Skip to main content

Advertisement

Log in

Controversial Role of Toll-like Receptor 4 in Adult Stem Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Adult or somatic stem cells are tissue-resident cells with the ability to proliferate, exhibit self-maintenance as well as to generate new cells with the principal phenotypes of the tissue in response to injury or disease. Due to their easy accessibility and their potential use in regenerative medicine, adult stem cells raise the hope for future personalisable therapies. After infection or during injury, they are exposed to broad range of pathogen or damage-associated molecules leading to changes in their proliferation, migration and differentiation. The sensing of such damage and infection signals is mostly achieved by Toll-Like Receptors (TLRs) with Toll-like receptor 4 being responsible for recognition of bacterial lipopolysaccharides (LPS) and endogenous danger-associated molecular patterns (DAMPs). In this review, we examine the current state of knowledge on the TLR4-mediated signalling in different adult stem cell populations. Specifically, we elaborate on the role of TLR4 and its ligands on proliferation, differentiation and migration of mesenchymal stem cells, hematopoietic stem cells as well as neural stem cells. Finally, we discuss conceptual and technical pitfalls in investigation of TLR4 signalling in stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Anderson, K. V., Jürgens, G., & Nüsslein-Volhard, C. (1985). Establishment of dorsal-ventral polarity in the Drosophila embryo: Genetic studies on the role of the Toll gene product. Cell, 42, 779–789.

    CAS  PubMed  Google Scholar 

  2. Morisato, D., & Anderson, K. V. (1994). The spatzle gene encodes a component of the extracellular signaling pathway establishing the dorsal-ventral pattern of the Drosophila embryo. Cell, 76, 677–688.

    CAS  PubMed  Google Scholar 

  3. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M., & Hoffmann, J. A. (1996). The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell, 86, 973–983.

    CAS  PubMed  Google Scholar 

  4. Ozinsky, A., Underhill, D. M., Fontenot, J. D., et al. (2000). The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proceedings of the National Academy of Sciences of the United States of America, 97, 13766–13771.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Miyake, K. (2007). Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. Seminars in Immunology, 19, 3–10.

    CAS  PubMed  Google Scholar 

  6. Botos, I., Segal David, M., & Davies David, R. (2011). The structural biology of Toll-like receptors. Structure, 19, 447–459.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Chow, J. C., Young, D. W., Golenbock, D. T., Christ, W. J., & Gusovsky, F. (1999). Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. Journal of Biological Chemistry, 274, 10689–10692.

    CAS  PubMed  Google Scholar 

  8. Abreu, M. T., Vora, P., Faure, E., Thomas, L. S., Arnold, E. T., & Arditi, M. (2001). Decreased expression of Toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell protection against dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide. Journal of Immunology, 167, 1609–1616.

    CAS  Google Scholar 

  9. Frantz, S., Kobzik, L., Kim, Y. D., et al. (1999). Toll4 (TLR4) expression in cardiac myocytes in normal and failing myocardium. Journal of Clinical Investigation, 104, 271–280.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Lehnardt, S., Lachance, C., Patrizi, S., et al. (2002). The Toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS. Journal of Neuroscience, 22, 2478–2486.

    CAS  PubMed  Google Scholar 

  11. Olson, J. K., & Miller, S. D. (2004). Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. Journal of Immunology, 173, 3916–3924.

    CAS  Google Scholar 

  12. Bowman, C. C., Rasley, A., Tranguch, S. L., & Marriott, I. (2003). Cultured astrocytes express Toll-like receptors for bacterial products. Glia, 43, 281–291.

    PubMed  Google Scholar 

  13. Tang, S. C., Arumugam, T. V., Xu, X., et al. (2007). Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proceedings of the National Academy of Sciences of the United States of America, 104, 13798–13803.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Tang, S. C., Lathia, J. D., Selvaraj, P. K., et al. (2008). Toll-like receptor-4 mediates neuronal apoptosis induced by amyloid beta-peptide and the membrane lipid peroxidation product 4-hydroxynonenal. Experimental Neurology, 213, 114–121.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Esplin, B. L., Shimazu, T., Welner, R. S., et al. (2011). Chronic exposure to a TLR ligand injures hematopoietic stem cells. Journal of Immunology, 186, 5367–5375.

