Skip to main content

Advertisement

Log in

Advances in Progenitor Cell Therapy Using Scaffolding Constructs for Central Nervous System Injury

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Traumatic brain injury (TBI) is a major cause of morbidity and mortality in the United States. Current clinical therapy is focused on optimization of the acute/subacute intracerebral milieu, minimizing continued cell death, and subsequent intense rehabilitation to ameliorate the prolonged physical, cognitive, and psychosocial deficits that result from TBI. Adult progenitor (stem) cell therapies have shown promise in pre-clinical studies and remain a focus of intense scientific investigation. One of the fundamental challenges to successful translation of the large body of pre-clinical work is the delivery of progenitor cells to the target location/organ. Classically used vehicles such as intravenous and intra arterial infusion have shown low engraftment rates and risk of distal emboli. Novel delivery methods such as nanofiber scaffold implantation could provide the structural and nutritive support required for progenitor cell proliferation, engraftment, and differentiation. The focus of this review is to explore the current state of the art as it relates to current and novel progenitor cell delivery methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Thurman, D. J., Alverson, C., Dunn, K. A., Guerrero, J., & Sniezek, J. E. (1999). Traumatic brain injury in the United States: a public health perspective. Journal of Head Trauma Rehabilitation, 14, 602–615.

    PubMed  CAS  Google Scholar 

  2. Consensus conference. (1999). Rehabilitation of persons with traumatic brain injury. NIH consensus development panel on rehabilitation of persons with traumatic brain injury. Journal of the American Medical Association, 282, 974–983.

    Google Scholar 

  3. Gray, D. S., & Burnham, R. S. (2000). Preliminary outcome analysis of a long-term rehabilitation program for severe acquired brain injury. Archives of Physical Medicine and Rehabilitation, 81, 1447–1456.

    PubMed  CAS  Google Scholar 

  4. Moppett, I. K. (2007). Traumatic brain injury: assessment, resuscitation and early management. British Journal of Anaesthesia, 99, 18–31.

    PubMed  CAS  Google Scholar 

  5. Gao, J., Prough, D. S., McAdoo, D. J., Grady J. J., Parsley M. O., Ma L., et al. (2006). Transplantation of primed human fetal neural stem cells improves cognitive function in rats after traumatic brain injury. Experimental Neurology, 201, 281–292.

    PubMed  CAS  Google Scholar 

  6. Mahmood, A., Lu, D., Wang, L., Li, Y., Lu, M., & Chopp, M. (2001). Treatment of traumatic brain injury in female rats with intravenous administration of bone marrow stromal cells. Neurosurgery, 49, 1196–1203. discussion 203–4.

    PubMed  CAS  Google Scholar 

  7. Lu, D., Sanberg, P. R., Mahmood, A., Li Y., Wang L., Sanchez-Ramos J., et al. (2002). Intravenous administration of human umbilical cord blood reduces neurological deficit in the rat after traumatic brain injury. Cell Transplantation, 11, 275–281.

    PubMed  Google Scholar 

  8. Weiner, L. P. (2008). Definitions and criteria for stem cells. Methods in Molecular Biology, 438, 3–8.

    PubMed  Google Scholar 

  9. Scadden, D. T. (2006). The stem-cell niche as an entity of action. Nature, 441, 1075–1079.

    PubMed  CAS  Google Scholar 

  10. Mahmood, A., Lu, D., Qu, C., Goussev, A., & Chopp, M. (2006). Long-term recovery after bone marrow stromal cell treatment of traumatic brain injury in rats. Journal of Neurosurgery, 104, 272–277.

    PubMed  Google Scholar 

  11. Castro, R. F., Jackson, K. A., Goodell, M. A., Robertson, C. S., Liu, H., & Shine, H. D. (2002). Failure of bone marrow cells to transdifferentiate into neural cells in vivo. Science, 297, 1299.

    PubMed  CAS  Google Scholar 

  12. Qu, R., Li, Y., Gao, Q., Shen L., Zhang J., Liu Z., et al. (2007). Neurotrophic and growth factor gene expression profiling of mouse bone marrow stromal cells induced by ischemic brain extracts. Neuropathology, 27, 355–363.

    PubMed  Google Scholar 

  13. Spees, J. L., Olson, S. D., Ylostalo, J., Lynch, P. J., Smith, J., Perry, A., et al. (2003). Differentiation, cell fusion, and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow stroma. Proceedings of the National Academy of Sciences of the United States of America, 100, 2397–2402.

    PubMed  CAS  Google Scholar 

  14. Allers, C., Sierralta, W. D., Neubauer, S., Rivera, F., Minguell, J. J., & Conget, P. A. (2004). Dynamic of distribution of human bone marrow-derived mesenchymal stem cells after transplantation into adult unconditioned mice. Transplantation, 78, 503–508.

    PubMed  Google Scholar 

  15. Boomsma, R. A., Swaminathan, P. D., & Geenen, D. L. (2007). Intravenously injected mesenchymal stem cells home to viable myocardium after coronary occlusion and preserve systolic function without altering infarct size. International Journal of Cardiology, 122, 17–28.

    PubMed  Google Scholar 

  16. Vendrame, M., Gemma, C., Pennypacker, K. R., Bickford, P. C., Davis Sanberg, C., Sanberg, P. R., et al. (2006). Cord blood rescues stroke-induced changes in splenocyte phenotype and function. Experimental Neurology, 199, 191–200.

    PubMed  CAS  Google Scholar 

  17. Devine, S. M., Cobbs, C., Jennings, M., Bartholomew, A., & Hoffman, R. (2003). Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood, 101, 2999–3001.

    PubMed  CAS  Google Scholar 

  18. Lu, D., Mahmood, A., Wang, L., Li, Y., Lu, M., & Chopp, M. (2001). Adult bone marrow stromal cells administered intravenously to rats after traumatic brain injury migrate into brain and improve neurological outcome. NeuroReport, 12, 559–563.

