Skip to main content

Advertisement

Log in

Pro-Angiogenic Actions of CMC-Derived Extracellular Vesicles Rely on Selective Packaging of Angiopoietin 1 and 2, but Not FGF-2 and VEGF

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

While the fundamental mechanism by which cardiac cell therapy mitigates ventricular dysfunction in the post ischemic heart remains poorly defined, donor cell paracrine signaling is presumed to be a chief contributor to the afforded benefits. Of the many bioactive molecules secreted by transplanted cells, extracellular vesicles (EVs) and their proteinaceous, nucleic acid, and lipid rich contents, comprise a heterogeneous assortment of prospective cardiotrophic factors-whose involvement in the activation of endogenous cardiac repair mechanism(s), including reducing fibrosis and promoting angiogenesis, have yet to be fully explained. In the current study we aimed to interrogate potential mechanisms by which cardiac mesenchymal stromal cell (CMC)-derived EVs contribute to the CMC pro-angiogenic paracrine signaling capacity in vitro. Vesicular transmission and biological activity of human CMC-derived EVs was evaluated in in vitro assays for human umbilical vein endothelial cell (HUVEC) function, including EV uptake, cell survival, migration, tube formation, and intracellular pathway activation. HUVECs incubated with EVs exhibited augmented cell migration, tube formation, and survival under peroxide exposure; findings which paralleled enhanced activation of the archetypal pro-survival/pro-angiogenic pathways, STAT3 and PI3K-AKT. Cytokine array analyses revealed preferential enrichment of a subset of prototypical angiogenic factors, Ang-1 and Ang-2, in CMC EVs. Interestingly, pharmacologic inhibition of Tie2 in HUVECs, the cognate receptors of angiopoietins, efficiently attenuated CMC-EV-induced HUVEC migration. Further, in additional assays a Tie2 kinase inhibitor exhibited specificity to inhibit Ang-1-, but not Ang-2-, induced HUVEC migration. Overall, these findings suggest that the pro-angiogenic activities of CMC EVs are principally mediated by Ang-1-Tie2 signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Frangogiannis, N. G. (2015). Pathophysiology of myocardial infarction. Comprehensive Physiology, 5, 1841–1875.

    Article  PubMed  Google Scholar 

  2. Chen, B., & Frangogiannis, N. G. (2017). Immune cells in repair of the infarcted myocardium. Microcirculation., 24.

  3. Christia, P., & Frangogiannis, N. G. (2013). Targeting inflammatory pathways in myocardial infarction. European Journal of Clinical Investigation, 43, 986–995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Frangogiannis, N. G. (2015). Inflammation in cardiac injury, repair and regeneration. Current Opinion in Cardiology, 30, 240–245.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kong, P., Christia, P., & Frangogiannis, N. G. (2014). The pathogenesis of cardiac fibrosis. Cellular and Molecular Life Sciences, 71, 549–574.

    Article  CAS  PubMed  Google Scholar 

  6. Prabhu, S. D., & Frangogiannis, N. G. (2016). The biological basis for cardiac repair after myocardial infarction: From inflammation to fibrosis. Circulation Research, 119, 91–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Khurana, R., Simons, M., Martin, J. F., & Zachary, I. C. (2005). Role of angiogenesis in cardiovascular disease: A critical appraisal. Circulation., 112, 1813–1824.

    Article  PubMed  Google Scholar 

  8. Evans, I. (2015). In vitro angiogenesis assays. Methods in Molecular Biology, 1332, 143–150.

    Article  PubMed  Google Scholar 

  9. Kobayashi, K., Maeda, K., Takefuji, M., Kikuchi, R., Morishita, Y., Hirashima, M., & Murohara, T. (2017). Dynamics of angiogenesis in ischemic areas of the infarcted heart. Scientific Reports, 7, 7156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tian, X., Pu, W. T., & Zhou, B. (2015). Cellular origin and developmental program of coronary angiogenesis. Circulation Research, 116, 515–530.

    Article  CAS  PubMed  Google Scholar 

  11. Henning, R. J. (2016). Therapeutic angiogenesis: Angiogenic growth factors for ischemic heart disease. Future Cardiology, 12, 585–599.

    Article  CAS  PubMed  Google Scholar 

  12. Banerjee, M. N., Bolli, R., & Hare, J. M. (2018). Clinical studies of cell therapy in cardiovascular medicine: Recent developments and future directions. Circulation Research, 123, 266–287.

