Skip to main content

Advertisement

Log in

Building a Framework for Embryonic Microenvironments and Cancer Stem Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The putative existence of a cancer stem cell niche consisting of bi-directional stromal and stem cell secreting factors that trigger cancer stem cell growth and proliferation has been hypothesized in the nervous and hematopoietic systems. In light of this theory, it has been proposed that embryonic stem cell microenvironments, upon interactions with cancer stem cells, may reprogram cancer cells resulting in a substantial inhibition of tumor cell properties. Here, we discuss emerging data that support this novel concept of cancer inhibitory factors produced in the context of embryonic microenvironments as well as by embryonic stem cells (ESCs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fuchs, E., Tumbar, T., & Guasch, G. (2004). Socializing with the neighbors: stem cells and their niche. Cell, 116(6), 769–778.

    Article  CAS  PubMed  Google Scholar 

  2. Morrison, S. J., & Spradling, A. C. (2008). Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell, 132(4), 598–611.

    Article  CAS  PubMed  Google Scholar 

  3. Rideout, W. M., 3rd, Hochedlinger, K., Kyba, M., Daley, G. Q., & Jaenisch, R. (2002). Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell, 109(1), 17–27.

    Article  CAS  PubMed  Google Scholar 

  4. Wernig, M., Meissner, A., Foreman, R., Brambrink, T., Ku, M., Hochedlinger, K., et al. (2007). In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 448(7151), 318–324.

    Article  CAS  PubMed  Google Scholar 

  5. Aleckovic, M., & Simón, C. (2008). Is teratoma formation in stem cell research a characterization tool or a window to developmental biology? Reproductive Biomedicine Online, 17(2), 270–280.

    Article  PubMed  Google Scholar 

  6. Hanna, J., Markoulaki, S., Mitalipova, M., Cheng, A. W., Cassady, J. P., Staerk, J., et al. (2009). Metastable pluripotent states in NOD-mouse-derived ESCs. Cell Stem Cell, 4(6), 513–524.

    Article  CAS  PubMed  Google Scholar 

  7. Blum, B., & Benvenisty, N. (2008). The tumorigenicity of human embryonic stem cells. Advances in Cancer Research, 100, 133–158.

    Article  PubMed  Google Scholar 

  8. Watt, F. M., & Hogan, B. L. (2000). Out of Eden: stem cells and their niches. Science, 287(5457), 1427–1430.

    Article  CAS  PubMed  Google Scholar 

  9. Morrison, S. J., & Spradling, A. C. (2008). Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell, 132(4), 598–611.

    Article  CAS  PubMed  Google Scholar 

  10. Oshima, H., Rochat, A., Kedzia, C., Kobayashi, K., & Barrandon, Y. (2001). Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell, 104(2), 233–245.

    Article  CAS  PubMed  Google Scholar 

  11. Taylor, G., Lehrer, M. S., Jensen, P. J., Sun, T. T., & Lavker, R. M. (2000). Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell, 102(4), 451–461.

    Article  CAS  PubMed  Google Scholar 

  12. Tumbar, T., Guasch, G., Greco, V., Blanpain, C., Lowry, W. E., Rendl, M., et al. (2004). Defining the epithelial stem cell niche in skin. Science, 303(5656), 359–363.

    Article  CAS  PubMed  Google Scholar 

  13. Chen, D., & McKearin, D. (2003). Dpp signaling silences bam transcription directly to establish asymmetric divisions of germline stem cells. Current Biology, 13(20), 1786–1791.

    Article  CAS  PubMed  Google Scholar 

  14. Zhao, G. Q., Deng, K., Labosky, P. A., Liaw, L., & Hogan, B. L. (1996). The gene encoding bone morphogenetic protein 8B is required for the initiation and maintenance of spermatogenesis in the mouse. Genes and Development, 10(13), 1657–1669.

    Article  CAS  PubMed  Google Scholar 

  15. Brown, S., Zeidler, M. P., & Hombría, J. E. (2006). JAK/STAT signalling in Drosophila controls cell motility during germ cell migration. Developmental Dynamics, 235(4), 958–966.

    Article  CAS  PubMed  Google Scholar 

  16. Matsuda, T., Nakamura, T., Nakao, K., Arai, T., Katsuki, M., Heike, T., et al. (1999). STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. EMBO Journal, 18(15), 4261–4269.