    CAS  Google Scholar 

  16. He, J., Xiao, Z., Chen, X., et al. (2010). The expression of functional Toll-like receptor 4 is associated with proliferation and maintenance of stem cell phenotype in endothelial progenitor cells (EPCs). Journal of Cellular Biochemistry, 111, 179–186.

    CAS  PubMed  Google Scholar 

  17. Li, C., Li, B., Dong, Z., et al. (2014). Lipopolysaccharide differentially affects the osteogenic differentiation of periodontal ligament stem cells and bone marrow mesenchymal stem cells through Toll-like receptor 4 mediated nuclear factor kappaB pathway. Stem Cell Research & Therapy, 5, 67.

    Google Scholar 

  18. Hwang, S. H., Cho, H. K., Park, S. H., et al. (2014). Toll like receptor 3 & 4 responses of human turbinate derived mesenchymal stem cells: stimulation by double stranded RNA and lipopolysaccharide. PloS One, 9, e101558.

    PubMed Central  PubMed  Google Scholar 

  19. Raicevic, G., Rouas, R., Najar, M., et al. (2010). Inflammation modifies the pattern and the function of Toll-like receptors expressed by human mesenchymal stromal cells. Human Immunology, 71, 235–244.

    CAS  PubMed  Google Scholar 

  20. He, W., Wang, Z., Luo, Z., et al. (2015). LPS promote the odontoblastic differentiation of human dental pulp stem cells via MAPK signaling pathway. Journal of Cellular Physiology, 230, 554–561.

    CAS  PubMed  Google Scholar 

  21. Shechter, R., Ronen, A., Rolls, A., et al. (2008). Toll-like receptor 4 restricts retinal progenitor cell proliferation. Journal of Cell Biology, 183, 393–400.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Rolls, A., Shechter, R., London, A., et al. (2007). Toll-like receptors modulate adult hippocampal neurogenesis. Nature Cell Biology, 9, 1081–1088.

    CAS  PubMed  Google Scholar 

  23. Okun, E., Barak, B., Saada-Madar, R., et al. (2012). Evidence for a developmental role for TLR4 in learning and memory. PloS One, 7, e47522.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Pradillo, J. M., Fernandez-Lopez, D., Garcia-Yebenes, I., et al. (2009). Toll-like receptor 4 is involved in neuroprotection afforded by ischemic preconditioning. Journal of Neurochemistry, 109, 287–294.

    CAS  PubMed  Google Scholar 

  25. Okun, E., Griffioen, K. J., & Mattson, M. P. (2011). Toll-like receptor signaling in neural plasticity and disease. Trends in Neurosciences, 34, 269–281.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Mai, C. W., Kang, Y. B., & Pichika, M. R. (2013). Should a Toll-like receptor 4 (TLR-4) agonist or antagonist be designed to treat cancer? TLR-4: its expression and effects in the ten most common cancers. Onco Targets and therapy, 6, 1573–1587.

    CAS  Google Scholar 

  27. Watanabe, S., Kumazawa, Y., & Inoue, J. (2013). Liposomal lipopolysaccharide initiates TRIF-dependent signaling pathway independent of CD14. PloS One, 8, e60078.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Marsh, B. J., Williams-Karnesky, R. L., & Stenzel-Poore, M. P. (2009). Toll-like receptor signaling in endogenous neuroprotection and stroke. Neuroscience, 158, 1007–1020.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Raetz, C. R. H., & Whitfield, C. (2002). Lipopolysaccharide endotoxins. Annual Review of Biochemistry, 71, 635–700.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Galanos, C., LÜDeritz, O., Rietschel, E. T., et al. (1985). Synthetic and natural Escherichia coli free lipid A express identical endotoxic activities. European Journal of Biochemistry, 148, 1–5.

    CAS  PubMed  Google Scholar 

  31. Si, S. (2004). Akashi S, Yamada T, et al. Lipid A antagonist, lipid IVa, is distinct from lipid A in interaction with Toll‐like receptor 4 (TLR4)‐MD‐2 and ligand‐induced TLR4 oligomerization. International Immunology, 16, 961–969.

    Google Scholar 

  32. Rietschel, E., Wollenweber, H.-W., Zähringer, U., & Lüderitz, O. (1982). Lipid A, the lipid component of bacterial lipopolysaccharides: Relation of chemical structure to biological activity. Klinische Wochenschrift, 60, 705–709.

