Skip to main content

Toll-Like Receptor 3

A Multifunctional Regulator of Mesenchymal Stem Cells

  • Living reference work entry
  • First Online:
Handbook of Stem Cell Therapy

Abstract

Mesenchymal stem/progenitor cells (MSCs) are prospective cellular candidates for numerous regenerative and immunotherapeutic purposes. Their immunomodulatory potential and multilineage abilities allow them to be deployed for the treatment of various conditions. Nevertheless, depending on the local microenvironment, different biological tasks of MSCs can be adjusted. Toll-like receptors (TLRs) represent important bridges regulating the cross talk between MSCs and their microenvironment affecting diverse biological features of the cells. Toll-like receptor 3 (TLR3), a member of TLR family, recognizes double-stranded RNA (dsRNA) produced by DNA viruses and positive-strand RNA viruses. Its expression has been displayed by MSCs of various sources. Upon ligand identification inside the endosomes, TLR3 oligomerizes and recruits the Toll-interleukin-1 receptor domain-containing adaptor molecule-1 (TICAM-1), which triggers the production of NF-κB, β-catenin, IRF3, and AP-1, leading to the secretion of interferons and other immunomodulatory cytokines and results in pathogen clearance, as well as the recruitment of adaptive immune responses. It may also be involved in the cell-fate determination and cell cycle regulation in different developmental stages of the MSCs. Moreover, it has been shown to improve the therapeutic potential of MSCs by the promotion of multifunctional trophic factors. Priming of MSCs’ TLR3 within potential treatment procedures may serve as an additional step enhancing the required biological functions of the cells in different stages of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AD:

Adipose tissue

AKT:

Protein kinase B

AP-1:

Activator protein 1

AT-MSCs:

Adipose tissue mesenchymal stem cells

BM-MSCs:

Bone marrow mesenchymal stem cells

C/EPB:

Ccaat/Enhancer-binding protein

CFUS:

Colony forming units

COX-2:

Cyclooxygenase-2

DF-MSCs:

Dental follicle mesenchymal stem cells

DP-MSCs:

Dental pulp mesenchymal stem cells

DSRNA:

Double-stranded ribonucleic acid

G-MSCs:

Gingival mesenchymal stem cells

GSK3Β:

Glycogen synthase kinase 3 Β

HGF:

Hepatocyte growth factor

HO:

Hemoxygenase

IDO:

Indoleamine-2,3-dioxygenase

IKK:

Iκb kinase

INF1:

Interferone type 1

IRAK1:

Interleukin-1 receptor-associated kinase 1

IRF3/7:

Interferon regulatory factor 3/7

IΚB:

Nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor

JNK:

C-Jun N-terminal kinase

LPS:

Lipopolysaccharides

MAPK:

Mitogen-activated protein kinase

MIF:

Macrophage migration inhibitory factor

MIRNA:

Micro-RNA

MKK:

Mitogen-activated protein kinase kinase

MSC:

Mesenchymal stem cell

MTOR:

Mechanistic target of rapamycin

MYD88:

Myeloid differentiation primary response 88

NF-ΚB:

Nuclear factor kappa-light-chain-enhancer of activated B cell

NK-CELLS:

Natural killer cells

NM-MSCs:

Nasal mucosa MSCs

NO:

Nitric oxide

P38:

P38 mitogen-activated protein kinases

PAMPS:

Pathogen-associated molecular patterns

PD-L1:

Programmed death ligand-1

PGE2:

Prostaglandin E2

PI3K:

Phosphatidylinositol 3-kinase

PIP2:

Phosphatidylinositol 4,5-bisphosphate

PMN:

Neutrophils

POLY(I:C) HMW:

High molecular weight polyinosinic-polycytidylic acid

PRR:

Pattern recognition receptor

PT:

Placental tissue

RIP1:

Receptor-interacting serine/Threonine-protein kinase 1

SCAP:

Stem cells from the apical papilla

S-SCR:

Cellular sarcoma molecule

SSRNA:

Single-stranded RNA

TAB1/2:

Tgf-beta-activated kinase ½

TAK1:

Mitogen-activated protein kinase kinase kinase 7

TBK1:

Tank-binding kinase 1

TH1:

Cd4+ T helper 1

TIR:

Toll-interleukin receptor domain

TLR:

Toll-like receptor

T-MSCS:

Mesenchymal stromal cells from human tonsils

TRAF:

Tnf-receptor-associated factor

TRIF:

Tir-domain-containing adapter-inducing interferon-Β

UCB:

Umbilical cord blood

UCB-MSCS:

Umbilical cord blood mesenchymal stem cells

WJ:

Wharton jelly

References

  • Abdi J, Rashedi I, Keating A (2018) Concise review: TLR pathway-miRNA interplay in mesenchymal stromal cells: regulatory roles and therapeutic directions. Stem Cells 36:1655–1662

    Article  CAS  PubMed  Google Scholar 

  • Abe H, Satoh J, Shirasaka Y, Kogure A, Kato H, Ito S, Fujita T (2020) Priming phosphorylation of TANK-binding kinase 1 by IkappaB kinase beta is essential in Toll-like receptor 3/4 signaling. Mol Cell Biol 40

    Google Scholar 

  • Abujamra AL, Spanjaard RA, Akinsheye I, Zhao X, Faller DV, Ghosh SK (2006) Leukemia virus long terminal repeat activates NFkappaB pathway by a TLR3-dependent mechanism. Virology 345:390–403

    Article  CAS  PubMed  Google Scholar 

  • Afzal MR, Haider HK, Idris NM, Jiang S, Ahmed RPH, Ashraf M (2010) Preconditioning promotes survival and angiomyogenic potential of mesenchymal stem cells in the infarcted heart via NF-κB signaling. Antioxid Redox Signal 12(6):693–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801