    PubMed  CAS  Google Scholar 

  19. Walczak, P., Zhang, J., Gilad, A. A., Kedziorek, D. A., Ruiz-Cabello, J., Young, R. G., et al. (2008). Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke, 39, 1569–1574.

    PubMed  CAS  Google Scholar 

  20. Harting, M. T., Jimenez, F., & Cox, C. S., Jr. (2008). The pulmonary first-pass effect, xenotransplantation and translation to clinical trials—a commentary. Brain, 131, e100. author reply e1.

    PubMed  Google Scholar 

  21. Schrepfer, S., Deuse, T., Reichenspurner, H., Fischbein, M. P., Robbins, R. C., & Pelletier, M. P. (2007). Stem cell transplantation: the lung barrier. Transplantation Proceedings, 39, 573–576.

    PubMed  CAS  Google Scholar 

  22. Li, Y., Chen, J., Wang, L., Lu, M., & Chopp, M. (2001). Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology, 56, 1666–1672.

    PubMed  CAS  Google Scholar 

  23. Lu, D., Li, Y., Wang, L., Chen, J., Mahmood, A., & Chopp, M. (2001). Intraarterial administration of marrow stromal cells in a rat model of traumatic brain injury. Journal of Neurotrauma, 18, 813–819.

    PubMed  CAS  Google Scholar 

  24. Guzman, R., De Los Angeles, A., Cheshier, S., Choi, R., Hoang, S., Liauw, J., et al. (2008). Intracarotid injection of fluorescence activated cell-sorted CD49d-positive neural stem cells improves targeted cell delivery and behavior after stroke in a mouse stroke model. Stroke, 39, 1300–1306.

    PubMed  Google Scholar 

  25. Mahmood, A., Lu, D., Yi, L., Chen, J. L., & Chopp, M. (2001). Intracranial bone marrow transplantation after traumatic brain injury improving functional outcome in adult rats. Journal of Neurosurgery, 94, 589–595.

    PubMed  CAS  Google Scholar 

  26. Mahmood, A., Lu, D., & Chopp, M. (2004). Marrow stromal cell transplantation after traumatic brain injury promotes cellular proliferation within the brain. Neurosurgery, 55, 1185–1193.

    PubMed  Google Scholar 

  27. Harting, M. T., Sloan, L. E., Jimenez, F., Baumgartner, J., & Cox, C. S., Jr. (2008). Subacute neural stem cell therapy for traumatic brain injury. Journal of Surgical Research, 144, 425.

    Google Scholar 

  28. Riess, P., Zhang, C., Saatman, K. E., Laurer, H. L., Longhi, L. G., Raghupathi, R., et al. (2002). Transplanted neural stem cells survive, differentiate, and improve neurological motor function after experimental traumatic brain injury. Neurosurgery, 51, 1043–1052. discussion 52–4.

    PubMed  Google Scholar 

  29. Rubio, D., Garcia-Castro, J., Martin, M. C., de la Fuente, R., Cigudosa, J. C., Lloyd, A. C., et al. (2005). Spontaneous human adult stem cell transformation. Cancer Research, 65, 3035–3039.

    PubMed  CAS  Google Scholar 

  30. Li, H., Fan, X., Kovi, R. C., Jo, Y., Moquin, B., Konz, R., et al. (2007). Spontaneous expression of embryonic factors and p53 point mutations in aged mesenchymal stem cells: a model of age-related tumorigenesis in mice. Cancer Research, 67, 10889–10898.

    PubMed  CAS  Google Scholar 

  31. Lepore, A. C., Bakshi, A., Swanger, S. A., Rao, M. S., & Fischer, I. (2005). Neural precursor cells can be delivered into the injured cervical spinal cord by intrathecal injection at the lumbar cord. Brain Research, 1045, 206–216.

    PubMed  CAS  Google Scholar 

  32. Liu, W., Jiang, X., Fu, X., Cui, S., Du, M., Cai, Y., et al. (2008). Bone marrow stromal cells can be delivered to the site of traumatic brain injury via intrathecal transplantation in rabbits. Neuroscience Letters, 434, 160–164.

    PubMed  CAS  Google Scholar 

  33. Guillot, P. V., Cui, W., Fisk, N. M., & Polak, D. J. (2007). Stem cell differentiation and expansion for clinical applications of tissue engineering. Journal of Cellular and Molecular Medicine, 11, 935–944.

    PubMed  CAS  Google Scholar 

  34. Langer, R., & Vacanti, J. P. (1993). Tissue engineering. Science, 260, 920–926.

    PubMed  CAS  Google Scholar 

  35. Griffith, L. G., & Naughton, G. (2002). Tissue engineering—current challenges and expanding opportunities. Science, 295, 1009–1014.

    PubMed  CAS  Google Scholar 

  36. Sands, R. W., & Mooney, D. J. (2007). Polymers to direct cell fate by controlling the microenvironment. Current Opinion in Biotechnology, 18, 448–453.

    PubMed  CAS  Google Scholar 

  37. Liao, S., Li, B., Ma, Z., Wei, H., Chan, C., & Ramakrishna, S. (2006). Biomimetic electrospun nanofibers for tissue regeneration. Biomed Mater, 1, R45–R53.

    PubMed  CAS  Google Scholar 

  38. Lee, J., Cuddihy, M. J., & Kotov, N. A. (2008). Three-dimensional cell culture matrices: state of the art. Tissue Engineering Part B Reviews, 14, 61–86.

    PubMed  CAS  Google Scholar 

  39. Nishimura, I., Garrell, R. L., Hedrick, M., Iida, K., Osher, S., & Wu, B. (2003). Precursor tissue analogs as a tissue-engineering strategy. Tissue Engineering, 9(Suppl 1), S77–S89.

    PubMed  CAS  Google Scholar 

  40. Chai, C., & Leong, K. W. (2007). Biomaterials approach to expand and direct differentiation of stem cells. Molecular Therapy, 15, 467–480.