    Article  CAS  PubMed  Google Scholar 

  13. Wysoczynski, M., Guo, Y., Moore, J. B., Muthusamy, S., Li, Q., Nasr, M., Li, H., Nong, Y., Wu, W., Tomlin, A. A., Zhu, X., Hunt, G., Gumpert, A. M., Book, M. J., Khan, A., Tang, X. L., & Bolli, R. (2017). Myocardial reparative properties of cardiac mesenchymal cells isolated on the basis of adherence. Journal of the American College of Cardiology, 69, 1824–1838.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Guo, Y., Wysoczynski, M., Nong, Y., Tomlin, A., Zhu, X., Gumpert, A. M., Nasr, M., Muthusamy, S., Li, H., Book, M., Khan, A., Hong, K. U., Li, Q., & Bolli, R. (2017). Repeated doses of cardiac mesenchymal cells are therapeutically superior to a single dose in mice with old myocardial infarction. Basic Research in Cardiology, 112, 18.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hong, K. U., Guo, Y., Li, Q. H., Cao, P., Al-Maqtari, T., Vajravelu, B. N., Du, J., Book, M. J., Zhu, X., Nong, Y., Bhatnagar, A., & Bolli, R. (2014). c-kit+ Cardiac stem cells alleviate post-myocardial infarction left ventricular dysfunction despite poor engraftment and negligible retention in the recipient heart. PLoS One, 9, e96725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hong, K. U., Li, Q. H., Guo, Y., Patton, N. S., Moktar, A., Bhatnagar, A., & Bolli, R. (2013). A highly sensitive and accurate method to quantify absolute numbers of c-kit+ cardiac stem cells following transplantation in mice. Basic Research in Cardiology, 108, 346.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gnecchi, M., Zhang, Z., Ni, A., & Dzau, V. J. (2008). Paracrine mechanisms in adult stem cell signaling and therapy. Circulation Research, 103, 1204–1219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hodgkinson, C. P., Bareja, A., Gomez, J. A., & Dzau, V. J. (2016). Emerging concepts in paracrine mechanisms in regenerative cardiovascular medicine and biology. Circulation Research, 118, 95–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mirotsou, M., Jayawardena, T. M., Schmeckpeper, J., Gnecchi, M., & Dzau, V. J. (2011). Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. Journal of Molecular and Cellular Cardiology, 50, 280–289.

    Article  CAS  PubMed  Google Scholar 

  20. Wysoczynski, M., Khan, A., & Bolli, R. (2018). New paradigms in cell therapy: Repeated dosing, intravenous delivery, immunomodulatory actions, and new cell types. Circulation Research, 123, 138–158.

    Article  CAS  PubMed  Google Scholar 

  21. Todorova, D., Simoncini, S., Lacroix, R., Sabatier, F., & Dignat-George, F. (2017). Extracellular vesicles in angiogenesis. Circulation Research, 120, 1658–1673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Garikipati, V. N. S., Shoja-Taheri, F., Davis, M. E., & Kishore, R. (2018). Extracellular vesicles and the application of system biology and computational modeling in cardiac repair. Circulation Research, 123, 188–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Khan, M., & Kishore, R. (2017). Stem cell exosomes: Cell-FreeTherapy for organ repair. Methods in Molecular Biology, 1553, 315–321.

    Article  CAS  PubMed  Google Scholar 

  24. Kishore, R., Garikipati, V. N., & Gumpert, A. (2016). Tiny shuttles for information transfer: Exosomes in cardiac health and disease. Journal of Cardiovascular Translational Research, 9, 169–175.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kishore, R., & Khan, M. (2016). More than tiny sacks: Stem cell exosomes as cell-free modality for cardiac repair. Circulation Research, 118, 330–343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kishore, R., & Khan, M. (2017). Cardiac cell-derived exosomes: Changing face of regenerative biology. European Heart Journal, 38, 212–215.

    PubMed  Google Scholar 

  27. Ratajczak, J., Wysoczynski, M., Hayek, F., Janowska-Wieczorek, A., & Ratajczak, M. Z. (2006). Membrane-derived microvesicles: Important and underappreciated mediators of cell-to-cell communication. Leukemia., 20, 1487–1495.