    Article  CAS  PubMed  Google Scholar 

  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413:732–738

    Article  CAS  PubMed  Google Scholar 

  • Almeida-Porada G, Atala AJ, Porada CD (2020) Therapeutic mesenchymal stromal cells for immunotherapy and for gene and drug delivery. Mol Ther Methods Clin Dev 16:204–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Annibaldi A, Wicky John S, Vanden Berghe T, Swatek KN, Ruan J, Liccardi G, Bianchi K et al (2018) Ubiquitin-mediated regulation of RIPK1 kinase activity independent of IKK and MK2. Mol Cell 69:566–580 e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold CP, Merryman MS, Harris-Arnold A, Mckinney SA, Seidel CW, Loethen S, Proctor KN et al (2016) Pathogenic shifts in endogenous microbiota impede tissue regeneration via distinct activation of TAK1/MKK/p38. elife 5

    Google Scholar 

  • Avraham R, Yarden Y (2012) Regulation of signalling by microRNAs. Biochem Soc Trans 40:26–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai W, Liu H, Ji Q, Zhou Y, Liang L, Zheng R, Chen J et al (2014) TLR3 regulates mycobacterial RNA-induced IL-10 production through the PI3K/AKT signaling pathway. Cell Signal 26:942–950

    Article  CAS  PubMed  Google Scholar 

  • Baker N, Sohn J, Tuan RS (2015) Promotion of human mesenchymal stem cell osteogenesis by PI3-kinase/Akt signaling, and the influence of caveolin-1/cholesterol homeostasis. Stem Cell Res Ther 6:238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Banavar SR, Rawal SY, Paterson IC, Singh G, Davamani F, Khoo SP, Tan EL (2020) Establishing a technique for isolation and characterization of human periodontal ligament derived mesenchymal stem cells. Saudi Dent J

    Google Scholar 

  • Berebichez-Fridman R, Montero-Olvera PR (2018) Sources and clinical applications of mesenchymal stem cells: state-of-the-art review. Sultan Qaboos Univ Med J 18:e264–e277

    Article  PubMed  PubMed Central  Google Scholar 

  • Bianco P, Robey PG (2001) Stem cells in tissue engineering. Nature 414:118–121

    Article  CAS  PubMed  Google Scholar 

  • Bugge M, Bergstrom B, Eide OK, Solli H, Kjonstad IF, Stenvik J, Espevik T et al (2017) Surface Toll-like receptor 3 expression in metastatic intestinal epithelial cells induces inflammatory cytokine production and promotes invasiveness. J Biol Chem 292:15408–15425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai B, Wu J, Yu X, Su XZ, Wang RF (2017) FOSL1 inhibits type I interferon responses to malaria and viral infections by blocking TBK1 and TRAF3/TRIF Interactions. mBio:8

    Google Scholar 

  • Cassatella MA, Mosna F, Micheletti A, Lisi V, Tamassia N, Cont C, Calzetti F et al (2011) Toll-like receptor-3-activated human mesenchymal stromal cells significantly prolong the survival and function of neutrophils. Stem Cells 29:1001–1011

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25:2739–2749

    Article  CAS  PubMed  Google Scholar 

  • Chang J, Liu F, Lee M, Wu B, Ting K, Zara JN, Soo C et al (2013) NF-kappaB inhibits osteogenic differentiation of mesenchymal stem cells by promoting beta-catenin degradation. Proc Natl Acad Sci U S A 110:9469–9474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen K-R, Yu C-K, Kung S-H, Chen S-H, Chang C-F, Ho T-C, Lee Y-P et al (2018) Toll-like receptor 3 is involved in detection of enterovirus A71 infection and targeted by viral 2A protease. Viruses 10:689

    Article  CAS  PubMed Central  Google Scholar 

  • Chiron D, Pellat-Deceunynck C, Amiot M, Bataille R, Jego G (2009) TLR3 ligand induces NF-{kappa}B activation and various fates of multiple myeloma cells depending on IFN-{alpha} production. J Immunol 182:4471–4478

    Article  CAS  PubMed  Google Scholar 

  • Cho KA, Park M, Kim YH, Ryu KH, Woo SY (2017) Poly I:C primes the suppressive function of human palatine tonsil-derived MSCs against Th17 differentiation by increasing PD-L1 expression. Immunobiology 222:394–398

    Article  CAS  PubMed  Google Scholar 

  • Choe J, Kelker MS, Wilson IA (2005) Crystal structure of human Toll-like receptor 3 (TLR3) ectodomain. Science 309:581–585

    Article  CAS  PubMed  Google Scholar 

  • Choumerianou DM, Martimianaki G, Stiakaki E, Kalmanti L, Kalmanti M, Dimitriou H (2010) Comparative study of stemness characteristics of mesenchymal cells from bone marrow of children and adults. Cytotherapy 12:881–887

    Article  PubMed  Google Scholar 

  • Ciria M, Garcia NA, Ontoria-Oviedo I, Gonzalez-King H, Carrero R, De La Pompa JL, Montero JA et al (2017) Mesenchymal stem cell migration and proliferation are mediated by hypoxia-inducible factor-1alpha upstream of notch and SUMO pathways. Stem Cells Dev 26:973–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark EA, Kalomoiris S, Nolta JA, Fierro FA (2014) Concise review: MicroRNA function in multipotent mesenchymal stromal cells. Stem Cells 32:1074–1082

    Article  CAS  PubMed  Google Scholar 

  • Dainichi T, Matsumoto R, Mostafa A, Kabashima K (2019) Immune control by TRAF6-mediated pathways of epithelial cells in the EIME (epithelial immune microenvironment). Front Immunol 10:1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delarosa O, Lombardo E, Beraza A, Mancheno-Corvo P, Ramirez C, Menta R, Rico L et al (2009) Requirement of IFN-gamma-mediated indoleamine 2,3-dioxygenase expression in the modulation of lymphocyte proliferation by human adipose-derived stem cells. Tissue Eng Part A 15:2795–2806

