Skip to main content
Log in

Zebrafish embryo proteins induce apoptosis in human colon cancer cells (Caco2)

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Previous studies have shown that proteins extracted from Zebrafish embryo share some cytostatic characteristics in cancer cells. Our study was conducted to ascertain the biological properties of this protein network. Cancer cell growth and apoptosis were studied in Caco2 cells treated with embryonic extracts. Cell proliferation was significantly inhibited in a dose-dependent manner. Cell-cycle analysis in treated cells revealed a marked accumulation in the G2/M phase preceding induction of apoptosis. Embryo proteins induced a significant reduction in FLIP levels, and increased caspase-3 and caspase-8 activity as well as the apoptotic rate. Increased phosphorylated pRb values were obtained in treated Caco2 cells: the modified balance in pRb phosphorylation was associated with an increase in E2F1 values and c-Myc over-expression. Our data support previous reports of an apoptotic enhancing effect displayed by embryo extracts, mainly through the pRb/E2F1 apoptotic pathway, which thus suggests that Zebrafish embryo proteins have complex anti-cancer properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ellis RE, Yuan JY, Horvitz HR (1991) Mechanisms and functions of cell death. Annu Rev Cell Biol 7:663–698

    Article  PubMed  CAS  Google Scholar 

  2. Einhorn L (1982) Are there factors preventing cancer development during embryonic life? Oncodev Biol Med 4:219–229

    Google Scholar 

  3. Yu C-L, Tsai M-H (2001) Fetal fetuin selectively induces apoptosis in cancer cell lines and shows anti-cancer activity in tumor animal models. Cancer Lett 166:173–184

    Article  PubMed  CAS  Google Scholar 

  4. Lakshmi MS, Shebert GV (1974) Embryonic and Tumor Cells Interactions, Karger Basel, p 380–399

  5. Brent RL (1980) Radiation teratogenesis. Teratology 21:281–298

    Article  PubMed  CAS  Google Scholar 

  6. Sell S (2004) Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol/Haemato l51:1–28

    Article  Google Scholar 

  7. Martin G (1980) Teratocarcinomas and mammalian embryogenesis. Science 209:768–776

    PubMed  CAS  Google Scholar 

  8. Warrell Jr RP, Frankel SR, Miller Jr WH, Scheinberg DA, Itri LM, Hittelman WN (1991) Differentiation therapy of acute promyelocytic leukemia with tretinoid (all-trans-retinoic acid). N Engl J Med 324:1385–1393

    Article  PubMed  Google Scholar 

  9. Pierce GB (1983) The cancer cell and its control by the embryo. Am J Pathol 113:117–124

    PubMed  CAS  Google Scholar 

  10. Michaeli J, Rifkind RA, Marks PA (1993) Differentiating agents for transformed cells. In: Pinedo HM, Longo DL, Chabner BA (eds) Cancer Chemotheraphy and Biological Response Modifiers Annual 14, Elsevier, New York, p 330–352

    Google Scholar 

  11. Livraghi T, Meloni F, Frosi A, Lazzaroni S, Bizzarri M, Frati L, Biava PM (2005) Treatment with stem cell differentiation stage factors of intermediate-advanced hepatocellular carcinoma: an open randomized clinical trial. Oncol Res 15:399–408

    PubMed  Google Scholar 

  12. Bizzarri M, Facco R, Ielapi T. Frati L (2002) The embryonic and maternal regulatory factor as a palliative therapy for advanced solid tumours. J Tumour Marker Oncol 17(3):31–36

    Google Scholar 

  13. Biava PM, Fiorito A, Negro C, Mariani M (1988) Effects of treatment with embryonic and uterine tissue homogenates on Lewis lung carcinoma development. 41:265–270

  14. Biava PM, Bonsignorio D, Hoxha M (2001) Cell proliferation curves of different human tumor lines after in vitro treatment with Zebrafish embryonic extracts. J Tumor Marker Oncol 16:195–201

    Google Scholar 

  15. Djelloul S, Forgue-Lafitte M-E, Hermelin B (1997) Enterocyte differentiation is compatible with SV40 large T expression and loss of p53 function in human colonic Caco2 cells. FEBS Lett 406:234–242

    Article  PubMed  CAS  Google Scholar 

  16. Yamamoto H, Soh J-W, Monden T (1999) Paradoxical increase in Retinoblastoma Protein in colorectal carcinomas may protect cells from apoptosis. Clin Cancer Res 5:1805–1815

    PubMed  CAS  Google Scholar 

  17. Ezhevsky SE, Nagahara H, Vocero-Akbani AM, Gius DR, Wei MC, Dowdy SF (1997) Hypo-phosphorilation of the retinoblastoma protein (pRb) by cyclin D:Cdk4/6 complexes results in active pRb. Proc Natl Acad Sci USA 94:10699–10704