    PubMed  CAS  Google Scholar 

  41. Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126, 677–689.

    PubMed  CAS  Google Scholar 

  42. Georges, P. C., Miller, W. J., Meaney, D. F., Sawyer, E. S., & Janmey, P. A. (2006). Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures. Biophysical Journal, 90, 3012–3018.

    PubMed  CAS  Google Scholar 

  43. Burdick, J. A., & Vunjak-Novakovic, G. (2008). Review: engineered Microenvironments for controlled stem cell differentiation. Tissue Engineering Part A. Epub ahead of print.

  44. Aplin, A. E., Howe, A. K., & Juliano, R. L. (1999). Cell adhesion molecules, signal transduction and cell growth. Current Opinion in Cell Biology, 11, 737–744.

    PubMed  CAS  Google Scholar 

  45. Park, J. S., Chu, J. S., Cheng, C., Chen, F., Chen, D., & Li, S. (2004). Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Biotechnology and Bioengineering, 88, 359–368.

    PubMed  CAS  Google Scholar 

  46. Xu, Z. C., Zhang, W. J., Li, H., Cui, L., Cen, L., Zhou, G. D., et al. (2008). Engineering of an elastic large muscular vessel wall with pulsatile stimulation in bioreactor. Biomaterials, 29, 1464–1472.

    PubMed  CAS  Google Scholar 

  47. Flora, H. S., Talei-Faz, B., Ansdell, L., Chaloner, E. J., Sweeny, A., Grass, A., et al. (2002). Aneurysm wall stress and tendency to rupture are features of physical wall properties: an experimental study. Journal of Endovascular Therapy, 9, 665–675.

    PubMed  Google Scholar 

  48. Gopferich, A. (1996). Mechanisms of polymer degradation and erosion. Biomaterials, 17, 103–114.

    PubMed  CAS  Google Scholar 

  49. Lavik, E., Teng, Y. D., Snyder, E., & Langer, R. (2002). Seeding neural stem cells on scaffolds of PGA, PLA, and their copolymers. Methods in Molecular Biology, 198, 89–97.

    PubMed  Google Scholar 

  50. Yoon, J. J., & Park, T. G. (2001). Degradation behaviors of biodegradable macroporous scaffolds prepared by gas foaming of effervescent salts. Journal of Biomedical Materials Research, 55, 401–408.

    PubMed  CAS  Google Scholar 

  51. Mohammadi, Y. J. E. (2006). Monte carlo simulation of degradation of porous Poly(lactide) scaffolds, 1:effect of porosity on pH. Macromolecular Theory and Simulations, 15, 643–653.

    CAS  Google Scholar 

  52. Di Lullo, G. A., Sweeney, S. M., Korkko, J., Ala-Kokko, L., & San Antonio, J. D. (2002). Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. Journal of Biological Chemistry, 277, 4223–4231.

    PubMed  Google Scholar 

  53. Brodsky, B., & Ramshaw, J. A. (1997). The collagen triple-helix structure. Matrix Biology, 15, 545–554.

    PubMed  CAS  Google Scholar 

  54. Timpl, R., & Brown, J. C. (1996). Supramolecular assembly of basement membranes. Bioessays, 18, 123–132.

    PubMed  CAS  Google Scholar 

  55. Zhong, S., Teo, W. E., Zhu, X., Beuerman, R. W., Ramakrishna, S., & Yung, L. Y. (2006). An aligned nanofibrous collagen scaffold by electrospinning and its effects on in vitro fibroblast culture. Journal of Biomedical Materials Research A, 79, 456–463.

    Google Scholar 

  56. Neuss, S., Stainforth, R., Salber, J., Schenck, P., Bovi, M., Knuchel, R., et al. (2008). Long-term survival and bipotent terminal differentiation of human mesenchymal stem cells (hMSC) in combination with a commercially available three-dimensional collagen scaffold. Cell Transplantation, 17, 977–986.

    PubMed  CAS  Google Scholar 

  57. Valarmathi, M. T., Davis, J. M., Yost, M. J., Goodwin, R. L., & Potts, J. D. (2009). A three-dimensional model of vasculogenesis. Biomaterials, 30, 1098–1112.

    PubMed  CAS  Google Scholar 

  58. Bolliet, C., Bohn, M. C., & Spector, M. (2008). Non-viral delivery of the gene for glial cell line-derived neurotrophic factor to mesenchymal stem cells in vitro via a collagen scaffold. Tissue Engineering Part C Methods, 14, 207–219.

    PubMed  CAS  Google Scholar 

  59. Park, K. I., Teng, Y. D., & Snyder, E. Y. (2002). The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nature Biotechnology, 20, 1111–1117.

    PubMed  CAS  Google Scholar 

  60. Tate, M. C., Shear, D. A., Hoffman, S. W., Stein, D. G., Archer, D. R., & LaPlaca, M. C. (2002). Fibronectin promotes survival and migration of primary neural stem cells transplanted into the traumatically injured mouse brain. Cell Transplantation, 11, 283–295.

    PubMed  Google Scholar 

  61. Yoshii, S., Ito, S., Shima, M., Taniguchi, A., & Akagi, M. (2009). Functional restoration of rabbit spinal cord using collagen-filament scaffold. Journal of Tissue Engineering and Regenerative Medicine, 3, 19–25.

    PubMed  CAS  Google Scholar 

  62. Suuronen, E. J., Veinot, J. P., Wong, S., Kapila, V., Price, J., Griffith, M., et al. (2006). Tissue-engineered injectable collagen-based matrices for improved cell delivery and vascularization of ischemic tissue using CD133+ progenitors expanded from the peripheral blood. Circulation, 114, I138–I144.

    PubMed  Google Scholar 

  63. Shaba, O. P., Adegbulugbe, I. C., & Oderinu, O. H. (2007). Dimensional stability of alginate impression material over a four hours time frame. Nigerian Quarterly Journal of Hospital Medicine, 1–4.