    Article  CAS  PubMed  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  • Dumitru CA, Hemeda H, Jakob M, Lang S, Brandau S (2014) Stimulation of mesenchymal stromal cells (MSCs) via TLR3 reveals a novel mechanism of autocrine priming. FASEB J 28:3856–3866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunne A, Marshall NA, Mills KHG (2011) TLR based therapeutics. Curr Opin Pharmacol 11(4):404–411

    Article  CAS  PubMed  Google Scholar 

  • El-Zayat SR, Sibaii H, Mannaa FA (2019) Toll-like receptors activation, signaling, and targeting: an overview. Bull Nation Res Centre 43:187

    Article  Google Scholar 

  • Endo H, Nito C, Kamada H, Nishi T, Chan PH (2006) Activation of the Akt/GSK3beta signaling pathway mediates survival of vulnerable hippocampal neurons after transient global cerebral ischemia in rats. J Cereb Blood Flow Metab 26:1479–1489

    Article  CAS  PubMed  Google Scholar 

  • Fan L, Zhou P, Hong Q, Chen AX, Liu GY, Yu KD, Shao ZM (2019) Toll-like receptor 3 acts as a suppressor gene in breast cancer initiation and progression: a two-stage association study and functional investigation. Onco Targets Ther 8:e1593801

    Google Scholar 

  • Fang D, Hawke D, Zheng Y, Xia Y, Meisenhelder J, Nika H, Mills GB et al (2007) Phosphorylation of beta-catenin by AKT promotes beta-catenin transcriptional activity. J Biol Chem 282:11221–11229

    Article  CAS  PubMed  Google Scholar 

  • Farrugia M, Baron B (2017) The role of Toll-like receptors in autoimmune diseases through failure of the self-recognition mechanism. Int J Inflam 2017:8391230–8391230

    PubMed  PubMed Central  Google Scholar 

  • Fawzy El-Sayed KM, Klingebiel P, Dorfer CE (2016) Toll-like receptor expression profile of human dental pulp stem/progenitor cells. J Endod 42:413–417

    Article  PubMed  Google Scholar 

  • Fawzy El-Sayed KM, Boeckler J, Dörfer CE (2017) TLR expression profile of human alveolar bone proper-derived stem/progenitor cells and osteoblasts. J Craniomaxillofac Surg 45:2054–2060

    Article  PubMed  Google Scholar 

  • Fawzy-El-Sayed K, Mekhemar M, Adam-Klages S, Kabelitz D, Dorfer C (2016) TlR expression profile of human gingival margin-derived stem progenitor cells. Med Oral Patol Oral Cir Bucal 21:e30–e38

    Article  PubMed  Google Scholar 

  • Fehniger TA (2013) Extracellular microRNAs turn on NK cells via TLR1. Blood 121:4612–4613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fehrmann C, Dorfer CE, Fawzy El-Sayed KM (2020) Toll-like receptor expression profile of human stem/progenitor cells form the apical papilla. J Endod

    Google Scholar 

  • Ferreira VH, Nazli A, Khan G, Mian MF, Ashkar AA, Gray-Owen S, Kaul R et al (2011) Endometrial epithelial cell responses to coinfecting viral and bacterial pathogens in the genital tract can activate the HIV-1 LTR in an NF{kappa}B-and AP-1-dependent manner. J Infect Dis 204:299–308

    Article  CAS  PubMed  Google Scholar 

  • Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3:393–403

    CAS  PubMed  Google Scholar 

  • Galli C, Piemontese M, Lumetti S, Manfredi E, Macaluso GM, Passeri G (2013) GSK3b-inhibitor lithium chloride enhances activation of Wnt canonical signaling and osteoblast differentiation on hydrophilic titanium surfaces. Clin Oral Implants Res 24:921–927

    Article  CAS  PubMed  Google Scholar 

  • Gambara G, Desideri M, Stoppacciaro A, Padula F, De Cesaris P, Starace D, Tubaro A et al (2015) TLR3 engagement induces IRF-3-dependent apoptosis in androgen-sensitive prostate cancer cells and inhibits tumour growth in vivo. J Cell Mol Med 19:327–339

    Article  CAS  PubMed  Google Scholar 

  • Gan T, Yang Y, Hu F, Chen X, Zhou J, Li Y, Xu Y et al (2018) TLR3 regulated poly I:C-induced neutrophil extracellular traps and acute lung injury partly through p38 MAP kinase. Front Microbiol 9:3174

    Article  PubMed  PubMed Central  Google Scholar 

  • Gantner BN, Jin H, Qian F, Hay N, He B, Ye RD (2012) The Akt1 isoform is required for optimal IFN-beta transcription through direct phosphorylation of beta-catenin. J Immunol 189:3104–3111

    Article  CAS  PubMed  Google Scholar 

  • Gerlach JP, Emmink BL, Nojima H, Kranenburg O, Maurice MM (2014) Wnt signalling induces accumulation of phosphorylated beta-catenin in two distinct cytosolic complexes. Open Biol 4:140120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gieseke F, Kruchen A, Tzaribachev N, Bentzien F, Dominici M, Müller I (2013) Proinflammatory stimuli induce galectin-9 in human mesenchymal stromal cells to suppress T-cell proliferation. Eur J Immunol 43:2741–2749

    Article  CAS  PubMed  Google Scholar 

  • Giuliani M, Bennaceur-Griscelli A, Nanbakhsh A, Oudrhiri N, Chouaib S, Azzarone B, Durrbach A et al (2014) TLR ligands stimulation protects MSC from NK killing. Stem Cells 32:290–300