    Article  PubMed  CAS  Google Scholar 

  18. Pützer BM, Stiewe T, Parssanedjad Reega S, Esche H (2000) E1A is sufficient by itself to induce apoptosis independent of p53 and other adenoviral gene products. Cell Death Differ 7:177–188

    Article  PubMed  CAS  Google Scholar 

  19. Ginsberg D (2002) E2F1 pathways to apoptosis. FEBS Lett 529:122–125

    Article  PubMed  CAS  Google Scholar 

  20. Salon C, Eymin B, Micheau O, Chaperot L, Plumas J, Brambilla C, Brambilla E, Gazzeri S. (2005) E2F1 induces apoptosis and sensitizes human lung adenocarcinoma cells to death-receptor-mediated apoptosis through specific downregulation of c-FLIPshort. Cell Death Differ 3:1–13

    Google Scholar 

  21. Biava PM, Carluccio A (1997) Activation of anti-oncogene p53 produced by embryonic extracts in vitro tumor cells. J Tumor Marker Oncol 12:9–15

    Google Scholar 

  22. Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82:1107–12

    PubMed  CAS  Google Scholar 

  23. Aragane Y, Kulms D, Metze D, Wilkes G, Poppelmann B, Luger TA, Schwarz T (1998) Ultraviolet light induces apoptosis via direct activation of CD95 (FAS/APO-1) independently of its ligand CD95L. J Cell Biol 140:171–182

    Article  PubMed  CAS  Google Scholar 

  24. Zhou XD, Yu JP (2005) Chen HX. Expression of FLICE-inhibitory protein an dits association with p53 mutation in colon cancer. World J Gastroenterol 28(11):2482–2485

    Google Scholar 

  25. Krueger A, Schmitz I, Baumann S, Rammer PH, Kirchoff S (2001) Cellular FLICE-inhibitory protein splice variants inhibit different steps of caspases-8 activation at the CD95 death-inducing signalling complex. J Biol Chem 276:20633–20640

    Article  PubMed  CAS  Google Scholar 

  26. Stern HM, Zon LI (2003) Cancer genetics and drug discovery in the zebrafish. Nat Rev Cancer 3:1–7

    Article  CAS  Google Scholar 

  27. Qin X-Q, Livingston D, Kaelin WG Jr., Adams PD (1994) Deregulated transcription factor E2F1 expression leads to S-phase entry and p53 mediated apoptosis. Proc Natl Acad Sci USA 91:10918–10922

    Article  PubMed  CAS  Google Scholar 

  28. Jacks T, Fazeli A, Schimdt EM, Bronson RT, Goodell MA, Weimberg RA (1992) Effects of an Rb mutation in the mouse. Nature 359:295–300

    Article  PubMed  CAS  Google Scholar 

  29. Alexander K, Yang H-S, Hinds PW (2003) PRb inactivation in senescent cells leads to an E2F-dependent apoptosis requiring p73. Mol Cancer Res 1:716–728

    PubMed  CAS  Google Scholar 

  30. Goldberg Y, Nassif I, Pittas A (1996) The antiproliferative effect of sundilac and sundilac disulfide on Ht-29 colon cancer cells:alterations in tumor suppressor and cell cycle-regulatory proteins. Oncogene 12:893–901

    PubMed  CAS  Google Scholar 

  31. Schuler M, Green DR (2001) Mechanisms of p53-dependent apoptosis. 29(6):684–688

  32. Dotto GP (2000) p21WAF/Cipi :more than a break in the cell cycle? Biochem. Biophys Acta 1471:43–56

    Google Scholar 

  33. Reinacher-Schick A, Schoeneck A, Graeven U, Schwarte-Wadhoff I, Schmiegel W (2003) Mesazaline causes a mitotic arrest and induces caspase-dependent apoptosis in colon carcinoma cells. Carcinog 24(3):443–451

    Article  CAS  Google Scholar 

  34. Bates S, Phillips AC, Clark PA (1998) p14ARF links the tumour suppressors RB and p53. Nature 395:124–125

    Article  PubMed  CAS  Google Scholar 

  35. Arita D, Kambe M, Ishioka C, Kanamaru R (1997) Induction of p53-independent apoptosis associated with G2M arrest following DANN damage in human colon cancer lines. Jpn J Cancer Res 88:39–43

    PubMed  CAS  Google Scholar 

  36. Stevens C, La Thangue NB (2003) E2F and cell cycle control:a double-edged sword. Arch Biochem Bioph 412:157–169

    Article  CAS  Google Scholar 

  37. Pediconi N, Ianari A, Costanzo A (2003) Differential regulation of E2F1 apoptotic target genes in response to DNA damage. Nat Cell Biol 5(6):552–558

    Article  PubMed  CAS  Google Scholar 

  38. Vorburger SA, Pater A, Yoshida K (2003) The mithocondrial apoptosis-inducing factor plays a role in E2F1 induced apoptosis in human colon cancer cells. Ann Surg Oncol 10:314–322

