Skip to main content

Advertisement

Log in

Influence of Low Intensity Laser Irradiation on Isolated Human Adipose Derived Stem Cells Over 72 Hours and Their Differentiation Potential into Smooth Muscle Cells Using Retinoic Acid

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Introduction

Human adipose derived stem cells (hADSCs), with their impressive differentiation potential, may be used in autologous cell therapy or grafting to replace damaged tissues. Low intensity laser irradiation (LILI) has been shown to influence the behaviour of various cells, including stem cells.

Aims

This study aimed to investigate the effect of LILI on hADSCs 24, 48 or 72 h post-irradiation and their differentiation potential into smooth muscle cells (SMCs).

Methodology

hADSCs were exposed to a 636 nm diode laser at a fluence of 5 J/cm2. hADSCs were differentiated into SMCs using retinoic acid (RA). Morphology was assessed by inverted light and differential interference contrast (DIC) microscopy. Proliferation and viability of hADSCs was assessed by optical density (OD), Trypan blue staining and adenosine triphosphate (ATP) luminescence. Expression of stem cell markers, β1-integrin and Thy-1, and SMC markers, smooth muscle alpha actin (SM-αa), desmin, smooth muscle myosin heavy chain (SM-MHC) and smoothelin, was assessed by immunofluorescent staining and real-time reverse transcriptase polymerase chain reaction (RT-PCR).

Results

Morphologically, hADSCs did not show any differences and there was an increase in viability and proliferation post-irradiation. Immunofluorescent staining showed expression of β1-integrin and Thy-1 72 h post-irradiation. RT-PCR results showed a down regulation of Thy-1 48 h post-irradiation. Differentiated SMCs were confirmed by morphology and expression of SMC markers.

Conclusion

LILI at a wavelength of 636 nm and a fluence of 5 J/cm2 does not induce differentiation of isolated hADSCs over a 72 h period, and increases cellular viability and proliferation. hADSCs can be differentiated into SMCs within 14 days using RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Blau, H. M., Brazelton, T. R., & Weimann, J. M. (2001). The evolving concept of a stem cell: entity or function? Cell, 105, 829–841.

    Article  PubMed  CAS  Google Scholar 

  2. Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Furtell, J. W., Katz, A. J., et al. (2001). Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering, 7(2), 211–228.

    Article  PubMed  CAS  Google Scholar 

  3. Moore, T. J. (2007). Stem cell Q and A—an introduction to stem cells and their role in scientific and medical research. Medical Technology SA, 21(1), 3–6.

    Google Scholar 

  4. Raposio, E., Baldelli, I., Benvenuto, F., Curto, M., Paleri, L., Filippi, F., et al. (2007). Characterisation and induction of human pre-adipocytes. Toxicology in Vitro, 21, 330–334.

    Article  PubMed  CAS  Google Scholar 

  5. Schäffler, A., & Büchler, C. (2008). Concise review: adipose tissue-derived stromal cells—basic and clinical implications for novel cell-based therapies. Stem Cells, 25, 818–827.

    Article  Google Scholar 

  6. Jurgens, W. J. F. M., Oedayrajsingh-Varma, M. J., Helder, M. N., ZandiehDoulabi, B., Schouten, T. E., Kuik, D. J., et al. (2008). Effect of tissue-harvesting site on the yield of stem cells derived from adipose tissue: implications for cell-based therapies. Cell and Tissue Research, 332, 415–426.

    Article  PubMed  Google Scholar 

  7. Fraser, J. K., Wulur, I., Alfonso, Z., & Hedrick, M. H. (2006). Fat tissue: an underappreciated source of stem cells for biotechnology. Trends in Biotechnology, 24(4), 150–154.

    Article  PubMed  CAS  Google Scholar 

  8. de Villiers, J. A., Houreld, N. N., & Abrahamse, H. (2009). Adipose derived stem cells and smooth muscle cells: implications for regenerative medicine. Stem Cells Reviews and Reports, 5(3), 256–265.

    Article  Google Scholar 

  9. Strem, B. M., Hicok, K. C., Zhu, M., Wulur, I., Alfonso, Z., Schreiber, R. E., et al. (2005). Multipotential differentiation of adipose tissue-derived stem cells. The Keio Journal of Medicine, 54(3), 132–141.

    Article  PubMed  CAS  Google Scholar 

  10. Zuk, P. A., Zhu, M., Ashjian, P., De Ugarte, D. A., Huang, J. I., Mizuno, H., et al. (2002). Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 13, 4279–4295.

    Article  PubMed  CAS  Google Scholar 

  11. Rodriguez, L. V., Alfonso, Z., Zhang, R., Leung, J., Wu, B., & Ignarro, L. J. (2006). Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells. PNAS, 103(32), 12167–12172.

    Article  PubMed  CAS  Google Scholar 

  12. Sinha, S., Wamhoff, B. R., Hoofnagle, M. H., Thomas, J., Neppi, R. L., Deering, T., et al. (2006). Assessment of contractility of purified smooth muscle cells derived from embryonic stem cells. Stem Cells, 24, 1678–1688.