    Article  CAS  PubMed  Google Scholar 

  • Gong M, Wang F, Liu W, Chen R, Wu H, Zhang W, Yu X et al (2019) Pattern recognition receptor-mediated innate immune responses in seminal vesicle epithelial cell and their impacts on cellular function. Biol Reprod

    Google Scholar 

  • Gosu V, Son S, Shin D, Song KD (2019) Insights into the dynamic nature of the dsRNA-bound TLR3 complex. Sci Rep 9:3652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grandvaux N, Servant MJ, Tenoever B, Sen GC, Balachandran S, Barber GN, Lin R et al (2002) Transcriptional profiling of interferon regulatory factor 3 target genes: direct involvement in the regulation of interferon-stimulated genes. J Virol 76:5532–5539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulyaeva LF, Kushlinskiy NE (2016) Regulatory mechanisms of microRNA expression. J Transl Med 14:143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haider HK (2018) The aging stem cells and cardiac reparability: lesson learnt from clinical studies is that old is not always gold. Regen Med 13(4):457–475

    Article  CAS  PubMed  Google Scholar 

  • Haider HK, Aramini B (2019, 2019) “Mircrining” the injured heart with stem cell-derived exosomes: an emerging strategy of cell-free therapy. Stem Cell Res Ther

    Google Scholar 

  • Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J (2019) Mesenchymal stem cells for regenerative medicine. Cell 8:886

    Article  CAS  Google Scholar 

  • Harashima N, Inao T, Imamura R, Okano S, Suda T, Harada M (2012) Roles of the PI3K/Akt pathway and autophagy in TLR3 signaling-induced apoptosis and growth arrest of human prostate cancer cells. Cancer Immunol Immunother 61:667–676

    Article  CAS  PubMed  Google Scholar 

  • He S, Nakada D, Morrison SJ (2009) Mechanisms of stem cell self-renewal. Annu Rev Cell Dev Biol 25:377–406

    Article  CAS  PubMed  Google Scholar 

  • He S, Chu J, Wu L-C, Mao H, Peng Y, Alvarez-Breckenridge CA, Hughes T et al (2013) MicroRNAs activate natural killer cells through Toll-like receptor signaling. Blood 121:4663–4671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He L, Liu X, Yang J, Li W, Liu S, Liu X, Yang Z et al (2018) Imbalance of the reciprocally inhibitory loop between the ubiquitin-specific protease USP43 and EGFR/PI3K/AKT drives breast carcinogenesis. Cell Res 28:934–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemmings BA, Restuccia DF (2012) PI3K-PKB/Akt pathway. Cold Spring Harb Perspect Biol 4:a011189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Henrick BM, Yao X-D, Zahoor MA, Abimiku AL, Osawe S, Rosenthal KL (2019) TLR10 senses HIV-1 proteins and significantly enhances HIV-1 infection. Front Immunol 10

    Google Scholar 

  • Hong H, Chen X, Li K, Wang N, Li M, Yang B, Yu X et al (2020) Dental follicle stem cells rescue the regenerative capacity of inflamed rat dental pulp through a paracrine pathway. Stem Cell Res Ther 11:333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosseini SM, Sani M, Haider HK, Dorvash M, Ziaee SM, Karimi A (2018) Concomitant use of mesenchymal stem cells and neural stem cells for treatment of spinal cord injury: a combo cell therapy approach. Neurosci Lett 668:138–146

    Article  CAS  PubMed  Google Scholar 

  • Hwa CH, Bae YC, Jung JS (2006) Role of Toll-like receptors on human adipose-derived stromal cells. Stem Cells 24:2744–2752

    Article  CAS  Google Scholar 

  • Hwang SH, Cho HK, Park SH, Lee W, Lee HJ, Lee DC, Oh JH et al (2014) Toll like receptor 3 & 4 responses of human turbinate derived mesenchymal stem cells: stimulation by double stranded RNA and lipopolysaccharide. PLoS One 9:e101558

    Article  PubMed  PubMed Central  Google Scholar 

  • James AW (2013) Review of signaling pathways governing MSC osteogenic and adipogenic differentiation. Scientifica (Cairo) 2013:684736

    Google Scholar 

  • Janssens S, Beyaert R (2003) Role of Toll-like receptors in pathogen recognition. Clin Microbiol Rev 16:637–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia D, Yang W, Li L, Liu H, Tan Y, Ooi S, Chi L et al (2015) beta-Catenin and NF-kappaB co-activation triggered by TLR3 stimulation facilitates stem cell-like phenotypes in breast cancer. Cell Death Differ 22:298–310

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z, Mak TW, Sen G, Li X (2004) Toll-like receptor 3-mediated activation of NF-kappaB and IRF3 diverges at Toll-IL-1 receptor domain-containing adapter inducing IFN-beta. Proc Natl Acad Sci U S A 101:3533–3538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joung SM, Park ZY, Rani S, Takeuchi O, Akira S, Lee JY (2011) Akt contributes to activation of the TRIF-dependent signaling pathways of TLRs by interacting with TANK-binding kinase 1. J Immunol 186:499–507

    Article  CAS  PubMed  Google Scholar 

  • Karpus ON, Hsiao CC, De Kort H, Tak PP, Hamann J (2016) Intracellular delivery of poly(I:C) induces apoptosis of fibroblast-like synoviocytes via an unknown dsRNA sensor. Biochem Biophys Res Commun 477:343–349

    Article  CAS  PubMed  Google Scholar 

  • Katoh M, Katoh M (2007) WNT signaling pathway and stem cell signaling network. Clin Cancer Res 13:4042–4045

    Article  CAS  PubMed  Google Scholar 

  • Kawai T, Akira S (2007a) Antiviral signaling through pattern recognition receptors. J Biochem 141:137–145

