Skip to main content
Log in

Red light of 647 nm enhances osteogenic differentiation in mesenchymal stem cells

  • Original article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

An Erratum to this article was published on 07 April 2009

Abstract

The use of light for medical treatment has been studied previously. In this study, we examined the effect of light from a red light-emitting diode on osteogenic differentiation of mouse mesenchymal stem cells (D1 cells) which were cultured in the presence of osteogenic differentiation medium (ODM) for 3 days, then exposed to a red light-emitting diode (LED) light of 647 nm wavelength once for 10 s, 30 s or 90 s with radiation energies of 0.093 J, 0.279 J and 0.836 J, respectively. D1 cells in the presence of ODM differentiated into osteoblasts, and this process was enhanced on exposure to LED light in ODM medium. This effect was confirmed by increased Alizarin red staining, higher alkaline phosphatase (ALP) activity, higher mRNA expressions of osteocalcin, collagen type I, osteopontin and Runt-related transcription factor2 (Runx2), and higher levels by reverse transcriptase-polymerase chain reaction (RT-PCR) and by increased immunofluorescence staining against cluster of differentiation 44 (CD44) by immunofluorescence microscopy, confocal microscopy and flow cytometric analysis. These data suggest that osteogenic differentiation of mesenchymal stem cells (MSCs) in ODM is enhanced by LED light exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baxter GD, Allen J (1994) Therapeutic lasers: theory and practice, 1st edn. Churchill Livingstone, Edinburgh,

    Google Scholar 

  2. Pogrel MA, Ji Wel C, Zhang K (1997) Effects of low-energy gallium-aluminum-arsenide laser irradiation on cultured fibroblasts and keratinocytes. Laser Surg Med 20:426–432

    Article  CAS  Google Scholar 

  3. Reddy GK, Stehno Bittel K, Enwemeka CS (1998) Laser photostimulation of collagen production in healing rabbit Achilles tendons. Laser Surg Med 22:281–287

    Article  CAS  Google Scholar 

  4. Karu T (1998) The science of low-power laser therapy, 1st edn. Gordon and Breach, New Delhi

    Google Scholar 

  5. Reddy GK, Stehno Bittel L, Enwemeka CS (2001) Laser photostimulation accelerates wound healing in diabetic rats. Wound Repair Regen 9:248–255

    Article  PubMed  CAS  Google Scholar 

  6. Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B 49:1–17

    Article  PubMed  CAS  Google Scholar 

  7. Karu T (2003) Low-power laser therapy. In: Vo-Dinh T (ed) Biomedical photonics handbook. CRC Press, Boca Raton, Fla

    Google Scholar 

  8. Mester E, Jaszagi-Nagy E (1973) The effects of laser radiation on wound healing and collagen synthesis. Studia Biophys 35:227–230

    CAS  Google Scholar 

  9. Abergel RP, Lyons RF, Castel JC, Dwyer RM, Uitto J (1987) Biostimulation of wound healing by lasers: experimental approaches in animal models and in fibroblast cultures. J Dermatol Surg Oncol 13:127–133

    PubMed  CAS  Google Scholar 

  10. Oron U, Yaakobi T, Oron A Hayam G, Gepstein L, Rubin O, Wolf T, Ben Heim S (2001) Attenuation of infarct size in rats and dogs after myocardial infarction by low-energy laser irradiation. Lasers Surg Med 28:204–211

    Article  PubMed  CAS  Google Scholar 

  11. Conlan MJ, Rapley JW, Cobb CM (1996) Biostimulation of wound healing by low-energy laser irradiation. J Clin Periodontol 23:492–496

    Article  PubMed  CAS  Google Scholar 

  12. Abramovitch-Gottlib L, Gross T, Naveh D, Geresh S, Rosenwaks S, Bar I, Vago R (2005) Low level laser irradiation stimulates osteogenic phenotype of mesenchymal stem cells seeded on a three-dimensional biomatrix. Lasers Med Sci 20:138–146

    Article  PubMed  Google Scholar 

  13. Vinck EM, Cagnie BJ, Cornelissen MJ, Declercq HA, Cambier DC (2003) Increased fibroblast proliferation induced by light emitting diode and low power laser irradiation. Lasers Med Sci 18:95–99