    Article  CAS  PubMed  Google Scholar 

  17. Gat, U., DasGupta, R., Degenstein, L., & Fuchs, E. (1998). De Novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin. Cell, 95(5), 605–614.

    Article  CAS  PubMed  Google Scholar 

  18. Song, X., & Xie, T. (2003). Wingless signaling regulates the maintenance of ovarian somatic stem cells in Drosophila. Development, 130(14), 3259–3268.

    Article  CAS  PubMed  Google Scholar 

  19. van de Wetering, M., Sancho, E., Verweij, C., de Lau, W., Oving, I., Hurlstone, A., et al. (2002). The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell, 111(2), 241–250.

    Article  PubMed  Google Scholar 

  20. Reya, T., Duncan, A. W., Ailles, L., Domen, J., Scherer, D. C., Willert, K., et al. (2003). A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature, 423(6938), 409–414.

    Article  CAS  PubMed  Google Scholar 

  21. Virchow, R. L. K. (1858). Cellular Pathology. A. Hirschwald (Ed.).Berlin.

  22. Sell, S. (2004). Stem cell origin of cancer and differentiation therapy. Critical Reviews in Oncology/hematology, 51(1), 1–28.

    Article  PubMed  Google Scholar 

  23. Garraway, L. A., & Sellers, W. R. (2006). Lineage dependency and lineage-survival oncogenes in human cancer. Nature Reviews Cancer, 6(8), 593–602.

    Article  CAS  PubMed  Google Scholar 

  24. Yang, Z. J., & Wechsler-Reya, R. J. (2007). Hit ’em where they live: targeting the cancer stem cell niche. Cancer Cell, 11(1), 3–5.

    Article  CAS  PubMed  Google Scholar 

  25. Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., et al. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 367(6464), 645–648.

    Article  CAS  PubMed  Google Scholar 

  26. Clarke, M. F., Dick, J. E., Dirks, P. B., Eaves, C. J., Jamieson, C. H., Jones, D. L., et al. (2006). Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Research, 66(19), 9339–9344.

    Article  CAS  PubMed  Google Scholar 

  27. Ginestier, C., Hur, M. H., Charafe-Jauffret, E., Monville, F., Dutcher, J., Brown, M., et al. (2007). ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell, 1(5), 555–567.

    Article  CAS  PubMed  Google Scholar 

  28. Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3(7), 730–737.

    Article  CAS  PubMed  Google Scholar 

  29. Singh, S. K., Clarke, I. D., Terasaki, M., Bonn, V. E., Hawkins, C., Squire, J., et al. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Research, 63(18), 5821–5828.

    CAS  PubMed  Google Scholar 

  30. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences USA, 100(7), 3983–3988.

    Article  CAS  Google Scholar 

  31. O’Brien, C. A., Pollett, A., Gallinger, S., & Dick, J. E. (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 445(7123), 106–110.

    Article  PubMed  CAS  Google Scholar 

  32. Zhang, S., Balch, C., Chan, M. W., Lai, H. C., Matei, D., Schilder, J. M., et al. (2008). Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Research, 68(11), 4311–4320.

    Article  CAS  PubMed  Google Scholar 

  33. Guo, W., Lasky, J. L., Chang, C. J., Mosessian, S., Lewis, X., Xiao, Y., et al. (2008). Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation. Nature, 453(7194), 529–533.

    Article  CAS  PubMed  Google Scholar 

  34. Singh, S. K., Hawkins, C., Clarke, I. D., Squire, J. A., Bayani, J., Hide, T., et al. (2004). Identification of human brain tumour initiating cells. Nature, 432(7015), 396–401.

    Article  CAS  PubMed  Google Scholar 

  35. Cho, R. W., & Clarke, M. F. (2008). Recent advances in cancer stem cells. Current Opinion in Genetics and Development, 18(1), 48–53.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, M., Behbod, F., Atkinson, R. L., Landis, M. D., Kittrell, F., Edwards, D., et al. (2008). Identification of tumor-initiating cells in a p53-null mouse model of breast cancer. Cancer Research, 68(12), 4674–4682.