    Article  CAS  PubMed  Google Scholar 

  • Kawai T, Akira S (2007b) TLR signaling. Semin Immunol 19:24–32

    Article  CAS  PubMed  Google Scholar 

  • Kholodenko IV, Konieva AA, Kholodenko RV, Yarygin KN (2013) Molecular mechanisms of migration and homing of intravenously transplanted mesenchymal stem cells. J Regen Med Tissue Eng:2

    Google Scholar 

  • Kim TK, Lee JS, Jung JE, Oh SY, Kwak S, Jin X, Lee SY et al (2006) Interferon regulatory factor 3 activates p53-dependent cell growth inhibition. Cancer Lett 242:215–221

    Article  CAS  PubMed  Google Scholar 

  • Kim HW, Malik F, Durrani S, Lai VK, Ashraf M, Jiang S, Haider HK (2012a) Concomitant activation of mir-107/pdcd10 and hypoxamir-210/casp8ap2 and their role in cytoprotection during ischemic preconditioning of stem cells. Antioxid Redox Signal 17(8):1053–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HW, Ashraf M, Jiang S, Haider HK (2012b) Stem cell based delivery of hypoxamir-210 to the infarcted heart: implications on stem cell survival and preservation of the infarcted heart function. J Mol Med 90(9):997–1010

    Article  CAS  PubMed  Google Scholar 

  • Kim SS, Lee KG, Chin CS, Ng SK, Pereira NA, Xu S, Lam KP (2014) DOK3 is required for IFN-beta production by enabling TRAF3/TBK1 complex formation and IRF3 activation. J Immunol 193:840–848

    Article  CAS  PubMed  Google Scholar 

  • Kinsella S, Fichtner M, Watters O, Konig HG, Prehn JHM (2018) Increased A20-E3 ubiquitin ligase interactions in bid-deficient glia attenuate TLR3- and TLR4-induced inflammation. J Neuroinflammation 15:130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ko R, Park JH, Ha H, Choi Y, Lee SY (2015) Glycogen synthase kinase 3beta ubiquitination by TRAF6 regulates TLR3-mediated pro-inflammatory cytokine production. Nat Commun 6:6765

    Article  CAS  PubMed  Google Scholar 

  • Kota DJ, Dicarlo B, Hetz RA, Smith P, Cox CS Jr, Olson SD (2014) Differential MSC activation leads to distinct mononuclear leukocyte binding mechanisms. Sci Rep 4:4565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krishnamurthy N, Kurzrock R (2018) Targeting the Wnt/beta-catenin pathway in cancer: update on effectors and inhibitors. Cancer Treat Rev 62:50–60

    Article  CAS  PubMed  Google Scholar 

  • Lai VK, Ashraf M, Haider HK (2011) MicroRNA-143 is critical regulator of cell cycle activity in stem cells with co-expression of Akt and angiopoietin-1 transgenes via transcriptional regulation of Cyclin D1. Circulation. 2011-SS-A-10888-AHA

    Google Scholar 

  • Lai VK, Ashraf M, Jiang S, Haider HK (2012) MicroRNA-143 is critical regulator of cell cycle activity in stem cells with co-overexpression of Akt and angiopoietin-1 via transcriptional regulation of Erk5/Cyclin D1 signaling. Cell Cycle 11(4):667–677

    Google Scholar 

  • Lathia JD, Okun E, Tang SC, Griffioen K, Cheng A, Mughal MR, Laryea G et al (2008) Toll-like receptor 3 is a negative regulator of embryonic neural progenitor cell proliferation. J Neurosci 28:13978–13984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Naour J, Galluzzi L, Zitvogel L, Kroemer G, Vacchelli E (2020) Trial watch: TLR3 agonists in cancer therapy. OncoImmunol 9:1771143

    Article  Google Scholar 

  • Lebedeva E, Bagaev A, Pichugin A, Chulkina M, Lysenko A, Tutykhina I, Shmarov M et al (2018) The differences in immunoadjuvant mechanisms of TLR3 and TLR4 agonists on the level of antigen-presenting cells during immunization with recombinant adenovirus vector. BMC Immunol 19:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leite FGG, Torres AA, De Oliveira LC, Da Cruz AFP, Soares-Martins JP, Pereira A, Trindade GS et al (2017) c-Jun integrates signals from both MEK/ERK and MKK/JNK pathways upon vaccinia virus infection. Arch Virol 162:2971–2981

    Article  CAS  PubMed  Google Scholar 

  • Li HX, Luo X, Liu RX, Yang YJ, Yang GS (2008) Roles of Wnt/beta-catenin signaling in adipogenic differentiation potential of adipose-derived mesenchymal stem cells. Mol Cell Endocrinol 291:116–124

    Article  CAS  PubMed  Google Scholar 

  • Li H, Shen S, Fu H, Wang Z, Li X, Sui X, Yuan M et al (2019) Immunomodulatory functions of mesenchymal stem cells in tissue engineering. Stem Cells Int 2019:9671206

    PubMed  PubMed Central  Google Scholar 

  • Liotta F, Angeli R, Cosmi L, Fili L, Manuelli C, Frosali F, Mazzinghi B et al (2008a) Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing Notch signaling. Stem Cells 26:279–289

    Article  CAS  PubMed  Google Scholar 

  • Liotta F, Angeli R, Cosmi L, Filì L, Manuelli C, Frosali F, Mazzinghi B et al (2008b) Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing Notch signaling. Stem Cells 26:279–289

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Botos I, Wang Y, Leonard JN, Shiloach J, Segal DM, Davies DR (2008) Structural basis of Toll-like receptor 3 signaling with double-stranded RNA. Science 320:379–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Mo CF, Luo XY, Li H, Guo HJ, Sun H, Hu S et al (2019) Activation of Toll-like receptor 3 induces Interleukin-1 receptor antagonist expression by activating the interferon regulatory factor 3. J Innate Immunol:1–17