    PubMed  CAS  Google Scholar 

  64. Duggal, S., Fronsdal, K. B., Szoke, K., Shahdadfar, A., Melvik, J. E., & Brinchmann, J. E. (2008). Phenotype and gene expression of human mesenchymal stem cells in alginate scaffolds. Tissue Engineering Part A. Epub ahead of print.

  65. Dvir-Ginzberg, M., Elkayam, T., & Cohen, S. (2008). Induced differentiation and maturation of newborn liver cells into functional hepatic tissue in macroporous alginate scaffolds. FASEB Journal, 22, 1440–1449.

    PubMed  CAS  Google Scholar 

  66. Novikova, L. N., Novikov, L. N., & Kellerth, J. O. (2003). Biopolymers and biodegradable smart implants for tissue regeneration after spinal cord injury. Current Opinion in Neurology, 16, 711–715.

    PubMed  CAS  Google Scholar 

  67. Wu, S., Suzuki, Y., Kitada, M., Kitaura, M., Kataoka, K., Takahashi, J., et al. (2001). Migration, integration, and differentiation of hippocampus-derived neurosphere cells after transplantation into injured rat spinal cord. Neuroscience Letters, 312, 173–176.

    PubMed  CAS  Google Scholar 

  68. Liu, X., Zhao, Y., Gao, J., Pawlyk, B., Starcher, B., Spencer, J. A., et al. (2004). Elastic fiber homeostasis requires lysyl oxidase-like 1 protein. Nature Genetics, 36, 178–182.

    PubMed  CAS  Google Scholar 

  69. Berglund, J. D., Nerem, R. M., & Sambanis, A. (2004). Incorporation of intact elastin scaffolds in tissue-engineered collagen-based vascular grafts. Tissue Engineering, 10, 1526–1535.

    PubMed  CAS  Google Scholar 

  70. Gao, J., Crapo, P., Nerem, R., & Wang, Y. (2008). Co-expression of elastin and collagen leads to highly compliant engineered blood vessels. Journal of Biomedical Materials Research A, 85, 1120–1128.

    Google Scholar 

  71. Kurane, A., Simionescu, D. T., & Vyavahare, N. R. (2007). In vivo cellular repopulation of tubular elastin scaffolds mediated by basic fibroblast growth factor. Biomaterials, 28, 2830–2838.

    PubMed  CAS  Google Scholar 

  72. Ahmed, T. A., Dare, E. V., & Hincke, M. (2008). Fibrin: a versatile scaffold for tissue engineering applications. Tissue Engineering Part B Reviews, 14, 199–215.

    PubMed  CAS  Google Scholar 

  73. Sreerekha, P. R., Divya, P., & Krishnan, L. K. (2006). Adult stem cell homing and differentiation in vitro on composite fibrin matrix. Cell Proliferation, 39, 301–312.

    PubMed  CAS  Google Scholar 

  74. Pelaez, D., Huang, C. Y., & Cheung, H. S. (2008) Cyclic compression maintains viability and induces chondrogenesis of human mesenchymal stem cells in fibrin gel scaffolds. Stem Cells Development. Epub ahead of print.

  75. Trombi, L., D’Alessandro, D., Pacini, S., Fiorentino, B., Scarpellini, M., Fazzi, R., et al. (2008). Good manufacturing practice-grade fibrin gel is useful as a scaffold for human mesenchymal stromal cells and supports in vitro osteogenic differentiation. Transfusion, 48, 2246–2251.

    PubMed  Google Scholar 

  76. Willerth, S. M., Arendas, K. J., Gottlieb, D. I., & Sakiyama-Elbert, S. E. (2006). Optimization of fibrin scaffolds for differentiation of murine embryonic stem cells into neural lineage cells. Biomaterials, 27, 5990–6003.

    PubMed  CAS  Google Scholar 

  77. Englehart, M. S., Cho, S. D., Tieu, B. H., Morris, M. S., Underwood, S. J., Karahan, A., et al. (2008). A novel highly porous silica and chitosan-based hemostatic dressing is superior to HemCon and gauze sponges. Journal of Trauma, 65, 884–890. discussion 90–2.

    PubMed  CAS  Google Scholar 

  78. Zhu, Y., Liu, T., Song, K., Jiang, B., Ma, X., & Cui, Z. (2009). Collagen-chitosan polymer as a scaffold for the proliferation of human adipose tissue-derived stem cells. Journal of Materials Science Materials in Medicine, 20, 799–808.

    PubMed  CAS  Google Scholar 

  79. Moreau, J. L., & Xu, H. H. (2009). Mesenchymal stem cell proliferation and differentiation on an injectable calcium phosphate—Chitosan composite scaffold. Biomaterials, 30, 2675–2682.

    PubMed  CAS  Google Scholar 

  80. Zahir, T., Nomura, H., Guo, X. D., Kim, H., Tator, C., Morshead, C., et al. (2008). Bioengineering neural stem/progenitor cell-coated tubes for spinal cord injury repair. Cell Transplantation, 17, 245–254.

    PubMed  Google Scholar 

  81. Nomura, H., Zahir, T., Kim, H., Katayama, Y., Kulbatski, I., Morshead, C. M., et al. (2008). Extramedullary chitosan channels promote survival of transplanted neural stem and progenitor cells and create a tissue bridge after complete spinal cord transection. Tissue Engineering Part A, 14, 649–665.

    PubMed  CAS  Google Scholar 

  82. Nisbet, D. R., Crompton, K. E., Horne, M. K., Finkelstein, D. I., & Forsythe, J. S. (2008). Neural tissue engineering of the CNS using hydrogels. Journal of Biomedical Materials Research Part B Applied Biomaterials, 87, 251–263.

    Google Scholar 

  83. Kweon, H., Yoo, M. K., Park, I. K., Kim, T. H., Lee, H. C., Lee, H. S., et al. (2003). A novel degradable polycaprolactone networks for tissue engineering. Biomaterials, 24, 801–808.