    Article  CAS  PubMed  Google Scholar 

  28. Ribeiro-Rodrigues, T. M., Laundos, T. L., Pereira-Carvalho, R., Batista-Almeida, D., Pereira, R., Coelho-Santos, V., Silva, A. P., Fernandes, R., Zuzarte, M., Enguita, F. J., Costa, M. C., Pinto-do, O. P., Pinto, M. T., Gouveia, P., Ferreira, L., Mason, J. C., Pereira, P., Kwak, B. R., Nascimento, D. S., & Girao, H. (2017). Exosomes secreted by cardiomyocytes subjected to ischaemia promote cardiac angiogenesis. Cardiovascular Research, 113, 1338–1350.

    Article  CAS  PubMed  Google Scholar 

  29. Sluijter, J. P. G., Davidson, S. M., Boulanger, C. M., Buzas, E. I., de Kleijn, D. P. V., Engel, F. B., Giricz, Z., Hausenloy, D. J., Kishore, R., Lecour, S., Leor, J., Madonna, R., Perrino, C., Prunier, F., Sahoo, S., Schiffelers, R. M., Schulz, R., Van Laake, L. W., Ytrehus, K., & Ferdinandy, P. (2018). Extracellular vesicles in diagnostics and therapy of the ischaemic heart: Position paper from the working group on cellular biology of the heart of the European Society of Cardiology. Cardiovascular Research, 114, 19–34.

    Article  CAS  PubMed  Google Scholar 

  30. Khan, M., Nickoloff, E., Abramova, T., Johnson, J., Verma, S. K., Krishnamurthy, P., Mackie, A. R., Vaughan, E., Garikipati, V. N., Benedict, C., Ramirez, V., Lambers, E., Ito, A., Gao, E., Misener, S., Luongo, T., Elrod, J., Qin, G., Houser, S. R., Koch, W. J., & Kishore, R. (2015). Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circulation Research, 117, 52–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhao, L., Johnson, T., & Liu, D. (2017). Therapeutic angiogenesis of adipose-derived stem cells for ischemic diseases. Stem Cell Research & Therapy, 8, 125.

    Article  CAS  Google Scholar 

  32. Mackie, A. R., Klyachko, E., Thorne, T., Schultz, K. M., Millay, M., Ito, A., Kamide, C. E., Liu, T., Gupta, R., Sahoo, S., Misener, S., Kishore, R., & Losordo, D. W. (2012). Sonic hedgehog-modified human CD34+ cells preserve cardiac function after acute myocardial infarction. Circulation Research, 111, 312–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mathiyalagan, P., Liang, Y., Kim, D., Misener, S., Thorne, T., Kamide, C. E., Klyachko, E., Losordo, D. W., Hajjar, R. J., & Sahoo, S. (2017). Angiogenic mechanisms of human CD34(+) stem cell exosomes in the repair of ischemic Hindlimb. Circulation Research, 120, 1466–1476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sahoo, S., Klychko, E., Thorne, T., Misener, S., Schultz, K. M., Millay, M., Ito, A., Liu, T., Kamide, C., Agrawal, H., Perlman, H., Qin, G., Kishore, R., & Losordo, D. W. (2011). Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity. Circulation Research, 109, 724–728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sahoo, S., & Losordo, D. W. (2014). Exosomes and cardiac repair after myocardial infarction. Circulation Research, 114, 333–344.

    Article  CAS  PubMed  Google Scholar 

  36. Moore, J. B., Zhao, J., Keith, M. C., Amraotkar, A. R., Wysoczynski, M., Hong, K. U., & Bolli, R. (2016). The epigenetic regulator HDAC1 modulates transcription of a Core cardiogenic program in human cardiac mesenchymal stromal cells through a p53-dependent mechanism. Stem Cells, 34, 2916–2929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen, L., Wang, Y., Pan, Y., Zhang, L., Shen, C., Qin, G., Ashraf, M., Weintraub, N., Ma, G., & Tang, Y. (2013). Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury. Biochemical and Biophysical Research Communications, 431, 566–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee, C., Mitsialis, S. A., Aslam, M., Vitali, S. H., Vergadi, E., Konstantinou, G., Sdrimas, K., Fernandez-Gonzalez, A., & Kourembanas, S. (2012). Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation., 126, 2601–2611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, Y., Zhang, L., Li, Y., Chen, L., Wang, X., Guo, W., Zhang, X., Qin, G., He, S. H., Zimmerman, A., Liu, Y., Kim, I. M., Weintraub, N. L., & Tang, Y. (2015). Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. International Journal of Cardiology, 192, 61–69.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wysoczynski, M., Liu, R., Kucia, M., Drukala, J., & Ratajczak, M. Z. (2010). Thrombin regulates the metastatic potential of human rhabdomyosarcoma cells: Distinct role of PAR1 and PAR3 signaling. Molecular Cancer Research, 8, 677–690.

