li, C., Huo, J., Liu, Y., Zhang, W., Li, Z., Liu, D., Han, Z., Zhang, L., Song, B., Chi, Y., & Han, Z. (2019a). JNKi- and DAC-programmed mesenchymal stem/stromal cells from hESCs facilitate hematopoiesis and alleviate hind limb ischemia. Stem Cell Research & Therapy, 10(1), 186. https://doi.org/10.1186/s13287-019-1302-1.

    Article  CAS  Google Scholar 

  26. Wei, Y., Wu, Y., Zhao, R., Zhang, K., Midgley, A. C., Kong, D., Li, Z., & Zhao, Q. (2019b). MSC-derived sEVs enhance patency and inhibit calcification of synthetic vascular grafts by immunomodulation in a rat model of hyperlipidemia. Biomaterials, 204, 13–24. https://doi.org/10.1016/j.biomaterials.2019.01.049.

    Article  CAS  PubMed  Google Scholar 

  27. Wei, Y., Zhang, L., Chi, Y., Ren, X., Gao, Y., Song, B., et al. (2020). High-efficient generation of VCAM-1(+) mesenchymal stem cells with multidimensional superiorities in signatures and efficacy on aplastic anaemia mice. Cell Proliferation, e12862. https://doi.org/10.1111/cpr.12862.

  28. Wu, Q., Zhang, L., Su, P., Lei, X., Liu, X., Wang, H., Lu, L., Bai, Y., Xiong, T., Li, D., Zhu, Z., Duan, E., Jiang, E., Feng, S., Han, M., Xu, Y., Wang, F., & Zhou, J. (2015). MSX2 mediates entry of human pluripotent stem cells into mesendoderm by simultaneously suppressing SOX2 and activating NODAL signaling. Cell Research, 25(12), 1314–1332. https://doi.org/10.1038/cr.2015.118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yamamoto, N., Oyaizu, T., Enomoto, M., Horie, M., Yuasa, M., Okawa, A., & Yagishita, K. (2020). VEGF and bFGF induction by nitric oxide is associated with hyperbaric oxygen-induced angiogenesis and muscle regeneration. Scientific Reports, 10(1), 2744. https://doi.org/10.1038/s41598-020-59615-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang, X., Yang, Y., Zhang, L., Lu, Y., Zhang, Q., Fan, D., Zhang, Y., Zhang, Y., Ye, Z., & Xiong, D. (2017). Mesenchymal stromal cells as vehicles of tetravalent bispecific Tandab (CD3/CD19) for the treatment of B cell lymphoma combined with IDO pathway inhibitor D-1-methyl-tryptophan. Journal of Hematology & Oncology, 10(1), 56. https://doi.org/10.1186/s13045-017-0397-z.

    Article  CAS  Google Scholar 

  31. Zhang, K., Zhao, X., Chen, X., Wei, Y., Du, W., Wang, Y., et al. (2018a). Enhanced therapeutic effects of mesenchymal stem cell-derived exosomes with an injectable hydrogel for Hindlimb ischemia treatment. ACS Applied Materials & Interfaces, 10(36), 30081–30091. https://doi.org/10.1021/acsami.8b08449.

    Article  CAS  Google Scholar 

  32. Zhang, L., Liu, C., Wang, H., Wu, D., Su, P., Wang, M., Guo, J., Zhao, S., Dong, S., Zhou, W., Arakaki, C., Zhang, X., & Zhou, J. (2018b). Thrombopoietin knock-in augments platelet generation from human embryonic stem cells. Stem Cell Research & Therapy, 9(1), 194. https://doi.org/10.1186/s13287-018-0926-x.

    Article  CAS  Google Scholar 

  33. Zhang, L., Wang, H., Liu, C., Wu, Q., Su, P., Wu, D., Guo, J., Zhou, W., Xu, Y., Shi, L., & Zhou, J. (2018c). MSX2 initiates and accelerates mesenchymal stem/stromal cell specification of hPSCs by regulating TWIST1 and PRAME. Stem Cell Reports, 11(2), 497–513. https://doi.org/10.1016/j.stemcr.2018.06.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang, S., Liu, Y., Zhang, X., Zhu, D., Qi, X., Cao, X., Fang, Y., Che, Y., Han, Z. C., He, Z. X., Han, Z., & Li, Z. (2018d). Prostaglandin E2 hydrogel improves cutaneous wound healing via M2 macrophages polarization. Theranostics, 8(19), 5348–5361. https://doi.org/10.7150/thno.27385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhao, Q., Zhang, L., Wei, Y., Yu, H., Zou, L., Huo, J., Yang, H., Song, B., Wei, T., Wu, D., Zhang, W., Zhang, L., Liu, D., Li, Z., Chi, Y., Han, Z., & Han, Z. (2019). Systematic comparison of hUC-MSCs at various passages reveals the variations of signatures and therapeutic effect on acute graft-versus-host disease. Stem Cell Research & Therapy, 10(1), 354. https://doi.org/10.1186/s13287-019-1478-4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ying Chi, Yimeng Wei, Yi Yu, Zhibo Han, Zhihai Han, Dengke Liu, Rucai Zhan and Baiqing Dong for technical support or constructive suggestions. Also, we appreciate Gang Liu and Yanyan Xu in Tianjin Medical University for their kind help and technical support during the construction of mice model. The authors would like to thank the enterprise postdoctoral working station of Tianjin Chase Sun Pharmaceutical Co., Ltd. and Precision Medicine Division of Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd., and Postdoctoral workstation of Wuqing development Zone in Tianjin city for their kind support.

Funding

This work was supported by grants from the National Natural Science Foundation of China (81770119), Project funded by China Postdoctoral Science Foundation (2019 M661033), Natural Science Foundation of Tianjin (19JCQNJC12500), Natural Science Foundation of Hebei (H2020206403), Natural Science Foundation of Shandong (2020, to LSZ), Science and Technology Project of Tianjin (17ZXSCSY00030), Nanyang Science and Technology Project of He-nan Province (JCQY012), Emergency project funded by Department of Science and Technology of Jiangxi Province (2020, to ZCH), Key project funded by Department of Science and Technology of Shangrao City (2020, to ZCH).

Author information

Authors and Affiliations

Authors

Contributions

H.H.: performed the experiments, collection and assembly of data; L.D., Y.L. and Z.H.: helped with collection and assembly of data; H.H., L.Z.: helped with the mice experiments; L.Z., Z.L. and X.C.: data analysis and interpretation, manuscript writing; L.Z. and X.C.: conception and design, final approval and revision of manuscript.

Corresponding authors

Correspondence to Leisheng Zhang, Zongjin Li or Xiaocang Cao.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interests.

Ethics Approval

This experiment was approved by the Ethical Committee of Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College (approval no. KT2019048-EC-1, KT2016011-EC-1) and in accordance with the Standard Operation Procedures (SOP) of the same facility.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, H., Zhang, L., Duan, L. et al. Spatio-Temporal Metabolokinetics and Efficacy of Human Placenta-Derived Mesenchymal Stem/Stromal Cells on Mice with Refractory Crohn’s-like Enterocutaneous Fistula. Stem Cell Rev and Rep 16, 1292–1304 (2020). https://doi.org/10.1007/s12015-020-10053-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-020-10053-2

Keywords

Navigation