    Article  CAS  PubMed  Google Scholar 

  37. Huntly, B. J., Shigematsu, H., Deguchi, K., Lee, B. H., Mizuno, S., Duclos, N., et al. (2004). MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell, 6(6), 587–596.

    Article  CAS  PubMed  Google Scholar 

  38. Postovit, L. M., Seftor, E. A., Seftor, R. E., & Hendrix, M. J. (2006). Influence of the microenvironment on melanoma cell fate determination and phenotype. Cancer Research, 66(16), 7833–7836.

    Article  CAS  PubMed  Google Scholar 

  39. Bissell, M. J., & Radisky, D. (2001). Putting tumours in context. Nature Reviews Cancer, 1(1), 46–54.

    Article  CAS  PubMed  Google Scholar 

  40. Gupta, G. P., & Massagué, J. (2006). Cancer metastasis: building a framework. Cell, 127(4), 679–695.

    Article  CAS  PubMed  Google Scholar 

  41. Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70.

    Article  CAS  PubMed  Google Scholar 

  42. Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews Cancer, 2(8), 563–572.

    Article  CAS  PubMed  Google Scholar 

  43. Huang, J., Frischer, J. S., Serur, A., Kadenhe, A., Yokoi, A., McCrudden, K. W., et al. (2003). Regression of established tumors and metastases by potent vascular endothelial growth factor blockade. Proceedings of the National Academy of Sciences USA, 100(13), 7785–7790.

    Article  CAS  Google Scholar 

  44. Pardal, R., Clarke, M. F., & Morrison, S. J. (2003). Applying the principles of stem-cell biology to cancer. Nature Reviews Cancer, 3(12), 895–902.

    Article  CAS  PubMed  Google Scholar 

  45. Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3(7), 730–737.

    Article  CAS  PubMed  Google Scholar 

  46. Lessard, J., & Sauvageau, G. (2003). Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature, 423(6937), 255–260.

    Article  CAS  PubMed  Google Scholar 

  47. Bissell, M. J., & Labarge, M. A. (2005). Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cell, 7(1), 17–23.

    CAS  PubMed  Google Scholar 

  48. Mantovani, A. (2005). Cancer: inflammation by remote control. Nature, 435(7043), 752–753.

    Article  CAS  PubMed  Google Scholar 

  49. Rosen, J. M., & Jordan, C. T. (2009). The increasing complexity of the cancer stem cell paradigm. Science, 324(5935), 1670–1673.

    Article  CAS  PubMed  Google Scholar 

  50. Calabrese, C., Poppleton, H., Kocak, M., Hogg, T. L., Fuller, C., Hamner, B., et al. (2007). A perivascular niche for brain tumor stem cells. Cancer Cell, 11(1), 69–82.

    Article  CAS  PubMed  Google Scholar 

  51. Tlsty, T. D., & Coussens, L. M. (2006). Tumor stroma and regulation of cancer development. Annual Review of Pathol, 1, 119–150.

    Article  CAS  Google Scholar 

  52. Walkley, C. R., Olsen, G. H., Dworkin, S., Fabb, S. A., Swann, J., McArthur, G. A., et al. (2007). A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency. Cell, 129(6), 1097–1110.

    Article  CAS  PubMed  Google Scholar 

  53. Walkley, C. R., Shea, J. M., Sims, N. A., Purton, L. E., & Orkin, S. H. (2007). Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. Cell, 129(6), 1081–1095.

    Article  CAS  PubMed  Google Scholar 

  54. Bao, S., Wu, Q., Sathornsumetee, S., Hao, Y., Li, Z., Hjelmeland, A. B., et al. (2006). Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Research, 66(16), 7843–7848.

    Article  CAS  PubMed  Google Scholar 

  55. Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438(7069), 820–827.

    Article  CAS  PubMed  Google Scholar 

  56. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  57. Draper, J. S., Moore, H. D., Ruban, L. N., Gokhale, P. J., & Andrews, P. W. (2004). Culture and characterization of human embryonic stem cells. Stem Cells and Development, 13(4), 325–336.

    Article  CAS  PubMed  Google Scholar 

  58. Rao, M. (2004). Conserved and divergent paths that regulate self-renewal in mouse and human embryonic stem cells. Developmental Biology, 275(2), 269–286.