    CAS  PubMed  Google Scholar 

  33. Gutschow, M. V., Hughey, J. J., Ruggero, N. A., Bajar, B. T., Valle, S. D., & Covert, M. W. (2013). Single-cell and population NF-kappaB dynamic responses depend on lipopolysaccharide preparation. PloS One, 8, e53222.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Miller, S. I., Ernst, R. K., & Bader, M. W. (2005). LPS, TLR4 and infectious disease diversity. Nature Reviews Microbiology, 3, 36–46.

    CAS  PubMed  Google Scholar 

  35. Sloane, J. A., Blitz, D., Margolin, Z., & Vartanian, T. (2010). A clear and present danger: endogenous ligands of Toll-like receptors. Neuromolecular Medicine, 12, 149–163.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Erridge, C. (2010). Endogenous ligands of TLR2 and TLR4: agonists or assistants? Journal of Leukocyte Biology, 87, 989–999.

    CAS  PubMed  Google Scholar 

  37. Mendelson, A., & Frenette, P. S. (2014). Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nature Medicine, 20, 833–846.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Boiko, J. R., & Borghesi, L. (2012). Hematopoiesis sculpted by pathogens: Toll-like receptors and inflammatory mediators directly activate stem cells. Cytokine, 57, 1–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Nagai, Y., Garrett, K. P., Ohta, S., et al. (2006). Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity, 24, 801–812.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Ichii, M., Shimazu, T., Welner, R. S., et al. (2010). Functional diversity of stem and progenitor cells with B-lymphopoietic potential. Immunology Reviews, 237, 10–21.

    CAS  Google Scholar 

  41. Burberry, A., Zeng, M. Y., Ding, L., et al. (2014). Infection mobilizes hematopoietic stem cells through cooperative NOD-like receptor and Toll-like receptor signaling. Cell Host & Microbe, 15, 779–791.

    CAS  Google Scholar 

  42. Baldridge, M. T., King, K. Y., & Goodell, M. A. (2011). Inflammatory signals regulate hematopoietic stem cells. Trends in Immunology, 32, 57–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Chambers, S. M., Shaw, C. A., Gatza, C., Fisk, C. J., Donehower, L. A., & Goodell, M. A. (2007). Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biology, 5, e201.

    PubMed Central  PubMed  Google Scholar 

  44. Boettcher, S., Ziegler, P., Schmid, M. A., et al. (2012). Cutting edge: LPS-induced emergency myelopoiesis depends on TLR4-expressing nonhematopoietic cells. Journal of Immunology, 188, 5824–5828.

    CAS  Google Scholar 

  45. Megias, J., Yanez, A., Moriano, S., O'Connor, J. E., Gozalbo, D., & Gil, M. L. (2012). Direct Toll-like receptor-mediated stimulation of hematopoietic stem and progenitor cells occurs in vivo and promotes differentiation toward macrophages. Stem Cells, 30, 1486–1495.

    CAS  PubMed  Google Scholar 

  46. Shi, X., Siggins, R. W., Stanford, W. L., Melvan, J. N., Basson, M. D., & Zhang, P. (2013). Toll-like receptor 4/stem cell antigen 1 signaling promotes hematopoietic precursor cell commitment to granulocyte development during the granulopoietic response to Escherichia coli bacteremia. Infection and Immunity, 81, 2197–2205.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147.

    CAS  PubMed  Google Scholar 

  48. Zuk, P. A., Zhu, M., Ashjian, P., et al. (2002). Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 13, 4279–4295.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Delorme, B., Nivet, E., Gaillard, J., et al. (2010). The human nose harbors a niche of olfactory ectomesenchymal stem cells displaying neurogenic and osteogenic properties. Stem Cells and Development, 19, 853–866.

    CAS  PubMed  Google Scholar 

  50. Diaz-Solano, D., Wittig, O., Ayala-Grosso, C., Pieruzzini, R., & Cardier, J. E. (2012). Human olfactory mucosa multipotent mesenchymal stromal cells promote survival, proliferation, and differentiation of human hematopoietic cells. Stem Cells and Development, 21, 3187–3196.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Hwang, S. H., Kim, S. Y., Park, S. H., et al. (2012). Human inferior turbinate: an alternative tissue source of multipotent mesenchymal stromal cells. Otolaryngology and Head and Neck Surgery, 147, 568–574.

    Google Scholar 

  52. Crisan, M., Yap, S., Casteilla, L., et al. (2008). A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, 3, 301–313.