    Article  PubMed  Google Scholar 

  14. Vinck EM, Cagnie BJ, Cornelissen MJ, Declercq HA, Cambier DC (2005) Green light emitting diode irradiation enhances fibroblast growth impaired by high glucose level. Photomed Laser Surg 23:167–171

    Article  PubMed  CAS  Google Scholar 

  15. Fibbe WE (2002) Mesenchymal stem cells. A potential source for skeletal repair. Ann Rheum Dis 61:ii29–31

    Google Scholar 

  16. Owen ME, Cave J, Joyner CJ (1987) Clonal analysis in vitro of osteogenic differentiation of marrow CFU-F. J Cell Sci 87:731–738

    PubMed  Google Scholar 

  17. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  18. Dahir GA, Cui Q, Anderson P, Simon C, Joyner C, Triffitt JT, Balian G (2000) Pluripotential mesenchymal cells repopulate bone marrow and retain osteogenic properties. Clin Orthop Relat Res 379:S134–145

    Article  PubMed  Google Scholar 

  19. Minguell JJ, Erices A, Conget P (2001) Mesenchymal stem cells. Exp Biol Med (Maywood) 226:507–520

    CAS  Google Scholar 

  20. Chen C-H, Ho M-L, Chang J-K, Hung S-H, Wang G-W (2005) Green tea catechin enhances osteogenesis in a bone marrow mesenchymal stem cell line. Osteoporos Int 16:2039–2045

    Article  PubMed  CAS  Google Scholar 

  21. Li X, Jin L, Cui Q, Wang G-W, Balian G (2005) Steroid effects on osteogenesis through mesenchymal cell gene expression. Osteoporos Int 16:101–108

    Article  PubMed  CAS  Google Scholar 

  22. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64:295–312

    Article  PubMed  CAS  Google Scholar 

  23. Barushka O, Yaakobi T, Oron U (1995) Effect of low-energy laser (He-Ne) irradiation on the process of bone repair in the rat tibia. Bone 16:47–55

    Article  PubMed  CAS  Google Scholar 

  24. Saito S, Shimizu N (1997) Stimulatory effects of low-power laser irradiation on bone regeneration in midpalatal suture during expansion in the rat. Am J Orthod Dentofacial Orthop 111:525–532

    Article  PubMed  CAS  Google Scholar 

  25. Yamada K (1991) Biological effects of low power laser irradiation on clonal osteoblastic cells (MC3T3-E1). J Jpn Orthop Assoc 65:787–799

    CAS  Google Scholar 

  26. Yamamoto M, Tamura K, Hiratsuka K, Abiko Y (2001) Stimulation of MCM3 gene expression in osteoblast by low level laser irradiation. Laser Med Sci 16:213–217

    Article  CAS  Google Scholar 

  27. Ueda Y, Shimizu N (2003) Effects of pulse frequency of low level laser therapy (LLLT) on bone nodule formation in rat calvarial cells. J Clin Laser Med Surg 21:271–277

    Article  PubMed  Google Scholar 

  28. Ben-Dov N, Shefer G, Irintchev A, Wernig A, Oron U, Halevy O (1999) Low-energy laser irradiation affects satellite cell proliferation and differentiation in vitro. Biochim Biophys Acta 1448:372–380

    Article  PubMed  CAS  Google Scholar 

  29. Asahina I, Sampath TK, Hauschka PV (1996) Human osteogenic protein-1 induces chondroblastic, osteoblastic and/or adipocytic differentiation of clonal murine target cells. Exp Cell Res 222:38–47

    Article  PubMed  CAS  Google Scholar 

  30. Grigoriadis AE, Heersche JNM, Aubin JE (1988) Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell-population−effect of dexamethasone. J Cell Biol 106:2139–2151

    Article  PubMed  CAS  Google Scholar 

  31. Thompson DL, Lum KD, Nygaard SC, Kuestner RE, Kelly KA, Gimble JM, Moore EE (1998) The derivation and characterization of stromal cell lines from the bone marrow of p53(-/-) mice: New insights into osteoblast and adipocyte differentiation. J Bone Miner Res 13:195–204