    Article  CAS  PubMed  Google Scholar 

  59. Surani, M. A., Hayashi, K., & Hajkova, P. (2007). Genetic and epigenetic regulators of pluripotency. Cell, 128(4), 747–762.

    Article  CAS  PubMed  Google Scholar 

  60. Calvanese, V., Horrillo, A., Hmadcha, A., Suarez-Alvarez, B., Fernandez, A. F., Lara, E., et al. (2008). Cancer genes hypermethylated in human embryonic stem cells. PLoS ONE, 3(9), e3294.

    Article  PubMed  CAS  Google Scholar 

  61. Jaenisch, R., & Young, R. (2008). Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell, 132(4), 567–582.

    Article  CAS  PubMed  Google Scholar 

  62. Draper, J. S., Smith, K., Gokhale, P., Moore, H. D., Maltby, E., Johnson, J., et al. (2004). Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nature Biotechnology, 22(1), 53–54.

    Article  CAS  PubMed  Google Scholar 

  63. Vanneste, E., Voet, T., Le Caignec, C., Ampe, M., Konings, P., Melotte, C., et al. (2009). Chromosome instability is common in human cleavage-stage embryos. Nature Medicine, 15(5), 577–583.

    Article  CAS  PubMed  Google Scholar 

  64. Pierce, G. B., Pantazis, C. G., Caldwell, J. E., & Wells, R. S. (1982). Specificity of the control of tumor formation by the blastocyst. Cancer Research, 42(3), 1082–1087.

    CAS  PubMed  Google Scholar 

  65. Cucina, A., Biava, P. M., D’Anselmi, F., Coluccia, P., Conti, F., di Clemente, R., et al. (2006). Zebrafish embryo proteins induce apoptosis in human colon cancer cells (Caco2). Apoptosis, 11(9), 1617–1628.

    Article  CAS  PubMed  Google Scholar 

  66. Postovit, L. M., Margaryan, N. V., Seftor, E. A., Kirschmann, D. A., Lipavsky, A., Wheaton, W. W., et al. (2008). Human embryonic stem cell microenvironment suppresses the tumorigenic phenotype of aggressive cancer cells. Proceedings of the National Academy of Sciences USA, 105(11), 4329–4334.

    Article  CAS  Google Scholar 

  67. Topczewska, J. M., Postovit, L. M., Margaryan, N. V., Sam, A., Hess, A. R., Wheaton, W. W., et al. (2006). Embryonic and tumorigenic pathways converge via Nodal signaling: role in melanoma aggressiveness. Nature Medicine, 12(8), 925–932.

    Article  CAS  PubMed  Google Scholar 

  68. Dürr, M., Harder, F., Merkel, A., Bug, G., Henschler, R., & Müller, A. M. (2003). Chimaerism and erythroid marker expression after microinjection of human acute myeloid leukaemia cells into murine blastocysts. Oncogene, 22(57), 9185–9191.

    Article  PubMed  CAS  Google Scholar 

  69. Mintz, B., & Illmensee, K. (1975). Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proceedings of the National Academy of Sciences USA, 72(9), 3585–3589.

    Article  CAS  Google Scholar 

  70. Gerschenson, M., Graves, K., Carson, S. D., Wells, R. S., & Pierce, G. B. (1986). Regulation of melanoma by the embryonic skin. Proceedings of the National Academy of Sciences USA, 83(19), 7307–7310.

    Article  CAS  Google Scholar 

  71. Dolberg, D. S., & Bissell, M. J. (1984). Inability of Rous sarcoma virus to cause sarcomas in the avian embryo. Nature, 309(5968), 552–556.

    Article  CAS  PubMed  Google Scholar 

  72. Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature, 448(7151), 313–317.

    Article  CAS  PubMed  Google Scholar 

  73. Hendrix, M. J., Seftor, E. A., Seftor, R. E., Kasemeier-Kulesa, J., Kulesa, P. M., & Postovit, L. M. (2007). Reprogramming metastatic tumour cells with embryonic microenvironments. Nature Reviews Cancer, 7(4), 246–255.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Simón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz-Vela, A., Aguilar-Gallardo, C. & Simón, C. Building a Framework for Embryonic Microenvironments and Cancer Stem Cells. Stem Cell Rev and Rep 5, 319–327 (2009). https://doi.org/10.1007/s12015-009-9096-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-009-9096-7

Keywords

Navigation