    CAS  PubMed  Google Scholar 

  53. Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315–317.

    CAS  PubMed  Google Scholar 

  54. Salem, H. K., & Thiemermann, C. (2010). Mesenchymal stromal cells: current understanding and clinical status. Stem Cells, 28, 585–596.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Lalu, M. M., McIntyre, L., Pugliese, C., et al. (2012). Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PloS One, 7, e47559.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Kinzebach, S., & Bieback, K. (2013). Expansion of Mesenchymal Stem/Stromal cells under xenogenic-free culture conditions. Advances in Biochemical Engineering/Biotechnology, 129, 33–57.

    PubMed  Google Scholar 

  57. Sharma, R. R., Pollock, K., Hubel, A., & McKenna, D. (2014). Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices. Transfusion, 54, 1418–1437.

    CAS  PubMed  Google Scholar 

  58. Prockop, D. J. (2007). “Stemness” does not explain the repair of many tissues by mesenchymal stem/multipotent stromal cells (MSCs). Clinical Pharmacology and Therapeutics, 82, 241–243.

    CAS  PubMed  Google Scholar 

  59. Bieback, K., Wuchter, P., Besser, D., et al. (2012). Mesenchymal stromal cells (MSCs): science and f(r)iction. Journal of Molecular Medicine (Berl), 90, 773–782.

    Google Scholar 

  60. Maumus, M., Jorgensen, C., & Noel, D. (2013). Mesenchymal stem cells in regenerative medicine applied to rheumatic diseases: role of secretome and exosomes. Biochimie, 95, 2229–2234.

    CAS  PubMed  Google Scholar 

  61. van den Akker, F., de Jager, S. C., & Sluijter, J. P. (2013). Mesenchymal stem cell therapy for cardiac inflammation: immunomodulatory properties and the influence of Toll-like receptors. Mediators of Inflammation, 2013, 181020.

    PubMed Central  PubMed  Google Scholar 

  62. Kyurkchiev, D., Bochev, I., Ivanova-Todorova, E., et al. (2014). Secretion of immunoregulatory cytokines by mesenchymal stem cells. World Journal Stem Cells, 6, 552–570.

    Google Scholar 

  63. Liotta, F., Angeli, R., Cosmi, L., et al. (2008). Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing Notch signaling. Stem Cells, 26, 279–289.

    CAS  PubMed  Google Scholar 

  64. Shi, L., Wang, J. S., Liu, X. M., Hu, X. Y., & Fang, Q. (2007). Upregulated functional expression of Toll like receptor 4 in mesenchymal stem cells induced by lipopolysaccharide. Chinese Medical Journal, 120, 1685–1688.

    CAS  PubMed  Google Scholar 

  65. Pevsner-Fischer, M., Morad, V., Cohen-Sfady, M., et al. (2007). Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood, 109, 1422–1432.

    CAS  PubMed  Google Scholar 

  66. Opitz, C. A., Litzenburger, U. M., Lutz, C., et al. (2009). Toll-like receptor engagement enhances the immunosuppressive properties of human bone marrow-derived mesenchymal stem cells by inducing indoleamine-2,3-dioxygenase-1 via interferon-beta and protein kinase R. Stem Cells, 27, 909–919.

    CAS  PubMed  Google Scholar 

  67. Yan, H., Wu, M., Yuan, Y., Wang, Z. Z., Jiang, H., & Chen, T. (2014). Priming of Toll-like receptor 4 pathway in mesenchymal stem cells increases expression of B cell activating factor. Biochemical and Biophysical Research Communications, 448, 212–217.

    CAS  PubMed  Google Scholar 

  68. Chen, X., Zhang, Z. Y., Zhou, H., & Zhou, G. W. (2014). Characterization of mesenchymal stem cells under the stimulation of Toll-like receptor agonists. Development, Growth & Differentiation, 56, 233–244.

    CAS  Google Scholar 

  69. Zhang, L., Liu, D., Pu, D., et al. (2015). The role of Toll-like receptor 3 and 4 in regulating the function of mesenchymal stem cells isolated from umbilical cord. International Journal of Molecular Medicine, 35, 1003–1010.

    CAS  PubMed  Google Scholar 

  70. DelaRosa, O., & Lombardo, E. (2010). Modulation of adult mesenchymal stem cells activity by Toll-like receptors: implications on therapeutic potential. Mediators of Inflammation, 2010, 865601.