    PubMed  CAS  Google Scholar 

  84. Bezwada, R. S., Jamiolkowski, D. D., Lee, I. Y., Agarwal, V., Persivale, J., Trenka-Benthin, S., et al. (1995). Monocryl suture, a new ultra-pliable absorbable monofilament suture. Biomaterials, 16, 1141–1148.

    PubMed  CAS  Google Scholar 

  85. Sinha, V. R., Bansal, K., Kaushik, R., Kumria, R., & Trehan, A. (2004). Poly-epsilon-caprolactone microspheres and nanospheres: an overview. International Journal of Pharmaceutics, 278, 1–23.

    PubMed  CAS  Google Scholar 

  86. Cao, X., & Schoichet, M. S. (1999). Delivering neuroactive molecules from biodegradable microspheres for application in central nervous system disorders. Biomaterials, 20, 329–339.

    PubMed  CAS  Google Scholar 

  87. Bender, M. D., Bennett, J. M., Waddell, R. L., Doctor, J. S., & Marra, K. G. (2004). Multi-channeled biodegradable polymer/CultiSpher composite nerve guides. Biomaterials, 25, 1269–1278.

    PubMed  CAS  Google Scholar 

  88. Wong, D. Y., Krebsbach, P. H., & Hollister, S. J. (2008). Brain cortex regeneration affected by scaffold architectures. Journal of Neurosurgery, 109, 715–722.

    PubMed  Google Scholar 

  89. Wong, D. Y., Leveque, J. C., Brumblay, H., Krebsbach, P. H., Hollister, S. J., & Lamarca, F. (2008). Macro-architectures in spinal cord scaffold implants influence regeneration. Journal of Neurotrauma, 25, 1027–1037.

    PubMed  Google Scholar 

  90. Mas Estelles, J., Vidaurre, A., Meseguer Duenas, J. M., & Castilla Cortazar, I. (2008). Physical characterization of polycaprolactone scaffolds. Journal of Materials Science Materials in Medicine, 19, 189–195.

    PubMed  CAS  Google Scholar 

  91. Li, W. J., Tuli, R., Okafor, C., Derfoul, A., Danielson, K. G., Hall, D. J., et al. (2005). A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials, 26, 599–609.

    PubMed  CAS  Google Scholar 

  92. Li, W. J., Tuli, R., Huang, X., Laquerriere, P., & Tuan, R. S. (2005). Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials, 26, 5158–5166.

    PubMed  CAS  Google Scholar 

  93. Sun, H., Mei, L., Song, C., Cui, X., & Wang, P. (2006). The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials, 27, 1735–1740.

    PubMed  CAS  Google Scholar 

  94. Smith, M. J., White, K. L., Jr., Smith, D. C., & Bowlin, G. L. (2009). In vitro evaluations of innate and acquired immune responses to electrospun polydioxanone-elastin blends. Biomaterials, 30, 149–159.

    PubMed  CAS  Google Scholar 

  95. Molea, G., Schonauer, F., Bifulco, G., & D’Angelo, D. (2000). Comparative study on biocompatibility and absorption times of three absorbable monofilament suture materials (Polydioxanone, Poliglecaprone 25, Glycomer 631). British Journal of Plastic Surgery, 53, 137–141.

    PubMed  CAS  Google Scholar 

  96. Boland, E. D., Coleman, B. D., Barnes, C. P., Simpson, D. G., Wnek, G. E., & Bowlin, G. L. (2005). Electrospinning polydioxanone for biomedical applications. Acta Biomaterialia, 1, 115–123.

    PubMed  Google Scholar 

  97. Greisler, H. P., Tattersall, C. W., Klosak, J. J., Cabusao, E. A., Garfield, J. D., & Kim, D. U. (1991). Partially bioresorbable vascular grafts in dogs. Surgery, 110, 645–654. discussion 54–5.

    PubMed  CAS  Google Scholar 

  98. Sell, S. A., McClure, M. J., Barnes, C. P., Knapp, D. C., Walpoth, B. H., Simpson, D. G., et al. (2006). Electrospun polydioxanone-elastin blends: potential for bioresorbable vascular grafts. Biomedical Materials, 1, 72–80.

    PubMed  CAS  Google Scholar 

  99. Curtis, A. S., Wilkinson, C. D., Crossan, J., Broadley, C., Darmani, H., Johal, K. K., et al. (2005). An in vivo microfabricated scaffold for tendon repair. Eur Cell Mater, 9, 50–57. discussion 7.

    PubMed  CAS  Google Scholar 

  100. Christgau, M., Bader, N., Felden, A., Gradl, J., Wenzel, A., & Schmalz, G. (2002). Guided tissue regeneration in intrabony defects using an experimental bioresorbable polydioxanon (PDS) membrane. A 24-month split-mouth study. Journal of Clinical Periodontology, 29, 710–723.

    PubMed  CAS  Google Scholar 

  101. Arai, T., Lundborg, G., & Dahlin, L. B. (2000). Bioartificial nerve graft for bridging extended nerve defects in rat sciatic nerve based on resorbable guiding filaments. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, 34, 101–108.

    PubMed  CAS  Google Scholar 

  102. Shen, Z. L., Berger, A., Hierner, R., Allmeling, C., Ungewickell, E., & Walter, G. F. (2001). A Schwann cell-seeded intrinsic framework and its satisfactory biocompatibility for a bioartificial nerve graft. Microsurgery, 21, 6–11.

    PubMed  CAS  Google Scholar 

  103. Jeong, W. K., Oh, S. H., Lee, J. H., & Im, G. I. (2008). Repair of osteochondral defects with a construct of mesenchymal stem cells and a polydioxanone/poly(vinyl alcohol) scaffold. Biotechnology and Applied Biochemistry, 49, 155–164.