    Article  PubMed  CAS  Google Scholar 

  32. Seiler JG III, Johnson J (2000) Iliac crest autogenous bone grafting: donor site complications. J South Orthop Assoc 9:91–99

    PubMed  Google Scholar 

  33. Kotobuki N, Hirose M, Takakura Y, Ohgushi H (2004) Cultured autologous human cells for hard tissue regeneration: preparation and characterization of mesenchymal stem cells from bone marrow. Artif Organs 28:33–39

    Article  PubMed  Google Scholar 

  34. Li X, Cui Q, Kao C, Wang G-W, Balian G (2003) Lovastatin inhibits adipogenic and stimulates osteogenic differentiation by suppressing PPARg2 and increasing Cbfa1/Runx2 expression in bone marrow mesenchymal cell cultures. Bone 33:652–659

    Article  PubMed  CAS  Google Scholar 

  35. Wang C, Lee G, Hsu W, Yeh C-H, Ho M-L, Wang G-J (2006) Identification of USF2 as a key regulator of Runx2 expression in mouse pluripotent mesenchymal D1 cells. Mol Cell Biochem 292:79–88

    Article  PubMed  CAS  Google Scholar 

  36. Gundberg CM, Hauschka PV, Lian JB, Gallop PM (1984) Osteocalcin: isolation, characterization, and detection. Methods Enzymol 107:516–544

    Article  PubMed  CAS  Google Scholar 

  37. Owen TA, Holthuis J, Markose E, van Wijnen AJ, Wolfe SA, Grimes SR, Lian JB, Stein GS (1990) Modifications of protein-DNA interactions in the proximal promoter of a cell-growth-regulated histone gene during onset and progression of osteoblast differentiation. Proc Natl Acad Sci U S A 87:5129–5133

    Article  PubMed  CAS  Google Scholar 

  38. Hughes DE, Wright KR, Uy HL, Sasaki A, Yoneda T, Roodman GD, Mundy GR, Boyce BF (1995) Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res 10:1478–1487

    PubMed  CAS  Google Scholar 

  39. Sikavitsas VI, Temenoff JS, Mikos AG (2001) Biomaterial and bone mechanotransduction. Biomaterials 22:2581–2593

    Article  PubMed  CAS  Google Scholar 

  40. Hu J, Fraser R, Russell JJ, Ben-Nissan B, Vago R (2000) Australian coral as a biomaterial: characteristics. J Mater Sci Technol 16:591–595

    CAS  Google Scholar 

  41. Dvorak MM, Siddiqua A, Ward DT, Carter DH, Dallas SL, Nemeth EF, Riccardi D (2004) Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones. Proc Natl Acad Sci U S A 101:5140–5145

    Article  PubMed  CAS  Google Scholar 

  42. Yamauchi M, Yamaguchi T, Kaji H, Sugimoto T, Chihara K (2005) Involvement of calcium-sensing receptor in osteoblastic differentiation of mouse MC3T3-E1 cells. Am J Physiol Endocrinol Metab 288:E608–E616

    Article  PubMed  CAS  Google Scholar 

  43. Adamia S, Maxwell CA, Pilarski LM (2005) Hyaluronan and hyaluronan synthases: potential therapeutic targets in cancer. Curr Drug Targets Cardiovasc Haematol Disord 5:3–14

    Article  PubMed  CAS  Google Scholar 

  44. Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, Di Halvorsen Y, Storms RW, Goh B, Kilroy G, Wu X, Gimble JM (2006) Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 24:376–385

    Article  PubMed  Google Scholar 

  45. Yoshimura H, Muneta T, Nimura A, Yokoyama A, Koga H, Sekiya I (2007) Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res 327:449–462

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by grant no. RTI04–03–03 from the Regional Technology Innovation Program of the Ministry of Commerce, Industry and Energy (MOCIE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taek Rim Yoon.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10103-009-0669-0

An erratum to this article is available at http://dx.doi.org/10.1007/s10103-009-0669-0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H.K., Kim, J.H., Abbas, A.A. et al. Red light of 647 nm enhances osteogenic differentiation in mesenchymal stem cells. Lasers Med Sci 24, 214–222 (2009). https://doi.org/10.1007/s10103-008-0550-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-008-0550-6

Keywords

Navigation