    Article  PubMed  Google Scholar 

  13. Yang, Y., Relan, N. K., Przyywara, D. A., & Schugar, L. (1999). Embryonic mesenchymal cell share the potential for smooth muscle differentiation: myogenesis is controlled by the cell’s shape. Development, 126, 3027–3033.

    PubMed  CAS  Google Scholar 

  14. Narita, Y., Yamawaki, A., Kagami, H., Ueda, M., & Ueda, Y. (2008). Effects of transforming growth factor-beta 1 and absorbic acid on differentiation of human bone marrow-derived mesenchymal stem cells into smooth muscle cell lineage. Cell and Tissue Research, 333, 449–459.

    Article  PubMed  CAS  Google Scholar 

  15. Drab, M., Haller, H., Bychkov, R., Erdmann, B., Lindschau, C., Haase, H., et al. (1997). From totipotent embryonic stem cells to spontaneously contracting smooth muscle cells: a retinoic acid and db-cAMP in vitro differentiation model. The FASEB Journal, 11, 905–915.

    PubMed  CAS  Google Scholar 

  16. Hawkins, D. H., & Abrahamse, H. (2006). Effect of multiple exposures of low-level laser therapy on the cellular responses of wounded human skin fibroblasts. Photomedicine and Laser Surgery, 24, 705–714.

    Article  PubMed  CAS  Google Scholar 

  17. Hawkins, D. H., & Abrahamse, H. (2007). Time-dependent responses of wounded human skin fibroblasts following phototherapy. Journal of Photochemistry and Photobiology, B: Biology, 88, 147–155.

    Article  CAS  Google Scholar 

  18. Moore, P., Ridgeway, T. D., Higbee, R. G., Howard, E. W., & Lucroy, M. D. (2005). Effect of wavelength on low-intensity laser irradiation-stimulated cell proliferation in vitro. Lasers in Surgery and Medicine, 36, 8–12.

    Article  PubMed  Google Scholar 

  19. Gasparyan, L., Brill, G., & Makela, A. (2004). Influence of low level laser radiation on migration of stem cells. Laser Florence, 5968, 58–63.

    Google Scholar 

  20. Mvula, B., Mathope, T., Moore, T., & Abrahamse, H. (2008). The effect of low level laser therapy on adipose derived stem cells. Lasers in Medical Science, 23(3), 277–282.

    Article  PubMed  CAS  Google Scholar 

  21. Mvula, B., Moore, T. J., & Abrahamse, H. (2010). Effect of low-level laser irradiation and epidermal growth factor on adult human adipose-derived stem cells. Lasers in Medical Science, 25, 33–39.

    Article  PubMed  CAS  Google Scholar 

  22. Pinheiro, A. L. B., Nascimento, S. C., Veira, A. L. B., Brugnera, A., Zanin, F. A., Rolim, D. D. S., et al. (2002). Effects of low level laser therapy on malignant cells: in vitro study. Journal of Clinical Laser Medicine & Surgery, 20(1), 23–26.

    Article  Google Scholar 

  23. Ogawa, R. (2006). The importance of adipose-derived stem cells and vascularised tissue regeneration in the field of tissue transplantation. Current Stem Cell Research & Therapy, 1, 13–20.

    Article  CAS  Google Scholar 

  24. Gomillion, C. T., & Burg, K. J. L. (2006). Stem cells and adipose tissue engineering. Biomaterials, 27, 6052–6063.

    Article  PubMed  CAS  Google Scholar 

  25. de Villiers, J. A., Khumalo, F., Sefalafala, S., Nelson, L. R., & Abrahamse, H. (2008). The effect of laser irradiation on wounded mycotoxin exposed human skin fibroblast cells. Medical Technology SA, 22(2), 7–14.

    Google Scholar 

  26. Karu, T. (1999). Primary and secondary mechanisms of action of visible to near-IR radiation on cells. Journal of Photochemistry and Photobiology B, 49, 1–17.

    Article  CAS  Google Scholar 

  27. Hawkins Evans, D., & Abrahamse, H. (2009). A review of laboratory-based methods to investigate second messengers in low-level laser therapy (LLLT). Medical Laser Application, 24, 201–215.

    Article  Google Scholar 

  28. Karu, T. (1987). Photobiological fundamentals of low power laser therapy. Journal of Quantum Electronics, 23(10), 1703–1717.

    Article  Google Scholar 

  29. Karu, T. I., Pyatibrat, L., & Kalendo, G. (1994). Irradiation with He-Ne laser can influence the cytotoxic response of HeLa cells to ionizing radiation. International Journal of Radiation Biology, 65(6), 691–697.

    Article  PubMed  CAS  Google Scholar 

  30. Hopkins, J. T., McLoda, T. A., Seegmiller, J. G., & Boxter, G. D. (2004). Low level laser therapy facilitates superficial wound healing in humans: a triple-blind, sham-controlled study. Journal of Athletic Training, 39(3), 223–229.