    PubMed  CAS  Google Scholar 

  104. Smith, M. J., McClure, M. J., Sell, S. A., Barnes, C. P., Walpoth, B. H., Simpson, D. G., et al. (2008). Suture-reinforced electrospun polydioxanone-elastin small-diameter tubes for use in vascular tissue engineering: a feasibility study. Acta Biomaterialia, 4, 58–66.

    PubMed  CAS  Google Scholar 

  105. Mooney, D. J., Mazzoni, C. L., Breuer, C., McNamara, K., Hern, D., Vacanti, J. P., et al. (1996). Stabilized polyglycolic acid fibre-based tubes for tissue engineering. Biomaterials, 17, 115–124.

    PubMed  CAS  Google Scholar 

  106. Hannouche, D., Terai, H., Fuchs, J. R., Terada, S., Zand, S., Nasseri, B. A., et al. (2007). Engineering of implantable cartilaginous structures from bone marrow-derived mesenchymal stem cells. Tissue Engineering, 13, 87–99.

    PubMed  CAS  Google Scholar 

  107. Seo, Y. K., Yoon, H. H., Park, Y. S., Song, K. Y., Lee, W. S., & Park, J. K. (2008). Correlation between scaffold in vivo biocompatibility and in vitro cell compatibility using mesenchymal and mononuclear cell cultures. Cell Biology and Toxicology, 24, 471–474.

    Google Scholar 

  108. Athanasiou, K. A., Niederauer, G. G., & Agrawal, C. M. (1996). Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials, 17, 93–102.

    PubMed  CAS  Google Scholar 

  109. Zhou, X. Z., Leung, V. Y., Dong, Q. R., Cheung, K. M., Chan, D., & Lu, W. W. (2008). Mesenchymal stem cell-based repair of articular cartilage with polyglycolic acid-hydroxyapatite biphasic scaffold. International Journal of Artificial Organs, 31, 480–489.

    PubMed  CAS  Google Scholar 

  110. Jung, H. J., Park, K., Kim, J. J., Lee, J. H., Han, K. O., & Han, D. K. (2008). Effect of RGD-immobilized dual-pore poly(L-lactic acid) scaffolds on chondrocyte proliferation and extracellular matrix production. Artificial Organs, 32, 981–989.

    PubMed  CAS  Google Scholar 

  111. Evans, G. R., Brandt, K., Niederbichler, A. D., Chauvin, P., Herrman, S., Bogle, M., et al. (2000). Clinical long-term in vivo evaluation of poly(L-lactic acid) porous conduits for peripheral nerve regeneration. Journal of Biomaterials Science Polymer Ed, 11, 869–878.

    CAS  Google Scholar 

  112. Bhang, S. H., Lim, J. S., Choi, C. Y., Kwon, Y. K., & Kim, B. S. (2007). The behavior of neural stem cells on biodegradable synthetic polymers. Journal of Biomaterials Science Polymer Ed, 18, 223–239.

    CAS  Google Scholar 

  113. Willerth, S. M., & Sakiyama-Elbert, S. E. (2007). Approaches to neural tissue engineering using scaffolds for drug delivery. Advanced Drug Delivery Reviews, 59, 325–338.

    PubMed  CAS  Google Scholar 

  114. Matsusue, Y., Yamamuro, T., Oka, M., Shikinami, Y., Hyon, S. H., & Ikada, Y. (1992). In vitro and in vivo studies on bioabsorbable ultra-high-strength poly(L-lactide) rods. Journal of Biomedical Materials Research, 26, 1553–1567.

    PubMed  CAS  Google Scholar 

  115. Fujihara, Y., Asawa, Y., Takato, T., & Hoshi, K. (2008). Tissue reactions to engineered cartilage based on poly-L-lactic acid scaffolds. Tissue Engineering Part A. Epub ahead of print.

  116. Yang, F., Murugan, R., Wang, S., & Ramakrishna, S. (2005). Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials, 26, 2603–2610.

    PubMed  CAS  Google Scholar 

  117. Chen, G., Tanaka, J., & Tateishi, T. (2006). Osteochondral tissue engineering using a PLGA-collagen hybrid mesh. Materials Science and Engineering, 26, 124–129.

    Google Scholar 

  118. Park, G. E., Pattison, Megan, Park, K., & Webster, T. J. (2005). Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds. Biomaterials, 26, 3075–3082.

    PubMed  CAS  Google Scholar 

  119. Chen, G., Sato, T., Ushida, T., Ochiai, N., & Tateishi, T. (2004). Tissue engineering of cartilage using a hybrid scaffold of synthetic polymer and collagen. Tissue Engineering, 10, 323–330.

    PubMed  CAS  Google Scholar 

  120. Kim, S. H., Yoon, S. J., Choi, B., Ha, H. J., Rhee, J. M., Kim, M. S., et al. (2006). Evaluation of various types of scaffold for tissue engineered intervertebral disc. Advances in Experimental Medicine and Biology, 585, 169–181.

    Google Scholar 

  121. Lee, S. J., Lee, I., Lee, Y. M., Lee, H. B., & Khang, G. (2004). Macroporous biodegradable natural/synthetic hybrid scaffolds as small intestine mucosa impregnated poly(lactide0 co-glycolide) for tissue engineered bone. Journal of Biomaterials science Polymer Ed, 15, 1003–1017.

    CAS  Google Scholar 

  122. Jang, J. W., Park, K. S., & Kim, S. H. (2005). Tissue engineered bone regeneration using DBP-loaded PLGA scaffold in rabbit model. Tissue Engineering and Regenerative, 2, 34–40.

    Google Scholar 

  123. Panseri, S., Cunha, C., Lowery, J., Del Carro, U., Taraballi, F., Amadio, S., et al. (2008). Electrospun micro- and nanofiber tubes for functional nervous regeneration in sciatic nerve transections. BMC Biotechnology, 8, 39.

    PubMed  Google Scholar 

  124. Yao, L., Wang, S., Cui, W., Sherlock, R., O'Connell, C., Damodaran, G., et al. (2009). Effect of functionalized micropatterned PLGA on guided neurite growth. Acta Biomaterialia, 5, 580–588.

