Skip to main content

Advertisement

Log in

Cancer Stem Cells: Lessons From Melanoma

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The model of cancer stem cells in tumor development states that tumors contain a subset of cells that both self renew and give rise to differentiated progeny. Like normal adult tissue stem cells, cancer stem cells are a minority of the whole tumor and are the only cells that are able to maintain tumor growth indefinitely. In the present review is critically discussed the actually existence of a cancer stem cell subpopulation in melanoma. The self-renewal signaling pathways as well as specific markers like as CD133, ABCB5 and ABCG2 recently identified in putative melanoma cancer stem cells are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, J. M., & Strasser, A. (2008). Is tumor growth sustained by rare cancer stem cells or dominant clones. Cancer research, 68, 4018–4021. doi:10.1158/0008-5472.CAN-07-6334.

    Article  PubMed  CAS  Google Scholar 

  2. Pearce, D. J., Tanssing, D., Zibara, K., Smith, L. L., Ridler, C. M., Preudhomme, C., et al. (2006). AML engraftment in the NOD/SCID assay reflects the outcome of the AML: implications for our understanding of the heterogeneity of AML. Blood, 107, 1166–1173. doi:10.1182/blood-2005-06-2325.

    Article  PubMed  CAS  Google Scholar 

  3. Kelly, P. N., Dakic, A., Adams, J. M., Nutt, S. L., & Strasser, A. (2007). Tumor growth need not be driven by rare cancer stem cells. Science, 317, 337. doi:10.1126/science.1142596.

    Article  PubMed  CAS  Google Scholar 

  4. Somervaille, T. C., & Cleary, M. L. (2006). Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. Cancer Cell, 10, 257–268. doi:10.1016/j.ccr.2006.08.020.

    Article  PubMed  CAS  Google Scholar 

  5. Krivsov, A. V., Twomey, D., Feng, Z., Stubbs, M. C., Wang, Y., Faber, J., et al. (2006). Transformation from committed progenitor to leukemia stem cell initiated by MLL-AF9. Nature, 442, 818–822. doi:10.1038/nature04980.

    Article  Google Scholar 

  6. Williams, R. T., den Best, W., & Sherr, C. J. (2007). Cytokine dependent imitinib resistance in mouse BCR-ABL+Arf-null lymphoblastic leukemia. Genes & development, 21, 2283–2287. doi:10.1101/gad.1588607.

    Article  CAS  Google Scholar 

  7. Lessard, J., & Sauvageau, G. (2003). Bmi1 determines the proliferative capacity of normal and leukaemic stem cells. Nature, 423, 255–260. doi:10.1038/nature01572.

    Article  PubMed  CAS  Google Scholar 

  8. Huntly, B. J., Shigematsu, H., Deguchi, K., Lee, B. H., Mizuno, S., Duclos, N., et al. (2004). MOZ-TIF2 but not BCR-ABL confers properties of leukemia stem cells to committed murine hematopoietic progenitors. Cancer cell, 6, 587–596. doi:10.1016/j.ccr.2004.10.015.

    Article  PubMed  CAS  Google Scholar 

  9. Neering, S. J., Bushnell, T., Sozer, S., Ashton, J., Rossi, R. M., Wang, P. Y., et al. (2007). Leukemia stem cells in a genetically defined murine model of blastocrisis CML. Blood, 110, 2578–2585. doi:10.1182/blood-2007-02-073031.

    Article  PubMed  CAS  Google Scholar 

  10. Deshpande, A. J., Cusan, M., Rawat, V. P., Reuter, H., Krause, A., Pott, C., et al. (2006). Acute myeloid leukemia is propagated by a leukemic stem cell with lymphoid characteristics in a mouse model of CALM/AF-10 positive leukemia. Cancer cell, 10, 363–374. doi:10.1016/j.ccr.2006.08.023.

    Article  PubMed  CAS  Google Scholar 

  11. Cho, R. W., Wang, X., Diehn, M., Shedden, K., Chen, G. Y., Sherlock, G., et al. (2008). Isolation and molecular characterization of cancer stem cells in MMTV-Wnt1 murine breast tumors. Stem cells, 26, 364–371. doi:10.1634/stemcells.2007-0440.