    PubMed Central  PubMed  Google Scholar 

  71. Wang, Z. J., Zhang, F. M., Wang, L. S., Yao, Y. W., Zhao, Q., & Gao, X. (2009). Lipopolysaccharides can protect mesenchymal stem cells (MSCs) from oxidative stress-induced apoptosis and enhance proliferation of MSCs via Toll-like receptor(TLR)-4 and PI3K/Akt. Cell Biology International, 33, 665–674.

    CAS  PubMed  Google Scholar 

  72. Giuliani, M., Bennaceur-Griscelli, A., Nanbakhsh, A., et al. (2014). TLR ligands stimulation protects MSC from NK killing. Stem Cells, 32, 290–300.

    CAS  PubMed  Google Scholar 

  73. Mei, Y. B., Zhou, W. Q., Zhang, X. Y., Wei, X. J., & Feng, Z. C. (2013). Lipopolysaccharides shapes the human Wharton”s jelly-derived mesenchymal stem cells in vitro. Cellular Physiology and Biochemistry, 32, 390–401.

    CAS  PubMed  Google Scholar 

  74. Hwa Cho, H., Bae, Y. C., & Jung, J. S. (2006). Role of Toll-like receptors on human adipose-derived stromal cells. Stem Cells, 24, 2744–2752.

    PubMed  Google Scholar 

  75. Mo, I. F., Yip, K. H., Chan, W. K., Law, H. K., Lau, Y. L., & Chan, G. C. (2008). Prolonged exposure to bacterial toxins downregulated expression of Toll-like receptors in mesenchymal stromal cell-derived osteoprogenitors. BMC Cell Biology, 9, 52.

    PubMed Central  PubMed  Google Scholar 

  76. Wang, Y., Abarbanell, A. M., Herrmann, J. L., et al. (2010). TLR4 inhibits mesenchymal stem cell (MSC) STAT3 activation and thereby exerts deleterious effects on MSC-mediated cardioprotection. PloS One, 5, e14206.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Raicevic, G., Najar, M., Pieters, K., et al. (2012). Inflammation and Toll-like receptor ligation differentially affect the osteogenic potential of human mesenchymal stromal cells depending on their tissue origin. Tissue Engineering Part A, 18, 1410–1418.

    CAS  PubMed  Google Scholar 

  78. Lei, J., Wang, Z., Hui, D., et al. (2011). Ligation of TLR2 and TLR4 on murine bone marrow-derived mesenchymal stem cells triggers differential effects on their immunosuppressive activity. Cellular Immunology, 271, 147–156.

    CAS  PubMed  Google Scholar 

  79. Tomchuck, S. L., Zwezdaryk, K. J., Coffelt, S. B., Waterman, R. S., Danka, E. S., & Scandurro, A. B. (2008). Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses. Stem Cells, 26, 99–107.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Lombardo, E., DelaRosa, O., Mancheno-Corvo, P., Menta, R., Ramirez, C., & Buscher, D. (2009). Toll-like receptor-mediated signaling in human adipose-derived stem cells: implications for immunogenicity and immunosuppressive potential. Tissue Engineering Part A, 15, 1579–1589.

    CAS  PubMed  Google Scholar 

  81. Tomic, S., Djokic, J., Vasilijic, S., et al. (2011). Immunomodulatory properties of mesenchymal stem cells derived from dental pulp and dental follicle are susceptible to activation by Toll-like receptor agonists. Stem Cells and Development, 20, 695–708.

    CAS  PubMed  Google Scholar 

  82. Covacu, R., Arvidsson, L., Andersson, Å., et al. (2009). TLR Activation Induces TNF-α Production from Adult Neural Stem/Progenitor Cells. The Journal of Immunology, 182, 6889–6895.

    CAS  PubMed  Google Scholar 

  83. Schuster, A., Klotz, M., Schwab, T., et al. (2014). Maintenance of the enteric stem cell niche by bacterial lipopolysaccharides? Evidence and perspectives. Journal of Cellular and Molecular Medicine, 18, 1429–1443.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Su, Y., Zhang, Z., Trautmann, K., Xu, S., & Schluesener, H. J. (2005). TLR and NOD2 ligands induce cell proliferation in the rat intact spinal cord. Journal of Neuropathology and Experimental Neurology, 64, 991–997.