    PubMed  CAS  Google Scholar 

  125. Rooney, G. E., Moran, C., McMahon, S. S., Ritter, T., Maenz, M., Flugel, A., et al. (2008). Gene-modified mesenchymal stem cells express functionally active nerve growth factor on an engineered poly lactic glycolic acid (PLGA) substrate. Tissue Engineering Part A, 14, 681–690.

    PubMed  CAS  Google Scholar 

  126. Pomerantseva, I., Krebs, N., Hart, A., Neville, C. M., Huang, A. Y., & Sundback, C. A. (2008) Degradation behavior of poly(glycerol sebacate). Journal of Biomedical Materials Research A. Epub ahead of print.

  127. Engelmayr, G. C., Jr., Cheng, M., Bettinger, C. J., Borenstein, J. T., Langer, R., & Freed, L. E. (2008). Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nature Matters, 7, 1003–1010.

    CAS  Google Scholar 

  128. Ifkovits, J. L., Padera, R. F., & Burdick, J. A. (2008). Biodegradable and radically polymerized elastomers with enhanced processing capabilities. Biomedical Materials, 3, 034104.

    PubMed  Google Scholar 

  129. Sundback, C. A., Shyu, J. Y., Wang, Y., Faquin, W. C., Langer, R. S., Vacanti, J. P., et al. (2005). Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material. Biomaterials, 26, 5454–5464.

    PubMed  CAS  Google Scholar 

  130. Ren, L., Tsuru, K., Hayakawa, S., & Osaka, A. (2002). Novel approach to fabricate porous gelatin-siloxane hybrids for bone tissue engineering. Biomaterials, 23, 4765–4773.

    PubMed  CAS  Google Scholar 

  131. Deguchi, K., Tsuru, K., Hayashi, T., Takaishi, M., Nagahara, M., Nagotani, S., et al. (2006). Implantation of a new porous gelatin-siloxane hybrid into a brain lesion as a potential scaffold for tissue regeneration. Journal of Cerebral Blood Flow and Metabolism, 26, 1263–1273.

    PubMed  CAS  Google Scholar 

  132. Zhang, H., Kamiya, T., Hayashi, T., Tsuru, K., Deguchi, K., Lukic, V., et al. (2008). Gelatin-siloxane hybrid scaffolds with vascular endothelial growth factor induces brain tissue regeneration. Current Neurovascular Research , 5, 112–117.

    PubMed  CAS  Google Scholar 

  133. Sachlos, E., Wahl, D. A., Triffitt, J. T., & Czernuszka, J. T. (2008). The impact of critical point drying with liquid carbon dioxide on collagen-hydroxyapatite composite scaffolds. Acta Biomaterialia, 4, 1322–1331.

    PubMed  CAS  Google Scholar 

  134. Tomita, M., Lavik, E., Klassen, H., Zahir, T., Langer, R., & Young, M. J. (2005). Biodegradable polymer composite grafts promote the survival and differentiation of retinal progenitor cells. Stem Cells, 23, 1579–1588.

    PubMed  Google Scholar 

  135. Wang, M. (2006). Composite scaffolds for bone tissue engineering. American Journal of Biochemistry and Biotechnology, 2, 80–84.

    Article  CAS  Google Scholar 

  136. Peretz, H., Blinder, P., Baranes, D., & Vago, R. (2008). Aragonite crystalline matrix as an instructive microenvironment for neural development. Journal of Tissue Engineering and Regenerative Medicine, 2, 463–471.

    PubMed  CAS  Google Scholar 

  137. Schugens, C., Maquet, V., Grandfils, C., Jerome, R., & Teyssie, P. (1996). Biodegradable and macroporous polylactide implants for cell transplantation.1. Preparation of macroporous polylactide supports by solid-liquid phase-separation. Polymer, 37, 1027–1038.

    CAS  Google Scholar 

  138. Teng, Y. D., Lavik, E. B., Qu, X., Park, K. I., Ourednik, J., Zurakowski, D., et al. (2002). Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proceedings of the National Academy of Sciences of the United States of America, 99, 3024–3029.

    PubMed  CAS  Google Scholar 

  139. Liu, X., Won, Y., & Ma, P. X. (2006). Porogen-induced surface modification of nano-fibrous poly(L-lactic acid) scaffolds for tissue engineering. Biomaterials, 27, 3980–3987.

    PubMed  CAS  Google Scholar 

  140. Yang, F., Murugan, R., Ramakrishna, S., Wang, X., Ma, Y. X., & Wang, S. (2004). Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials, 25, 1891–1900.

    PubMed  CAS  Google Scholar 

  141. Cooley, J. F. (1902). Apparatus for electrically dispersing fluids, 692631 P.

  142. Graham, K., Gogins, M. &, Schreuder-Gibson, H. (2003). Incorporation of electrospun nanofibers into functional structures. International Nonwoven Technical Conference.

  143. Li, W. J., Laurencin, C. T., Caterson, E. J., Tuan, R. S., & Ko, F. K. (2002). Electrospun nanofibrous structure: a novel scaffold for tissue engineering. Journal of Biomedical Materials Research, 60, 613–621.

    PubMed  CAS  Google Scholar 

  144. Pham, Q. P., Sharma, U., & Mikos, A. G. (2006). Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Engineering, 12, 1197–1211.

    PubMed  CAS  Google Scholar 

  145. Dalton, P. D., Klinkhammer, K., Salber, J., Klee, D., & Moller, M. (2006). Direct in vitro electrospinning with polymer melts. Biomacromolecules, 7, 686–690.

    PubMed  CAS  Google Scholar 

  146. Dalton, P. D., Klee, D., & Moller, M. (2005). Electrospinning with dual collection rings. Polymer, 46, 611–614.

    CAS  Google Scholar 

  147. Srouji, S., Kizhner, T., Suss-Tobi, E., Livne, E., & Zussman, E. (2008). 3-D Nanofibrous electrospun multilayered construct is an alternative ECM mimicking scaffold. Journal of Materials Science Materials in Medicine, 19, 1249–1255.