    Article  PubMed  Google Scholar 

  39. Elliot MJ, Dong YB, Yang H, McMasters KM (1999) E2F1 up-regulates c-Myc and p14 (ARF) and induces apoptosis in colon cancer cells. Clin Cancer Res 5:3590–3597

    Google Scholar 

  40. Ricci MS, Jin Z, Yu D, Thomas-Tikhonenko A, Dicker DT, El-Deiry WS (2004) Direct repression of FLIP expression by c-Myc is a major determinant of TRAIL sensitivity. Mol Cell Biol 24(19):8541–8555

    Article  PubMed  CAS  Google Scholar 

  41. Wesselborg S, Engels IH, Rossmann E, Los M, Schulze-Oshoff K (1999) Anticancer drugs induce caspase-8/FLICE activation and apoptosis in the absence of CD95 receptor/ligand interaction. Blood 93(9):3053–3063

    PubMed  CAS  Google Scholar 

  42. Leone G, Sears R, Huang E (2001) Myc requires distinct E2F activities to induce S phase and apoptosis. Mol Cell 8:105–113

    Article  PubMed  CAS  Google Scholar 

  43. Sakamuro D, Eviner V, Elliot KJ, Showe L, Prendergast GC (1995) C-Myc induces apoptosis in epithelial cells by both p53-dependent and p53-independent mechanisms. Oncogene 11:2411–2418

    PubMed  CAS  Google Scholar 

  44. Wieder T, Essmann F, Prokop A (2001) Activation of caspase-8 in drug-induced apoptosis of B-lymphoid is independent of CD95/Fas receptor-ligand interaction and occurs downstream of caspase-3. Blood 97(5):1378–1387

    Article  PubMed  CAS  Google Scholar 

  45. Diaz GD, Li Q, Dashwood RH (2003) Caspase 8 and apoptosis inducing factor mediate a cytochrome c-indipendent pathway of apoptosis in human colon cancer cells induced by dietary phytochemical chlorophyllin. Cancer Res 63:1254–1261

    PubMed  CAS  Google Scholar 

  46. Nilsson JA, Cleveland JL (2003) Myc pathways provoking cell suicide and cancer. Oncogene 22:9007–9021

    Article  PubMed  CAS  Google Scholar 

  47. Evan GI, Brown L, Whyte M, Harrington E (1995) Apoptosis and the cell cycle. Curr Biol 7:825–834

    CAS  Google Scholar 

  48. Yamashita S, Miyagi C, Fukada T, Zagara N, Cho YS, Hirano T (2004) Zinc transporter LM controls epithelial-mesenchimal transition in zebrafish gastrula organizer. Nature 429:298–302

    Article  PubMed  CAS  Google Scholar 

  49. Wells RS, Miotto KA (1986) Widespread inhibition of neuroblastoma cells in the 13- to 17-day-old mouse embryo. Cancer Res 46:1659–1662

    PubMed  CAS  Google Scholar 

  50. Biava PM, Bonsignorio D, Hoxha M, Ielapi T, Frati L, Bizzarri M (2002) Post-translational modifications of the Retinoblastoma Protein (pRb) induced by in vitro administration of Zebrafish embryonic extracts on human kidney adenocarcinoma cell line. J Tumor Marker Oncol 17(3):19–24

    Google Scholar 

  51. Yabu T, Kishi S, Okazaki T, Yamashita M (2001) Characterization of zebrafish caspase-3 and induction of apoptosis through ceramide generation in fish fathead minnow tailbud cells and zebrafish embryo. Biochem J 360:39–47

    Article  PubMed  CAS  Google Scholar 

  52. Bertrand S, Pinte S, Stankovic-Valentin N (2004) Identification and developmental expression of the zebrafish orthologue of the tumor-suppressor gene HIC1. Biochem Biophys Acta 1678:57–66

    PubMed  CAS  Google Scholar 

  53. Gootwine E, Webb CG, Sachs L (1982) Partecipation of myeloid leukemia cells injected into embryos in haematopoietic differentiation in adult mice. Nature 299:63–65

    Article  PubMed  CAS  Google Scholar 

  54. Gerschenson M, Graves K, Carson SD, Wells RS, Pierce GB (1986) Regulation of melanoma by the embryonic skin. Proc Natl Acad Sci USA 83:7303–7310

    Article  Google Scholar 

  55. Podesta AN, Mullins J, Pierce GB, Sell RS (1984) The neurula state mouse embryos in control of neuroblastomas. Proc Natl Acad Sci USA 81:7608–7611

    Article  PubMed  CAS  Google Scholar 

  56. Al-Hajj M, Becker MW, Wicha M, Weissman, Clarke MF (2004) Therapeutic implications of cancer stem cells. Curr Op Gen Dev 14:43–47

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano Bizzarri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cucina, A., Biava, PM., D’Anselmi, F. et al. Zebrafish embryo proteins induce apoptosis in human colon cancer cells (Caco2). Apoptosis 11, 1617–1628 (2006). https://doi.org/10.1007/s10495-006-8895-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-8895-4

Keywords

Navigation