    Article  PubMed  CAS  Google Scholar 

  12. Dou, J., Pan, M., Wen, P., Li, Y., Tang, Q., Chu, L., et al. (2007). Isolation and identification of cancer stem cell-like cells from murine melanoma cell lines. Cell molecular immunology, 4, 467–472.

    Google Scholar 

  13. Collins, A. T., Berry, P. A., Hyde, C., Stower, M. J., & Maitland, N. J. (2005). Prospective identification of tumorigenic prostate cancer stem cells. Cancer research, 65, 10946–10951. doi:10.1158/0008-5472.CAN-05-2018.

    Article  PubMed  CAS  Google Scholar 

  14. Prince, M. E., Sivanandan, R., Kaczorowski, A., Wolf, G. T., Kaplan, M. J., Dalerba, P., et al. (2007). Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 104, 973–978. doi:10.1073/pnas.0610117104.

    Article  PubMed  CAS  Google Scholar 

  15. Singh, S. K., Hawkins, C., Clarke, I. D., Squire, J. A., Bayani, J., Hide, T., et al. (2004). Identification of human brain tumor initiating cells. Nature, 432, 396–401. doi:10.1038/nature03128.

    Article  PubMed  CAS  Google Scholar 

  16. Yang, Z. F., Ho, D. W., Ng, M. N., Lau, C. K., Yu, W. C., Ngai, P., et al. (2008). Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell, 13, 153–166. doi:10.1016/j.ccr.2008.01.013.

    Article  PubMed  CAS  Google Scholar 

  17. Monzani, E., Facchetti, F., Galmozzi, E., Corsini, E., Benetti, A., Cavazzin, C., et al. (2007). Melanoma contains CD133 and ABCG2 positive cells with enhanced tumorigenic potential. European journal of cancer, 43, 935–946. doi:10.1016/j.ejca.2007.01.017.

    Article  PubMed  CAS  Google Scholar 

  18. Schatton, T., Murphy, G. F., Frank, N. Y., Yamaura, K., Waaga-Gasser, A. M., Gasser, M., et al. (2008). Identification of cells initiating human melanomas. Nature, 451, 345–349. doi:10.1038/nature06489.

    Article  PubMed  CAS  Google Scholar 

  19. Fang, D., Nguyen, T. K., Leishear, K., Finko, R., Kulp, A. N., Hotz, S., et al. (2005). A tumorigenic subpopulation with stem cell properties in melanomas. Cancer research, 65, 9328–9337. doi:10.1158/0008-5472.CAN-05-1343.

    Article  PubMed  CAS  Google Scholar 

  20. Li, C., Heidt, D. G., Delerba, P., Burant, C. F., Zhang, L., Adsay, V., et al. (2007). Identification of pancreatic cancer stem cells. Cancer research, 67, 1030–1037. doi:10.1158/0008-5472.CAN-06-2030.

    Article  PubMed  CAS  Google Scholar 

  21. Wang, J., Sakariassen, P. O., Tsinkalovsky, O., Immervoll, H., Ove Boe, S., Svendsen, A., et al. (2008). CD133 negative glioma cells from tumors in nude rats and give to CD133 positive cells. International journal of cancer, 122, 761–768. doi:10.1002/ijc.23130.

    Article  CAS  Google Scholar 

  22. O’Brien, C. A., Pollett, A., Galliner, S., & Dick, J. E. (2007). A human colon cancer cell capabel of initiating tumor growth in immunodeficnet mice. Nature, 445, 106–110. doi:10.1038/nature05372.

    Article  PubMed  CAS  Google Scholar 

  23. Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C., et al. (2007). Identification and expansion of human colon-cancer initiating cells. Nature, 445, 11–115. doi:10.1038/nature05384.

    Article  Google Scholar 

  24. Todaro, M., Alea, M. P., Di Stefano, A. B., Cammareri, P., Vermeulen, L., Iovino, F., et al. (2007). Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukine-4. Cell Stem, 1, 389–402. doi:10.1016/j.stem.2007.08.001.

    Article  CAS  Google Scholar 

  25. Shmelkov, S. V., Butler, J. M., Hooper, A. T., Hormingo, A., Kushner, J., Milde, T., et al. (2008). CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors. Journal of clinical investigation, 118, 2111–2120.