    CAS  PubMed  Google Scholar 

  85. Wu, J. P., Kuo, J. S., Liu, Y. L., & Tzeng, S. F. (2000). Tumor necrosis factor-alpha modulates the proliferation of neural progenitors in the subventricular/ventricular zone of adult rat brain. Neuroscience Letters, 292, 203–206.

    CAS  PubMed  Google Scholar 

  86. Wong, G., Goldshmit, Y., & Turnley, A. M. (2004). Interferon-gamma but not TNF alpha promotes neuronal differentiation and neurite outgrowth of murine adult neural stem cells. Experimental Neurology, 187, 171–177.

    CAS  PubMed  Google Scholar 

  87. Widera, D., Mikenberg, I., Elvers, M., Kaltschmidt, C., & Kaltschmidt, B. (2006). Tumor necrosis factor alpha triggers proliferation of adult neural stem cells via IKK/NF-kappaB signaling. BMC Neuroscience, 7, 64.

    PubMed Central  PubMed  Google Scholar 

  88. Rubio-Araiz, A., Arevalo-Martin, A., Gomez-Torres, O., et al. (2008). The endocannabinoid system modulates a transient TNF pathway that induces neural stem cell proliferation. Molecular and Cellular Neuroscience, 38, 374–380.

    CAS  PubMed  Google Scholar 

  89. Tarassishin, L., Bauman, A., Suh, H. S., & Lee, S. C. (2013). Anti-viral and anti-inflammatory mechanisms of the innate immune transcription factor interferon regulatory factor 3: relevance to human CNS diseases. Journal of Neuroimmune Pharmacology, 8, 132–144.

    PubMed  Google Scholar 

  90. Lum, M., Croze, E., Wagner, C., McLenachan, S., Mitrovic, B., & Turnley, A. M. (2009). Inhibition of neurosphere proliferation by IFNgamma but not IFNbeta is coupled to neuronal differentiation. Journal of Neuroimmunology, 206, 32–38.

    CAS  PubMed  Google Scholar 

  91. Cacci, E., Claasen, J. H., & Kokaia, Z. (2005). Microglia-derived tumor necrosis factor-alpha exaggerates death of newborn hippocampal progenitor cells in vitro. Journal of Neuroscience Research, 80, 789–797.

    CAS  PubMed  Google Scholar 

  92. Koo, J. W., Russo, S. J., Ferguson, D., Nestler, E. J., & Duman, R. S. (2010). Nuclear factor-kappaB is a critical mediator of stress-impaired neurogenesis and depressive behavior. Proceedings of the National Academy of Sciences of the United States of America, 107, 2669–2674.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Martino, G., & Pluchino, S. (2007). Neural stem cells: guardians of the brain. Nature Cell Biology, 9, 1031–1034.

    CAS  PubMed  Google Scholar 

  94. Wang, P. P., Xie, D. Y., Liang, X. J., et al. (2012). HGF and direct mesenchymal stem cells contact synergize to inhibit hepatic stellate cells activation through TLR4/NF-kB pathway. PloS One, 7, e43408.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Edelman, D. A., Jiang, Y., Tyburski, J. G., Wilson, R. F., & Steffes, C. P. (2007). Cytokine production in lipopolysaccharide-exposed rat lung pericytes. Journal of Trauma, 62, 89–93.

    CAS  PubMed  Google Scholar 

  96. Guijarro-Munoz, I., Compte, M., Alvarez-Cienfuegos, A., Alvarez-Vallina, L., & Sanz, L. (2014). Lipopolysaccharide activates Toll-like receptor 4 (TLR4)-mediated NF-kappaB signaling pathway and proinflammatory response in human pericytes. Journal of Biological Chemistry, 289, 2457–2468.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Xiao, Z., Yang, M., Fang, L., et al. (2012). Extracellular nucleotide inhibits cell proliferation and negatively regulates Toll-like receptor 4 signalling in human progenitor endothelial cells. Cell Biology International, 36, 625–633.

    CAS  PubMed  Google Scholar 

  98. Yamada, M., Kubo, H., Ishizawa, K., Kobayashi, S., Shinkawa, M., & Sasaki, H. (2005). Increased circulating endothelial progenitor cells in patients with bacterial pneumonia: evidence that bone marrow derived cells contribute to lung repair. Thorax, 60, 410–413.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Mao, S. Z., Ye, X., Liu, G., Song, D., & Liu, S. F. (2014). An obligatory role of NF-kappaB in mediating bone marrow derived endothelial progenitor cell recruitment and proliferation following endotoxemic multiple organ injury in mice. PloS One, 9, e111087.