    Google Scholar 

  • Lombardo E, Delarosa O, Mancheno-Corvo P, Menta R, Ramirez C, Buscher D (2009a) Toll-like receptor-mediated signaling in human adipose-derived stem cells: implications for immunogenicity and immunosuppressive potential. Tissue Eng Part A 15:1579–1589

    Article  CAS  PubMed  Google Scholar 

  • Lombardo E, Delarosa O, Mancheño-Corvo P, Menta R, Ramírez C, Büscher D (2009b) Toll-like receptor-mediated signaling in human adipose-derived stem cells: implications for immunogenicity and immunosuppressive potential. Tissue Eng Part A 15:1579–1589

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Wei Y, Liu F (2015) Direct regulation of p53 by miR-142a-3p mediates the survival of hematopoietic stem and progenitor cells in zebrafish. Cell Discov 1:15027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lundberg AM, Ketelhuth DF, Johansson ME, Gerdes N, Liu S, Yamamoto M, Akira S et al (2013) Toll-like receptor 3 and 4 signalling through the TRIF and TRAM adaptors in haematopoietic cells promotes atherosclerosis. Cardiovasc Res 99:364–373

    Article  CAS  PubMed  Google Scholar 

  • Luo S, Liu Y, Liang G, Zhao M, Wu H, Liang Y, Qiu X et al (2015) The role of microRNA-1246 in the regulation of B cell activation and the pathogenesis of systemic lupus erythematosus. Clin Epigen 7:24

    Article  CAS  Google Scholar 

  • Lv FJ, Tuan RS, Cheung KM, Leung VY (2014) Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells 32:1408–1419

    Article  CAS  PubMed  Google Scholar 

  • Ma B, Hottiger MO (2016) Crosstalk between Wnt/beta-Catenin and NF-kappaB signaling pathway during inflammation. Front Immunol 7:378

    PubMed  PubMed Central  Google Scholar 

  • Marino L, Castaldi MA, Rosamilio R, Ragni E, Vitolo R, Fulgione C, Castaldi SG et al (2019) Mesenchymal stem cells from the Wharton’s Jelly of the human umbilical cord: biological properties and therapeutic potential. Int J Stem Cells 12:218–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mastri M, Shah Z, Mclaughlin T, Greene CJ, Baum L, Suzuki G, Lee T (2012) Activation of Toll-like receptor 3 amplifies mesenchymal stem cell trophic factors and enhances therapeutic potency. Am J Physiol Cell Physiol 303:C1021–C1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto T, Yokoi A, Hashimura M, Oguri Y, Akiya M, Saegusa M (2018) TGF-beta-mediated LEFTY/Akt/GSK-3beta/Snail axis modulates epithelial-mesenchymal transition and cancer stem cell properties in ovarian clear cell carcinomas. Mol Carcinog 57:957–967

    Article  CAS  PubMed  Google Scholar 

  • Mekhemar MK (2018) Toll-like receptors: the key of immunotherapy in MSCs. IntechOpen

    Google Scholar 

  • Mekhemar MK, Adam-Klages S, Kabelitz D, Dorfer CE, Fawzy El-Sayed KM (2018a) TLR-induced immunomodulatory cytokine expression by human gingival stem/progenitor cells. Cell Immunol 326:60–67

    Article  CAS  PubMed  Google Scholar 

  • Mekhemar MK, Dörfer CE, El-Sayed KMF (2018b) Toll-like receptors: the key of immunotherapy in MSCs. In: Athari SS (ed) Immunoregulatory aspects of immunotherapy. INTECH

    Google Scholar 

  • Mekhemar M, Tölle J, Dörfer C, Fawzy El-Sayed K (2020) TLR3 ligation affects differentiation and stemness properties of gingival mesenchymal stem/progenitor cells. J Clin Periodontol 47:991–1005

    Google Scholar 

  • Mitchell S, Vargas J, Hoffmann A (2016) Signaling via the NFkappaB system. Wiley Interdiscip Rev Syst Biol Med 8:227–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyake K, Shibata T, Ohto U, Shimizu T, Saitoh SI, Fukui R, Murakami Y (2018) Mechanisms controlling nucleic acid-sensing Toll-like receptors. Int Immunol 30:43–51

    Article  CAS  PubMed  Google Scholar 

  • Murakami Y, Fukui R, Motoi Y, Kanno A, Shibata T, Tanimura N, Saitoh S et al (2014) Roles of the cleaved N-terminal TLR3 fragment and cell surface TLR3 in double-stranded RNA sensing. J Immunol 193:5208–5217

    Article  CAS  PubMed  Google Scholar 

  • Nagashima H, Iwatani S, Cruz M, Jimenez Abreu JA, Uchida T, Mahachai V, Vilaichone RK et al (2015) Toll-like receptor 10 in helicobacter pylori infection. J Infect Dis 212:1666–1676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Najar M, Krayem M, Meuleman N, Bron D, Lagneaux L (2017) Mesenchymal stromal cells and Toll-like receptor priming: a critical review. Immune Netw 17:89–102

    Article  PubMed  PubMed Central  Google Scholar 

  • Ning S, Pagano JS, Barber GN (2011) IRF7: activation, regulation, modification and function. Genes Immun 12:399–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noda S, Kawashima N, Yamamoto M, Hashimoto K, Nara K, Sekiya I, Okiji T (2019) Effect of cell culture density on dental pulp-derived mesenchymal stem cells with reference to osteogenic differentiation. Sci Rep 9:5430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Noronha NDC, Mizukami A, Caliári-Oliveira C, Cominal JG, Rocha JLM, Covas DT, Swiech K et al (2019) Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Res Ther 10:131–131