    Article  CAS  PubMed  Google Scholar 

  41. Wysoczynski, M., & Ratajczak, M. Z. (2009). Lung cancer secreted microvesicles: Underappreciated modulators of microenvironment in expanding tumors. International Journal of Cancer, 125, 1595–1603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mayourian, J., Ceholski, D. K., Gorski, P. A., Mathiyalagan, P., Murphy, J. F., Salazar, S. I., Stillitano, F., Hare, J. M., Sahoo, S., Hajjar, R. J., & Costa, K. D. (2018). Exosomal microRNA-21-5p mediates mesenchymal stem cell paracrine effects on human cardiac tissue contractility. Circulation Research, 122, 933–944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liebson, P. R. (2015). Stem-cell angiogenesis and regeneration of the heart: Review of a saga of 2 decades. Clinical Cardiology, 38, 309–316.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Liu, C., Fan, Y., Zhou, L., Zhu, H. Y., Song, Y. C., Hu, L., Wang, Y., & Li, Q. P. (2015). Pretreatment of mesenchymal stem cells with angiotensin II enhances paracrine effects, angiogenesis, gap junction formation and therapeutic efficacy for myocardial infarction. International Journal of Cardiology, 188, 22–32.

    Article  PubMed  Google Scholar 

  45. Moradi, K., Abbasi, M., Aboulhasani, F., Abbasi, N., Babatunde, K. A., Sargolzaeiaval, F., & Dehpour, A. R. (2015). Therapeutic angiogenesis promotes efficacy of human umbilical cord matrix stem cell transplantation in cardiac repair. Iranian Journal Basic Medical Science, 18, 563–570.

    Google Scholar 

  46. Moore, J. B., Zhao, J., Fischer, A. G., Keith, M. C. L., Hagan, D., Wysoczynski, M., & Bolli, R. (2017). Histone deacetylase 1 depletion activates human cardiac mesenchymal stromal cell proangiogenic paracrine signaling through a mechanism requiring enhanced basic fibroblast growth factor synthesis and secretion. Journal of the American Heart Association, 6.

  47. Baraniak, P. R., & McDevitt, T. C. (2010). Stem cell paracrine actions and tissue regeneration. Regenerative Medicine, 5, 121–143.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Beckermann, B. M., Kallifatidis, G., Groth, A., Frommhold, D., Apel, A., Mattern, J., Salnikov, A. V., Moldenhauer, G., Wagner, W., Diehlmann, A., Saffrich, R., Schubert, M., Ho, A. D., Giese, N., Buchler, M. W., Friess, H., Buchler, P., & Herr, I. (2008). VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. British Journal of Cancer, 99, 622–631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Suga, H., Glotzbach, J. P., Sorkin, M., Longaker, M. T., & Gurtner, G. C. (2014). Paracrine mechanism of angiogenesis in adipose-derived stem cell transplantation. Annals of Plastic Surgery, 72, 234–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shantsila, E., Watson, T., & Lip, G. Y. (2007). Endothelial progenitor cells in cardiovascular disorders. Journal of the American College of Cardiology, 49, 741–752.

    Article  CAS  PubMed  Google Scholar 

  51. Zhao, X., Wu, N., & Huang, L. (2010). Endothelial progenitor cells and spleen: New insights in regeneration medicine. Cytotherapy., 12, 7–16.

    Article  PubMed  Google Scholar 

  52. Tang, X. L., Rokosh, G., Sanganalmath, S. K., Yuan, F., Sato, H., Mu, J., Dai, S., Li, C., Chen, N., Peng, Y., Dawn, B., Hunt, G., Leri, A., Kajstura, J., Tiwari, S., Shirk, G., Anversa, P., & Bolli, R. (2010). Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction. Circulation., 121, 293–305.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Janowska-Wieczorek, A., Majka, M., Ratajczak, J., & Ratajczak, M. Z. (2001). Autocrine/paracrine mechanisms in human hematopoiesis. Stem Cells, 19, 99–107.