    PubMed  CAS  Google Scholar 

  148. Li, S., Sun, B., Li, X., & Yuan, X. (2008). Characterization of electrospun core/shell poly(vinyl pyrrolidone)/poly(L-lactide-co-epsilon-caprolactone) fibrous membranes and their cytocompatibility in vitro. Journal of Biomaterials Science Polymer Ed, 19, 245–258.

    Google Scholar 

  149. Zhao, L., He, C., Gao, Y., Cen, L., Cui, L., & Cao, Y. (2008). Preparation and cytocompatibility of PLGA scaffolds with controllable fiber morphology and diameter using electrospinning method. Journal of Biomedical Materials Research Part B Applied Biomaterials, 87, 26–34.

    Google Scholar 

  150. Theron, S. A., Zussman, E., & Yarin, A. L. (2004). Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer, 45, 2017–2030.

    CAS  Google Scholar 

  151. Rutledge, G. C., & Fridrikh, S. V. (2007). Formation of fibers by electrospinning. Advanced Drug Delivery Reviews, 59, 1384–1391.

    PubMed  CAS  Google Scholar 

  152. Teo, W. E., & Ramakrishna, S. (2006). A review on electrospinning design and nanofibre assemblies. IOP Nanotechnology, 17, R89–R106.

    CAS  Google Scholar 

  153. Nisbet, D. R., Pattanawong, S., Ritchie, N. E., Shen, W., Finkelstein, D. I., Horne, M. K., et al. (2007). Interaction of embryonic cortical neurons on nanofibrous scaffolds for neural tissue engineering. Journal of Neural Engineering, 4, 35–41.

    PubMed  CAS  Google Scholar 

  154. Manaresi, N. (2003). A CMOS chip for individual cell manipulation and detection. IEEE Journal of Solid State Circuits, 38, 2297–2305.

    Google Scholar 

  155. Wang, X., Yan, Y., & Zhang, R. (2007). Rapid prototyping as a tool for manufacturing bioartificial livers. Trends in Biotechnology, 25, 505–513.

    PubMed  CAS  Google Scholar 

  156. Zhou, W. Y., Lee, S. H., Wang, M., Cheung, W. L., & Ip, W. Y. (2008). Selective laser sintering of porous tissue engineering scaffolds from poly(L: -lactide)/carbonated hydroxyapatite nanocomposite microspheres. Journal of Materials Science Materials in Medicine, 19, 2535–2540.

    PubMed  CAS  Google Scholar 

  157. Schuster, M., Turecek, C., Mateos, A., Stampfl, J., Liska, R., & Varga, F. (2007). Evaluation of biocompatible photopolymers II: further reactive diluents. Chemical Monthly, 138, 261–268.

    CAS  Google Scholar 

  158. Warren, S. M., Hedrick, M. H., Sylvester, K., Longaker, M. T., & Chen, C. M. (2002). New directions in bioabsorbable technology. Journal of Neurosurgery, 97, 481–489.

    PubMed  CAS  Google Scholar 

  159. Hollister, S. J. (2005). Porous scaffold design for tissue engineering. Nature Matters, 4, 518–524.

    CAS  Google Scholar 

  160. Peltola, S. M., Melchels, F. P., Grijpma, D. W., & Kellomaki, M. (2008). A review of rapid prototyping techniques for tissue engineering purposes. Annals of Medicine, 40, 268–280.

    PubMed  CAS  Google Scholar 

  161. Lu, Y., Mapili, G., Suhali, G., Chen, S., & Roy, K. (2006). A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. Journal of Biomedical Materials Research A, 77, 396–405.

    Google Scholar 

  162. Stolzing, A., Jones, E., McGonagle, D., & Scutt, A. (2008). Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mechanisms of Ageing and Development, 129, 163–173.

    PubMed  CAS  Google Scholar 

  163. Wang, M., Yang, Y., Yang, D., Luo, F., Liang, W., Guo, S., et al. (2009). The immunomodulatory activity of human umbilical cord blood-derived mesenchymal stem cells in vitro. Immunology, 126, 220–232.

    PubMed  CAS  Google Scholar 

  164. Rossignol, J., Boyer, C., Thinard, R., Remy, S., Dugast, A. S., Dubayle, D., et al. (2008). Mesenchymal stem cells induce a weak immune response in the rat striatum after allo or xenotransplantation. Journal of Cellular and Molecular Medicine. Epub ahead of print.

  165. Nauta, A. J., Westerhuis, G., Kruisselbrink, A. B., Lurvink, E. G., Willemze, R., & Fibbe, W. E. (2006). Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood, 108, 2114–2120.

    PubMed  CAS  Google Scholar 

  166. McIntosh, K. R., Lopez, M. J., Borneman, J. N., Spencer, N. D., Anderson, P. A., & Gimble, J. M. (2008) Immunogenicity of allogeneic adipose-derived stem cells in a rat spinal fusion model. Tissue Engineering Part A. Epub ahead of print

  167. Walker, P. A., Shah, S. K., Harting, M. T., & Cox, C. S. (2009). Progenitor cell therapies for traumatic brain injury: barriers and opportunities in translation. Disease Models & Mechanisms, 2, 23–38.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles S. Cox Jr.

Additional information

Supported by grants: NIH T32 GM 08 79201; NIH P018/N01 HB 37163; M01 RR 02558; Texas Higher Education Coordinating Board; Children’s Memorial Hermann Hospital Foundation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, P.A., Aroom, K.R., Jimenez, F. et al. Advances in Progenitor Cell Therapy Using Scaffolding Constructs for Central Nervous System Injury. Stem Cell Rev and Rep 5, 283–300 (2009). https://doi.org/10.1007/s12015-009-9081-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-009-9081-1

Keywords

Navigation