    Article  PubMed  Google Scholar 

  • O’connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D (2007) MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci 104:1604–1609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’connell RM, Rao DS, Baltimore D (2012) microRNA regulation of inflammatory responses. Annu Rev Immunol 30:295–312

    Article  PubMed  CAS  Google Scholar 

  • Opitz CA, Litzenburger UM, Lutz C, Lanz TV, Tritschler I, Köppel A, Tolosa E et al (2009) Toll-like receptor engagement enhances the immunosuppressive properties of human bone marrow-derived mesenchymal stem cells by inducing indoleamine-2,3-dioxygenase-1 via interferon-beta and protein kinase R. Stem Cells 27:909–919

    Article  CAS  PubMed  Google Scholar 

  • Otkur W, Liu W, Wang J, Jia X, Huang D, Wang F, Hayashi T et al (2018) Sub-lethal ultraviolet B irradiation and Poly I:C treatment synergistically induced apoptosis of HaCaT cells through NF-kappaB pathway. Mol Immunol 99:19–29

    Article  CAS  PubMed  Google Scholar 

  • Park KS, Kim SH, Das A, Yang SN, Jung KH, Kim MK, Berggren PO et al (2016) TLR3−/4-priming differentially promotes Ca(2+) Signaling and cytokine expression and Ca(2+)-dependently augments cytokine release in hMSCs. Sci Rep 6:23103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petri RM, Hackel A, Hahnel K, Dumitru CA, Bruderek K, Flohe SB, Paschen A et al (2017) Activated tissue-resident mesenchymal stromal cells regulate natural killer cell immune and tissue-regenerative function. Stem Cell Rep 9:985–998

    Article  CAS  Google Scholar 

  • Pevsner-Fischer M, Morad V, Cohen-Sfady M, Rousso-Noori L, Zanin-Zhorov A, Cohen S, Cohen IR et al (2007) Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood 109:1422–1432

    Article  CAS  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  • Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI (2019) Mesenchymal stem cell perspective: cell biology to clinical progress. Jpn Regen Med 4:22

    Google Scholar 

  • Qi C, Xiaofeng X, Xiaoguang W (2014) Effects of Toll-like receptors 3 and 4 in the osteogenesis of stem cells. Stem Cells Int 2014:917168

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiu Y, Guo J, Mao R, Chao K, Chen BL, He Y, Zeng ZR et al (2017) TLR3 preconditioning enhances the therapeutic efficacy of umbilical cord mesenchymal stem cells in TNBS-induced colitis via the TLR3-Jagged-1-Notch-1 pathway. Mucosal Immunol 10:727–742

    Article  CAS  PubMed  Google Scholar 

  • Raicevic G, Rouas R, Najar M, Stordeur P, Boufker HI, Bron D, Martiat P et al (2010) Inflammation modifies the pattern and the function of Toll-like receptors expressed by human mesenchymal stromal cells. Hum Immunol 71:235–244

    Article  CAS  PubMed  Google Scholar 

  • Raicevic G, Najar M, Stamatopoulos B, De Bruyn C, Meuleman N, Bron D, Toungouz M et al (2011) The source of human mesenchymal stromal cells influences their TLR profile as well as their functional properties. Cell Immunol 270:207–216

    Article  CAS  PubMed  Google Scholar 

  • Romieu-Mourez R, François M, Boivin MN, Bouchentouf M, Spaner DE, Galipeau J (2009) Cytokine modulation of TLR expression and activation in mesenchymal stromal cells leads to a proinflammatory phenotype. J Immunol 182:7963–7973

    Article  CAS  PubMed  Google Scholar 

  • Roy A, Srivastava M, Saqib U, Liu D, Faisal SM, Sugathan S, Bishnoi S et al (2016) Potential therapeutic targets for inflammation in Toll-like receptor 4 (TLR4)-mediated signaling pathways. Int Immunopharmacol 40:79–89

    Article  CAS  PubMed  Google Scholar 

  • Ryu JH, Park M, Kim BK, Ryu KH, Woo SY (2015) Tonsil-derived mesenchymal stromal cells produce CXCR2-binding chemokines and acquire follicular dendritic cell-like phenotypes under TLR3 stimulation. Cytokine 73:225–235

    Article  CAS  PubMed  Google Scholar 

  • Saldaña L, Bensiamar F, Vallés G, Mancebo FJ, García-Rey E, Vilaboa N (2019) Immunoregulatory potential of mesenchymal stem cells following activation by macrophage-derived soluble factors. Stem Cell Res Ther 10:58–58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sallustio F, Curci C, Stasi A, De Palma G, Divella C, Gramignoli R, Castellano G et al (2019, 2019) Role of Toll-like receptors in actuating stem/progenitor cell repair mechanisms: different functions in different cells. Stem Cells Int:6795845–6795845

    Google Scholar 

  • Sarkar SN, Peters KL, Elco CP, Sakamoto S, Pal S, Sen GC (2004) Novel roles of TLR3 tyrosine phosphorylation and PI3 kinase in double-stranded RNA signaling. Nat Struct Mol Biol 11:1060–1067

    Article  CAS  PubMed  Google Scholar 

  • Seya T, Shime H, Takeda Y, Tatematsu M, Takashima K, Matsumoto M (2015) Adjuvant for vaccine immunotherapy of cancer--focusing on Toll-like receptor 2 and 3 agonists for safely enhancing antitumor immunity. Cancer Sci 106:1659–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shabbir A, Zisa D, Suzuki G, Lee T (2009) Heart failure therapy mediated by the trophic activities of bone marrow mesenchymal stem cells: a noninvasive therapeutic regimen. Am J Physiol Heart Circ Physiol 296:H1888–H1897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shang S, Hua F, Hu ZW (2017) The regulation of beta-catenin activity and function in cancer: therapeutic opportunities. Oncotarget 8:33972–33989