    Article  CAS  PubMed  Google Scholar 

  54. Ratajczak, M. Z., Kucia, M., Jadczyk, T., Greco, N. J., Wojakowski, W., Tendera, M., & Ratajczak, J. (2012). Pivotal role of paracrine effects in stem cell therapies in regenerative medicine: Can we translate stem cell-secreted paracrine factors and microvesicles into better therapeutic strategies? Leukemia., 26, 1166–1173.

    Article  CAS  PubMed  Google Scholar 

  55. Ratajczak, J., Kucia, M., Mierzejewska, K., Marlicz, W., Pietrzkowski, Z., Wojakowski, W., Greco, N. J., Tendera, M., & Ratajczak, M. Z. (2013). Paracrine proangiopoietic effects of human umbilical cord blood-derived purified CD133+ cells--implications for stem cell therapies in regenerative medicine. Stem Cells and Development, 22, 422–430.

    Article  CAS  PubMed  Google Scholar 

  56. Beach, A., Zhang, H. G., Ratajczak, M. Z., & Kakar, S. S. (2014). Exosomes: An overview of biogenesis, composition and role in ovarian cancer. Journal of Ovarian Research, 7, 14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. McBride, J. D., Rodriguez-Menocal, L., Guzman, W., Candanedo, A., Garcia-Contreras, M., & Badiavas, E. V. (2017). Bone marrow mesenchymal stem cell-derived CD63(+) exosomes transport Wnt3a exteriorly and enhance dermal fibroblast proliferation, migration, and angiogenesis in vitro. Stem Cells and Development, 26, 1384–1398.

    Article  CAS  PubMed  Google Scholar 

  58. Gray, W. D., French, K. M., Ghosh-Choudhary, S., Maxwell, J. T., Brown, M. E., Platt, M. O., Searles, C. D., & Davis, M. E. (2015). Identification of therapeutic covariant microRNA clusters in hypoxia-treated cardiac progenitor cell exosomes using systems biology. Circulation Research, 116, 255–263.

    Article  CAS  PubMed  Google Scholar 

  59. Agarwal, U., George, A., Bhutani, S., Ghosh-Choudhary, S., Maxwell, J. T., Brown, M. E., Mehta, Y., Platt, M. O., Liang, Y., Sahoo, S., & Davis, M. E. (2017). Experimental, systems, and computational approaches to understanding the MicroRNA-mediated reparative potential of cardiac progenitor cell-derived exosomes from pediatric patients. Circulation Research, 120, 701–712.

    Article  CAS  PubMed  Google Scholar 

  60. Prudovsky, I., Tarantini, F., Landriscina, M., Neivandt, D., Soldi, R., Kirov, A., Small, D., Kathir, K. M., Rajalingam, D., & Kumar, T. K. (2008). Secretion without Golgi. Journal of Cellular Biochemistry, 103, 1327–1343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Prudovsky, I. (2013). Nonclassically secreted regulators of angiogenesis. Angiology Open Access, 1, 1000101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wegehingel, S., Zehe, C., & Nickel, W. (2008). Rerouting of fibroblast growth factor 2 to the classical secretory pathway results in post-translational modifications that block binding to heparan sulfate proteoglycans. FEBS Letters, 582, 2387–2392.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH Grants P20 GM103492, P01 HL078825 (to RB and MW), R01 HL141191 (to MW), UM1 HL113530 (to RB), and R01 HL141081 (to JBM).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marcin Wysoczynski or Roberto Bolli.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Figure 1

Angiogenic protein array. CMC lysates, CMC-conditioned media (CM), and CMC-EVs (EVs) were evaluated for expression of pro- and anti-angiogenic factors with cytokine array membranes (Proteome Profiler Human Angiogenic Array Kit; R&D Systems, Minneapolis, MN). Proteome cytokine array heat map illustrating densitometric quantification or relative pixel density for each cytokine (A). Cytokine array membranes detected using enhanced chemiluminescence (B). (PPTX 81 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wysoczynski, M., Pathan, A., Moore, J.B. et al. Pro-Angiogenic Actions of CMC-Derived Extracellular Vesicles Rely on Selective Packaging of Angiopoietin 1 and 2, but Not FGF-2 and VEGF. Stem Cell Rev and Rep 15, 530–542 (2019). https://doi.org/10.1007/s12015-019-09891-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-019-09891-6

Keywords

Navigation