    PubMed  CAS  Google Scholar 

  26. Brummendorf, T. H., Dragowska, W., Zijlmans, J., Thornbury, G., & Lansdorp, P. M. (1998). Asymmetric divisions sustain long/term hematopoiesis from single sorted human liver cells. Journal of experimental medicine, 188, 1117–1124. doi:10.1084/jem.188.6.1117.

    Article  PubMed  CAS  Google Scholar 

  27. Takano, H., Ema, H., Sudo, K., & Nakauchi, H. (2004). Asymmetric division and lineage commitment at the level of hematopoietic stem cells: interference from differentiation in daughter cell and granddaughter cell pairs. Journal of experimental medicine, 199, 295–302. doi:10.1084/jem.20030929.

    Article  PubMed  CAS  Google Scholar 

  28. Gao, F. B., & Raff, M. (1997). Cell size control and cell intrinsic maturation program in proliferating oligodendrocyte precursor cells. Journal of cell biology, 138, 1367–1377. doi:10.1083/jcb.138.6.1367.

    Article  PubMed  CAS  Google Scholar 

  29. Fonseca, A. V., Bauer, N., & Corbeil, D. (2008). The stem cell marker CD133 meets the endosomal compartment—new insights into the cell division of hematopoietic stem cells. Blood cells, molecules & diseases, 41, 194–195. doi:10.1016/j.bcmd.2008.04.004.

    Article  CAS  Google Scholar 

  30. Zon, L. (2008). Intrinsic and extrinsic control of haematopoietic stem cell self renewal. Nature, 453, 306–313. doi:10.1038/nature07038.

    Article  PubMed  CAS  Google Scholar 

  31. Klein, W. M., Wu, B. P., ZHao, S., Wu, H., Klein-Szanto, A. J., & Tahan, S. R. (2007). Increased expression of stem cell markers in malignant melanoma. Modern pathology, 20, 102–107. doi:10.1038/modpathol.3800720.

    Article  PubMed  CAS  Google Scholar 

  32. Hadnagy, A., Gaboury, L., Beaulieu, R., & Balicki, D. (2006). SP analysis may be used to identify cancer stem cell population. Experimental cell research, 312, 3701–3710. doi:10.1016/j.yexcr.2006.08.030.

    Article  PubMed  CAS  Google Scholar 

  33. Keshet, G. I., Goldstein, I., Itzhaki, O., Cesarkas, K., Shenhav, L., Yakirevitch, A., et al. (2008). MDR1 expression identifies human melanoma stem cells. Biochemical and biophysical research communications, 368, 930–936. doi:10.1016/j.bbrc.2008.02.022.

    Article  PubMed  CAS  Google Scholar 

  34. Corbeil, D., Roper, K., Fargeas, C. A., Joester, A., & Hutter, W. B. (2001). Prominin: a story of cholesterol, plasma membrane protusions and human pathology. Traffic, 2, 82–91. doi:10.1034/j.1600-0854.2001.020202.x.

    Article  PubMed  CAS  Google Scholar 

  35. Nikolova, T., Wu, M., Brumbarov, K., Alt, R., Opitz, H., Boheler, K. R., et al. (2007). Wnt conditioned media differentially affect the proliferation and differentiation of cord blood derived CD133+ cells in vitro. Differentiation, 75, 100–111. doi:10.1111/j.1432-0436.2006.00119.x.

    Article  PubMed  CAS  Google Scholar 

  36. Fan, X., Matsui, W., Khaki, L., Stearns, D., Chun, J., Li, Y. M., et al. (2006). Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer research, 66, 7445–7452. doi:10.1158/0008-5472.CAN-06-0858.

    Article  PubMed  CAS  Google Scholar 

  37. Clement, V., Sanchez, P., de Tribolet, N., Radovanovic, I., Riuz, I., & Altaba, A. (2007). Hedgehog-Gli1 signaling regulates human glioma growth cancer stem cell self-renewal and tumorigenicity. Current biology, 17, 165–172. doi:10.1016/j.cub.2006.11.033.

    Article  PubMed  CAS  Google Scholar 

  38. Piccirillo, S. G., Reynolds, B. A., Zanetti, N., Lamorte, G., Binda, E., Broggi, G., et al. (2006). Bone morphogenic proteins inhibit the tumorigenic potential of human brain tumor-initiating cells. Nature, 444, 761–765. doi:10.1038/nature05349.