    PubMed Central  PubMed  Google Scholar 

  100. Neal, M. D., Sodhi, C. P., Jia, H., et al. (2012). Toll-like receptor 4 is expressed on intestinal stem cells and regulates their proliferation and apoptosis via the p53 up-regulated modulator of apoptosis. Journal of Biological Chemistry, 287, 37296–37308.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. He, W., Qu, T., Yu, Q., et al. (2013). LPS induces IL-8 expression through TLR4, MyD88, NF-kappaB and MAPK pathways in human dental pulp stem cells. International Endodontic Journal, 46, 128–136.

    CAS  PubMed  Google Scholar 

  102. He, W., Wang, Z., Zhou, Z., et al. (2014). Lipopolysaccharide enhances Wnt5a expression through Toll-like receptor 4, myeloid differentiating factor 88, phosphatidylinositol 3-OH kinase/AKT and nuclear factor kappa B pathways in human dental pulp stem cells. Journal of Endodontia, 40, 69–75.

    Google Scholar 

  103. Li, D., Fu, L., Zhang, Y., et al. (2014). The effects of LPS on adhesion and migration of human dental pulp stem cells in vitro. Journal of Dentistry, 42, 1327–1334.

    CAS  PubMed  Google Scholar 

  104. Feng, X., Feng, G., Xing, J., et al. (2014). Repeated lipopolysaccharide stimulation promotes cellular senescence in human dental pulp stem cells (DPSCs). Cell and Tissue Research, 356, 369–380.

    CAS  PubMed  Google Scholar 

  105. Kim, J. C., Lee, Y. H., Yu, M. K., et al. (2012). Anti-inflammatory mechanism of PPARgamma on LPS-induced pulp cells: role of the ROS removal activity. Archives of Oral Biology, 57, 392–400.

    CAS  PubMed  Google Scholar 

  106. Chatzivasileiou, K., Lux, C. A., Steinhoff, G., & Lang, H. (2013). Dental follicle progenitor cells responses to Porphyromonas gingivalis LPS. Journal of Cellular and Molecular Medicine, 17, 766–773.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Zhang, J., Zhang, Y., Lv, H., et al. (2013). Human stem cells from the apical papilla response to bacterial lipopolysaccharide exposure and anti-inflammatory effects of nuclear factor I C. Journal of Endodontia, 39, 1416–1422.

    Google Scholar 

  108. Chamila Prageeth Pandula, P. K., Samaranayake, L. P., Jin, L. J., & Zhang, C. (2014). Periodontal ligament stem cells: an update and perspectives. Journal of Investigative and Clinical Dentistry, 5, 81–90.

    CAS  PubMed  Google Scholar 

  109. Widera, D., Grimm, W. D., Moebius, J. M., et al. (2007). Highly efficient neural differentiation of human somatic stem cells, isolated by minimally invasive periodontal surgery. Stem Cells and Development, 16, 447–460.

    PubMed  Google Scholar 

  110. Osathanon, T., Manokawinchoke, J., Nowwarote, N., Aguilar, P., Palaga, T., & Pavasant, P. (2013). Notch signaling is involved in neurogenic commitment of human periodontal ligament-derived mesenchymal stem cells. Stem Cells and Development, 22, 1220–1231.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Huang, L., Liang, J., Geng, Y., et al. (2013). Directing adult human periodontal ligament-derived stem cells to retinal fate. Investigative Ophthalmology & Visual Science, 54, 3965–3974.

    CAS  Google Scholar 

  112. Lee, J. H., Um, S., Song, I. S., Kim, H. Y., & Seo, B. M. (2014). Neurogenic differentiation of human dental stem cells in vitro. Journal Korean Association Oral Maxillofacial Surgery, 40, 173–180.

    Google Scholar 

  113. Kato, H., Taguchi, Y., Tominaga, K., Umeda, M., & Tanaka, A. (2014). Porphyromonas gingivalis LPS inhibits osteoblastic differentiation and promotes pro-inflammatory cytokine production in human periodontal ligament stem cells. Archives of Oral Biology, 59, 167–175.