    PubMed  Google Scholar 

  31. Silveira, P. C. L., Streak, E. L., & Pinho, R. A. (2006). Evaluation of mitochondrial respiratory chain activity in wound healing by low level laser therapy. Journal of Photochemistry and Photobiology, 86, 279–282.

    Article  Google Scholar 

  32. Tuby, H., Maltz, L., & Oron, U. (2007). Low-level laser irradiation (LLLI) promotes proliferation of mesenchymal and cardiac stem cells in culture. Lasers in Surgery and Medicine, 39, 373–378.

    Article  PubMed  Google Scholar 

  33. de Souza, S. C., Munin, E., Procopio Alves, L., Castillo Salgado, M. A., & Pacheco, M. T. T. (2005). Low power laser radiation at 685 nm stimulates stem-cell proliferation rate in Dugesia tigrina during regeneration. Journal of Photochemistry and Photobiology, B: Biology, 80, 203–207.

    Article  Google Scholar 

  34. Stein, A., Benayahu, D., Maltz, L., & Oron, U. (2005). Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomedicine and Laser Surgery, 23(2), 161–166.

    Article  PubMed  CAS  Google Scholar 

  35. Kim, H. K., Kim, J. H., Abbas, A. A., Kim, D., Park, S., Chung, J. Y., et al. (2009). Red light of 647 nm enhances osteogenic differentiation in mesenchymal stem cells. Lasers in Medical Science, 24, 214–222.

    Article  PubMed  Google Scholar 

  36. Hou, J. F., Zhang, H., Yuan, X., Li, J., Wei, Y. J., & Hu, S. S. (2008). In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: proliferation, growth factors secretion and myogenic differentiation. Lasers in Surgery and Medicine, 40(10), 726–33.

    Article  PubMed  Google Scholar 

  37. Oron, U., Ilic, S., De Taboada, L., & Streeter, J. (2007). Ga-As (808 nm) laser irradiation enhances ATP production in human neuronal cells in culture. Photomedicine and Laser Surgery, 25(3), 180–182.

    Article  PubMed  CAS  Google Scholar 

  38. Oron, U., Maltz, L., Tuby, H., Sorin, V., & Czerniak, A. (2010). Enhanced liver regeneration following acute hepatectomy by low-level laser therapy. Photomedicine and Laser Surgery, 28(5), 675–678.

    Article  PubMed  CAS  Google Scholar 

  39. Blank, R. S., Swartz, E. A., Thompson, M. M., Olson, E. N., & Owens, G. K. (1995). A retinoic acid-induced clonal cell line derived from multipotential P19 embryonal carcinoma cells expresses smooth muscle cell characteristics. The Journal of Cell Biology, 94, 253–262.

    Google Scholar 

  40. Hawkins, D., & Abrahamse, H. (2004). The release of interleukin-6 after Low Level Laser Therapy (LLLT) and the effect on migration and proliferation of human skin fibroblasts—an in vitro study. Medical Technology SA, 18(1), 9–15.

    Google Scholar 

  41. Hawkins, D., Houreld, N., & Abrahamse, H. (2005). Low Level Laser Therapy (LLLT) as an effective therapeutic modality for delayed wound healing. Annals of the New York Academy of Sciences, 1056, 486–493.

    Article  PubMed  CAS  Google Scholar 

  42. Gimble, J. M., Katz, A. J., & Bunnell, B. A. (2007). Adipose-derived stem cells for regenerative medicine. Circulation Research, 100, 1249–1260.

    Article  PubMed  CAS  Google Scholar 

  43. Katz, A. J., Tholpady, A., Tholpady, S. S., Shang, H., & Ogle, R. C. (2008). Cell surface characterisation of Human Adipose-Derived Adherent Stromal (hADAS) cells. Stem Cells, 23, 412–423.

    Article  Google Scholar 

  44. Wu, G., Zheng, X., Jiang, Z., Wang, J., & Song, Y. (2010). Induced differentiation of adipose-derived stromal cells into myoblasts. Journal of Huazhong University of Science and Technology Medical Sciences, 30(3), 285–290.

    Article  Google Scholar 

  45. Weitzer, G., Milner, D. J., Kim, J. U., Bradley, A., & Capetanaki, Y. (1995). Cytoskeletal control of myogenesis: a desmin null mutation blocks the myogenic pathway during embryonic stem cell differentiation. Developmental Biology, 172, 422–439.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Research Foundation (NRF) of South Africa, Council for Scientific and Industrial Research (CSIR) of South Africa, and the University of Johannesburg (UJ). Lasers were supplied and set up by the National Laser Centre (NLC) of South Africa.

Disclosures

The authors indicate no potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi Abrahamse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Villiers, J.A., Houreld, N.N. & Abrahamse, H. Influence of Low Intensity Laser Irradiation on Isolated Human Adipose Derived Stem Cells Over 72 Hours and Their Differentiation Potential into Smooth Muscle Cells Using Retinoic Acid. Stem Cell Rev and Rep 7, 869–882 (2011). https://doi.org/10.1007/s12015-011-9244-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-011-9244-8

Keywords

Navigation