    Article  PubMed  CAS  Google Scholar 

  39. Wang, J., Sakariassen, P., Tsinkalovsky, O., Immervoll, H., Ove Boe, S., Svendsen, A., et al. (2008). CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. International journal of cancer, 122, 761–768. doi:10.1002/ijc.23130.

    Article  CAS  Google Scholar 

  40. Higgins, C. F. (1992). ABC transporters: from microorganisms to man. Annual review of cell biology, 8, 67. doi:10.1146/annurev.cb.08.110192.000435.

    Article  PubMed  CAS  Google Scholar 

  41. Gros, P., Ben Neriah, Y. B., Croop, J. M., & Housman, D. E. (1986). Isolation and expression of a complementary DNA that confers multidrug resistance. Nature, 323, 728. doi:10.1038/323728a0.

    Article  PubMed  CAS  Google Scholar 

  42. Riordan, J. R., Deuchars, K., Kartner, N., Alon, N., Trent, J., & Ling, V. (1985). Amplification of P-glycoprotein genes in multidrug-resistant mammalian cell lines. Nature, 316, 817. doi:10.1038/316817a0.

    Article  PubMed  CAS  Google Scholar 

  43. Frank, N. Y., Margaryan, A., Huang, Y., Schatton, T., Waaga-Gasser, A. M., Gasser, M., et al. (2005). ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer research, 65, 4320–4333. doi:10.1158/0008-5472.CAN-04-3327.

    Article  PubMed  CAS  Google Scholar 

  44. Roninson, I. B., Chin, J. E., Choi, K. G., Gros, P., Housman, D. E., Fojo, A., et al. (1986). Isolation of human mdr DNA sequences amplified in multidrug-resistant KB carcinoma cells. Proceedings of the National Academy of Sciences of the United States of America, 83, 4538. doi:10.1073/pnas.83.12.4538.

    Article  PubMed  CAS  Google Scholar 

  45. Ueda, K., Cornwell, M. M., Gottesman, M. M., Pastan, I., Roninson, I. B., Ling, V., et al. (1986). The mdr1 gene, responsible for multidrug-resistance, codes for P-glycoprotein. Biochemical and biophysical research communications, 141, 956. doi:10.1016/S0006-291X(86)80136-X.

    Article  PubMed  CAS  Google Scholar 

  46. Chen, K. G., Szakacs, G., Annereau, J. P., Rouzaud, F., Liang, X. J., Valencia, J. C., et al. (2005). Principal expression of two mRNA isoforms (ABCB 5alpha and ABCB 5beta) of the ATP-binding cassette transporter gene ABCB 5 in melanoma cells and melanocytes. Pigment Cell Research, 18, 102–112.

    Article  PubMed  CAS  Google Scholar 

  47. Jonsson, G., Dahl, C., Staaf, J., Sandberg, T., Bendahl, P. O., Ringner, M., et al. (2007). Genomic profiling of malignant melanoma using tiling resolution array-CGH. Oncogene, 26, 4738–4748. doi:10.1038/sj.onc.1210252.

    Article  PubMed  CAS  Google Scholar 

  48. Abbott, B. L. (2003). ABCG2 (BCRP) expression in normal and malignant hematopoietic cells. Hematological oncology, 21, 115. doi:10.1002/hon.714.

    Article  PubMed  Google Scholar 

  49. Schinkel, A. H., & Jonker, J. W. (2003). Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Advanced drug delivery reviews, 55, 3. doi:10.1016/S0169-409X(02)00169-2.

    Article  PubMed  CAS  Google Scholar 

  50. Deichmann, M., Thorne, M., Egner, U., Hartschuh, W., & Kurzen, H. (2005). The chemoresistance gene ABCG2 (MXR/BCRP1/ABCP1) is not expressed in melanomas but in single neuroendocrine carcinomas of the skin. Journal of cutaneous pathology, 32, 467–473. doi:10.1111/j.0303-6987.2005.00359.x.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

I am grateful to James Sherley for his enthusiastic support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caterina La Porta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

La Porta, C. Cancer Stem Cells: Lessons From Melanoma. Stem Cell Rev and Rep 5, 61–65 (2009). https://doi.org/10.1007/s12015-008-9048-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-008-9048-7

Keywords

Navigation