    CAS  PubMed  Google Scholar 

  114. Paik, Y. H., Schwabe, R. F., Bataller, R., Russo, M. P., Jobin, C., & Brenner, D. A. (2003). Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells. Hepatology, 37, 1043–1055.

    CAS  PubMed  Google Scholar 

  115. Wang, X. B., Chen, X., Song, K. D., et al. (2010). Effects of HMGB1 on human cord blood CD34(+) hematopoietic stem cells proliferation and differentiation in vitro. Zhonghua Xue Ye Xue Za Zhi, 31, 88–91.

    CAS  PubMed  Google Scholar 

  116. Monzen, S., Yoshino, H., Kasai-Eguchi, K., & Kashiwakura, I. (2013). Characteristics of myeloid differentiation and maturation pathway derived from human hematopoietic stem cells exposed to different linear energy transfer radiation types. PloS One, 8, e59385.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Levin, S., Pevsner-Fischer, M., Kagan, S., et al. (2014). Divergent levels of LBP and TGFbeta1 in murine MSCs lead to heterogenic response to TLR and proinflammatory cytokine activation. Stem Cell Reviews, 10, 376–388.

    CAS  PubMed  Google Scholar 

  118. Xu, J., Woods, C. R., Mora, A. L., et al. (2007). Prevention of endotoxin-induced systemic response by bone marrow-derived mesenchymal stem cells in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 293, L131–L141.

    CAS  PubMed  Google Scholar 

  119. Xu, S., De Becker, A., Van Camp, B., Vanderkerken, K., & Van Riet, I. (2010). An improved harvest and in vitro expansion protocol for murine bone marrow-derived mesenchymal stem cells. Journal of Biomedicine and Biotechnology, 2010, 105940.

    PubMed Central  PubMed  Google Scholar 

  120. Huh, J. E., & Lee, S. Y. (1833). IL-6 is produced by adipose-derived stromal cells and promotes osteogenesis. Biochimica et Biophysica Acta, 2013, 2608–2616.

    Google Scholar 

  121. Secunda, R., Vennila, R., Mohanashankar, A. M., Rajasundari, M., Jeswanth, S., Surendran, R. (2014). Isolation, expansion and characterisation of mesenchymal stem cells from human bone marrow, adipose tissue, umbilical cord blood and matrix: a comparative study. Cytotechnology. doi:10.1007/s10616-014-9718-z.

  122. Al-Nbaheen, M., Vishnubalaji, R., Ali, D., et al. (2013). Human stromal (mesenchymal) stem cells from bone marrow, adipose tissue and skin exhibit differences in molecular phenotype and differentiation potential. Stem Cell Reviews, 9, 32–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Raicevic, G., Najar, M., Stamatopoulos, B., et al. (2011). The source of human mesenchymal stromal cells influences their TLR profile as well as their functional properties. Cellular Immunology, 270, 207–216.

    CAS  PubMed  Google Scholar 

  124. Khoury, J., & Langleben, D. (1998). Effects of endotoxin on lung pericytes in vitro. Microvascular Research, 56, 71–84.

    CAS  PubMed  Google Scholar 

  125. Lindemann, D., Werle, S. B., Steffens, D., Garcia-Godoy, F., Pranke, P., & Casagrande, L. (2014). Effects of cryopreservation on the characteristics of dental pulp stem cells of intact deciduous teeth. Archives of Oral Biology, 59, 970–976.

    CAS  PubMed  Google Scholar 

  126. Sudchada, S., & Kheolamai, P. (2012). Y UP, et al. CD14−/CD34+ is the founding population of umbilical cord blood-derived endothelial progenitor cells and angiogenin1 is an important factor promoting the colony formation. Annals of Hematology, 91, 321–329.

    PubMed  Google Scholar 

  127. Waterman, R. S., Tomchuck, S. L., Henkle, S. L., & Betancourt, A. M. (2010). A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PloS One, 5, e10088.

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

MZ and DW are supported by the DFG (Grant WI4318/2-1).

Conflict of Interests

The authors declare no conflict of interests

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darius Widera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeuner, M., Bieback, K. & Widera, D. Controversial Role of Toll-like Receptor 4 in Adult Stem Cells. Stem Cell Rev and Rep 11, 621–634 (2015). https://doi.org/10.1007/s12015-015-9589-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-015-9589-5

Keywords

Navigation