    Article  PubMed  PubMed Central  Google Scholar 

  • Shree N, Venkategowda S, Venkatranganna MV, Datta I, Bhonde RR (2019) Human adipose tissue mesenchymal stem cells as a novel treatment modality for correcting obesity induced metabolic dysregulation. Int J Obes 43:2107–2118

    Article  CAS  Google Scholar 

  • Strayer DR, Carter WA, Stouch BC, Stevens SR, Bateman L, Cimoch PJ, Lapp CW et al (2012) A double-blind, placebo-controlled, randomized, clinical trial of the TLR-3 agonist rintatolimod in severe cases of chronic fatigue syndrome. PLoS One 7:e31334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki Y, Kim HW, Ashraf M, Haider HK (2010) Diazoxide potentiates mesenchymal stem cell survival via NF-κB-dependent miR-146a expression. Am J Physiol 2010(299):H1077–H1082

    Google Scholar 

  • Takeda K, Akira S (2004) TLR signaling pathways. Semin Immunol 16:3–9

    Article  CAS  PubMed  Google Scholar 

  • Tomchuck SL, Zwezdaryk KJ, Coffelt SB, Waterman RS, Danka ES, Scandurro AB (2008) Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses. Stem Cells 26:99–107

    Article  CAS  PubMed  Google Scholar 

  • Tomchuck S, Henkle SL, Coffelt SB, Betancourt AM (2012) Toll-like receptor 3 and suppressor of cytokine signaling proteins regulate CXCR4 and CXCR7 expression in bone marrow-derived human multipotent stromal cells. PLoS One 7:e39592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomic S, Djokic J, Vasilijic S, Vucevic D, Todorovic V, Supic G, Colic M (2011) Immunomodulatory properties of mesenchymal stem cells derived from dental pulp and dental follicle are susceptible to activation by Toll-like receptor agonists. Stem Cells Dev 20:695–708

    Article  CAS  PubMed  Google Scholar 

  • Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8:726–736

    Article  CAS  PubMed  Google Scholar 

  • Ullah MO, Sweet MJ, Mansell A, Kellie S, Kobe B (2016) TRIF-dependent TLR signaling, its functions in host defense and inflammation, and its potential as a therapeutic target. J Leukoc Biol 100:27–45

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Liu L, Davies DR, Segal DM (2010) Dimerization of Toll-like receptor 3 (TLR3) is required for ligand binding. J Biol Chem 285:36836–36841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM (2010) A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype. PLoS One 5:e10088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weiss ARR, Dahlke MH (2019) Immunomodulation by Mesenchymal Stem Cells (MSCs): mechanisms of action of living, apoptotic, and dead MSCs. Front Immunol 10:1191–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu M, Zhang R, Zou Q, Chen Y, Zhou M, Li X, Ran R et al (2018) Comparison of the biological characteristics of mesenchymal stem cells derived from the human placenta and umbilical cord. Sci Rep 8:5014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu X, Lei C, Xia T, Zhong X, Yang Q, Shu HB (2019) Regulation of TRIF-mediated innate immune response by K27-linked polyubiquitination and deubiquitination. Nat Commun 10:4115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamashita M, Fatyol K, Jin C, Wang X, Liu Z, Zhang YE (2008) TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta. Mol Cell 31:918–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita M, Chattopadhyay S, Fensterl V, Saikia P, Wetzel JL, Sen GC (2012a) Epidermal growth factor receptor is essential for Toll-like receptor 3 signaling. Sci Signal 5:ra50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamashita M, Chattopadhyay S, Fensterl V, Zhang Y, Sen GC (2012b) A TRIF-independent branch of TLR3 signaling. J Immunol 188:2825–2833

    Article  CAS  PubMed  Google Scholar 

  • Yeh DW, Huang LR, Chen YW, Huang CF, Chuang TH (2016) Interplay between inflammation and stemness in cancer cells: the role of Toll-like receptor signaling. J Immunol Res 2016:4368101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoshizawa T, Hammaker D, Sweeney SE, Boyle DL, Firestein GS (2008) Synoviocyte innate immune responses: I. Differential regulation of interferon responses and the JNK pathway by MAPK kinases. J Immunol 181:3252–3258

    Article  CAS  PubMed  Google Scholar 

  • Zhang SY, Herman M, Ciancanelli MJ, Perez De Diego R, Sancho-Shimizu V, Abel L, Casanova JL (2013) TLR3 immunity to infection in mice and humans. Curr Opin Immunol 25:19–33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang L, Liu D, Pu D, Wang Y, Li L, He Y, Li Y et al (2015) The role of Toll-like receptor 3 and 4 in regulating the function of mesenchymal stem cells isolated from umbilical cord. Int J Mol Med 35:1003–1010

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Ai M, Guo Y, Zhou X, Wang L, Li X, Yao C (2012) Poly I:C-induced tumor cell apoptosis mediated by pattern-recognition receptors. Cancer Biother Radiopharm 27:530–534

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Liu D, Gong W, Zhao G, Liu L, Yang L, Hou Y (2014) The Toll-like receptor 3 ligand, poly(I:C), improves immunosuppressive function and therapeutic effect of mesenchymal stem cells on sepsis via inhibiting MiR-143. Stem Cells 32:521–533

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Li Q, Zhou Y, Li W (2019) TLR activation inhibits the osteogenic potential of human periodontal ligament stem cells through Akt signaling in a Myd88- or TRIF-dependent manner. J Periodontol 90:400–415

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mekhemar, M., Tölle, J., Dörfer, C., Fawzy El-Sayed, K.M. (2022). Toll-Like Receptor 3. In: Haider, K.H. (eds) Handbook of Stem Cell Therapy. Springer, Singapore. https://doi.org/10.1007/978-981-16-6016-0_25-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-6016-0_25-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-6016-0

  • Online ISBN: 978-981-16-6016-0

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics