Skip to main content

Cancer Stem Cells and Their Role in Metastasis

  • Chapter
  • First Online:
Cancer Metastasis Through the Lymphovascular System

Abstract

Cancer stem cells have been a major focus of study in recent years. However, the more we learn about them, the more challenges we seem to face. Cancer stem cells, cells responsible for ongoing tumor propagation, have been isolated from many tumors. In many tumors the cancer stem cell or a subset of cancer stem cells is the cell responsible for metastasis. Findings make it clear that the cancer stem cell is a key therapeutic target, but given clonal evolution and phenotype instability of the cancer stem cell, the non-cancer stem cells must be targeted simultaneously. Targeting cancer stem cells can be difficult due to their rarity and our inability to propagate them in culture. However, targeting the pathways that maintain stemness or targeting microenvironmental controls of the stem cell state can circumvent this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

SC:

Stem cell

CSC :

Cancer stem cell

References

  1. Akita H, et al. MYC activates stem-like cell potential in hepatocarcinoma by a p53-dependent mechanism. Cancer Res. 2014;74(20):5903–13. https://doi.org/10.1158/0008-5472.CAN-14-0527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Al-Hajj M, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003;100(7):3983–8. https://doi.org/10.1073/pnas.0530291100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. An Y, Ongkeko WM. ABCG2: the key to chemoresistance in cancer stem cells? Expert Opin Drug Metab Toxicol. 2009;5(12):1529–42. https://doi.org/10.1517/17425250903228834.

    Article  CAS  PubMed  Google Scholar 

  4. Baccelli I, et al. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol. 2013;31(6):539–44. https://doi.org/10.1038/nbt.2576.

    Article  CAS  PubMed  Google Scholar 

  5. Bar EE, et al. Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells. 2007;25(10):2524–33. https://doi.org/10.1634/stemcells.2007-0166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bauer N, et al. New insights into the cell biology of hematopoietic progenitors by studying prominin-1 (CD133). Cells Tissues Organs. 2008;188(1–2):127–38. https://doi.org/10.1159/000112847.

    Article  CAS  PubMed  Google Scholar 

  7. Bauer N, et al. Haematopoietic stem cell differentiation promotes the release of prominin-1/CD133-containing membrane vesicles—a role of the endocytic–exocytic pathway. EMBO Mol Med. 2011;3(7):398–09. https://doi.org/10.1002/emmm.201100147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Boonyaratanakornkit JB, et al. Selection of tumorigenic melanoma cells using ALDH. J Investig Dermatol. 2010;130(12):2799–08. https://doi.org/10.1038/jid.2010.237.

    Article  CAS  PubMed  Google Scholar 

  9. Bussolati B, et al. Identification of a tumor-initiating stem cell population in human renal carcinomas. FASEB J. 2008;22(10):3696–705. https://doi.org/10.1096/fj.08-102590.

    Article  CAS  PubMed  Google Scholar 

  10. Clarke RB, et al. Regulation of human breast epithelial stem cells. Cell Prolif. 2003;36(Suppl 1):45–8. https://doi.org/10.1046/j.1365-2184.36.s.1.5.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cochrane CR, et al. Hedgehog signaling in the maintenance of cancer stem cells. Cancers. 2015;7(3):1554–85. https://doi.org/10.3390/cancers7030851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cook N, et al. A phase I trial of the γ-secretase inhibitor MK-0752 in combination with gemcitabine in patients with pancreatic ductal adenocarcinoma. Br J Cancer. 2018;118(6):793–01. https://doi.org/10.1038/bjc.2017.495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Corbo C, et al. Protein cross-talk in CD133+ colon cancer cells indicates activation of the Wnt pathway and upregulation of SRp20 that is potentially involved in tumorigenicity. Proteomics. 2012;12(12):2045–59. https://doi.org/10.1002/pmic.201100370.

    Article  PubMed  Google Scholar 

  14. Deng Y-H, et al. 5-Fluorouracil upregulates the activity of Wnt signaling pathway in CD133-positive colon cancer stem-like cells. Chin J Cancer. 2010;29(9):810–5. https://doi.org/10.5732/cjc.010.10134.

    Article  CAS  PubMed  Google Scholar 

  15. Dieter SM, et al. Distinct types of tumor-initiating cells form human colon cancer tumors and metastases. Cell Stem Cell. 2011;9(4):357–65. https://doi.org/10.1016/j.stem.2011.08.010.

    Article  CAS  PubMed  Google Scholar 

  16. Dou J, et al. Using ABCG2-molecule-expressing side population cells to identify cancer stem-like cells in a human ovarian cell line. Cell Biol Int. 2011;35(3):227–34. https://doi.org/10.1042/CBI20100347.

    Article  CAS  PubMed  Google Scholar 

  17. Eramo A, et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ. 2008;15(3):504–14. https://doi.org/10.1038/sj.cdd.4402283.

    Article  CAS  PubMed  Google Scholar 

  18. Fan X, et al. NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells (Dayton, Ohio). 2010;28(1):5–16. https://doi.org/10.1002/stem.254.

    Article  CAS  PubMed Central  Google Scholar 

  19. Feldmann G, et al. Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res. 2007;67(5):2187–96. https://doi.org/10.1158/0008-5472.CAN-06-3281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gao M-Q, et al. CD24+ cells from hierarchically organized ovarian cancer are enriched in cancer stem cells. Oncogene. 2010;29(18):2672–80. https://doi.org/10.1038/onc.2010.35.

    Article  CAS  PubMed  Google Scholar 

  21. Ginestier C, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1(5):555–67. https://doi.org/10.1016/j.stem.2007.08.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Glumac PM, LeBeau AM. The role of CD133 in cancer: a concise review. Clin Transl Med. 2018;7(1):18. https://doi.org/10.1186/s40169-018-0198-1.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gupta PB, et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009;138(4):645–59. https://doi.org/10.1016/j.cell.2009.06.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hadjimichael C, et al. Common stemness regulators of embryonic and cancer stem cells. World J Stem Cells. 2015;7(9):1150–84. https://doi.org/10.4252/wjsc.v7.i9.1150.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Harrison H, et al. Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res. 2010;70(2):709–18. https://doi.org/10.1158/0008-5472.CAN-09-1681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Henrique D, Schweisguth F. Mechanisms of Notch signaling: a simple logic deployed in time and space. Development. 2019;146(3):172148. https://doi.org/10.1242/dev.172148.

    Article  CAS  Google Scholar 

  27. Hermann PC, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1(3):313–23. https://doi.org/10.1016/j.stem.2007.06.002.

    Article  CAS  PubMed  Google Scholar 

  28. Hirschmann-Jax C, et al. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA. 2004;101(39):14228–33. https://doi.org/10.1073/pnas.0400067101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hoey T, et al. DLL4 blockade inhibits tumor growth and reduces tumor-initiating cell frequency. Cell Stem Cell. 2009;5(2):168–77. https://doi.org/10.1016/j.stem.2009.05.019.

    Article  CAS  PubMed  Google Scholar 

  30. Holland JD, et al. Wnt signaling in stem and cancer stem cells. Curr Opin Cell Biol. 2013;25(2):254–64. https://doi.org/10.1016/j.ceb.2013.01.004.

    Article  CAS  PubMed  Google Scholar 

  31. van den Hoogen C, et al. High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer. Cancer Res. 2010;70(12):5163–73. https://doi.org/10.1158/0008-5472.CAN-09-3806.

    Article  CAS  PubMed  Google Scholar 

  32. Hooper JE, Scott MP. Communicating with Hedgehogs. Nat Rev Mol Cell Biol. 2005;6(4):306–17. https://doi.org/10.1038/nrm1622.

    Article  CAS  PubMed  Google Scholar 

  33. Huang EH, et al. Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res. 2009;69(8):3382–9. https://doi.org/10.1158/0008-5472.CAN-08-4418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hurt EM, et al. CD44 + CD24 − prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br J Cancer. 2008;98(4):756–65. https://doi.org/10.1038/sj.bjc.6604242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ibrahim EE, et al. Embryonic NANOG activity defines colorectal cancer stem cells and modulates through AP1- and TCF-dependent mechanisms. Stem Cells (Dayton, Ohio). 2012;30(10):2076–87. https://doi.org/10.1002/stem.1182.

    Article  CAS  Google Scholar 

  36. Jaggupilli A, Elkord E. Significance of CD44 and CD24 as cancer stem cell markers: an enduring ambiguity. Clin Dev Immunol. 2012;2012:708036. https://doi.org/10.1155/2012/708036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jeter CR, et al. NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation. Oncogene. 2011;30(36):3833–45. https://doi.org/10.1038/onc.2011.114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jiang F, et al. Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Mol Cancer Res. 2009;7(3):330–8. https://doi.org/10.1158/1541-7786.MCR-08-0393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Klein AM, Simons BD. Universal patterns of stem cell fate in cycling adult tissues. Development. 2011;138(15):3103–11. https://doi.org/10.1242/dev.060103.

    Article  CAS  PubMed  Google Scholar 

  40. Kurrey NK, et al. Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells (Dayton, Ohio). 2009;27(9):2059–68. https://doi.org/10.1002/stem.154.

    Article  CAS  Google Scholar 

  41. Laurenti E, Wilson A, Trumpp A. Myc’s other life: stem cells and beyond. Curr Opin Cell Biol. 2009;21(6):844–54. https://doi.org/10.1016/j.ceb.2009.09.006.

    Article  CAS  PubMed  Google Scholar 

  42. Lee SY, et al. Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Mol Cancer. 2017;16(1):10. https://doi.org/10.1186/s12943-016-0577-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Leng Z, et al. Krüppel-like factor 4 acts as an oncogene in colon cancer stem cell-enriched spheroid cells. PLoS One. 2013;8(2):e56082. https://doi.org/10.1371/journal.pone.0056082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li C, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67(3):1030–7. https://doi.org/10.1158/0008-5472.CAN-06-2030.

    Article  CAS  PubMed  Google Scholar 

  45. Liu H, et al. Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proc Natl Acad Sci. 2010;107(42):18115–20. https://doi.org/10.1073/pnas.1006732107.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Liu J, et al. Notch signaling in the regulation of stem cell self-renewal and differentiation. Curr Top Dev Biol. 2010;92:367–409. https://doi.org/10.1016/S0070-2153(10)92012-7.

    Article  CAS  PubMed  Google Scholar 

  47. Liu S, et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 2006;66(12):6063–71. https://doi.org/10.1158/0008-5472.CAN-06-0054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781–10. https://doi.org/10.1146/annurev.cellbio.20.010403.113126.

    Article  CAS  PubMed  Google Scholar 

  49. Lou X, et al. SOX2 targets fibronectin 1 to promote cell migration and invasion in ovarian cancer: new molecular leads for therapeutic intervention. Omics J Integr Biol. 2013;17(10):510–8. https://doi.org/10.1089/omi.2013.0058.

    Article  CAS  Google Scholar 

  50. Luo Y, et al. ALDH1A isozymes are markers of human melanoma stem cells and potential therapeutic targets. Stem Cells (Dayton, Ohio). 2012;30(10):2100–13. https://doi.org/10.1002/stem.1193.

    Article  CAS  Google Scholar 

  51. Marzesco A-M, et al. Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. J Cell Sci. 2005;118(Pt 13):2849–58. https://doi.org/10.1242/jcs.02439.

    Article  CAS  PubMed  Google Scholar 

  52. Masui S, et al. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol. 2007;9(6):625–35. https://doi.org/10.1038/ncb1589.

    Article  CAS  PubMed  Google Scholar 

  53. McAuliffe SM, et al. Targeting Notch, a key pathway for ovarian cancer stem cells, sensitizes tumors to platinum therapy. Proc Natl Acad Sci USA. 2012;109(43):E2939–48. https://doi.org/10.1073/pnas.1206400109.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Merchant AA, Matsui W. Targeting Hedgehog—a cancer stem cell pathway. Clin Cancer Res. 2010;16(12):3130–40. https://doi.org/10.1158/1078-0432.CCR-09-2846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nagata T, et al. Prognostic significance of NANOG and KLF4 for breast cancer. Breast Cancer (Tokyo, Japan). 2014;21(1):96–101. https://doi.org/10.1007/s12282-012-0357-y.

    Article  Google Scholar 

  56. Nakahara F, et al. Hes1 immortalizes committed progenitors and plays a role in blast crisis transition in chronic myelogenous leukemia. Blood. 2010;115(14):2872–81. https://doi.org/10.1182/blood-2009-05-222836.

    Article  CAS  PubMed  Google Scholar 

  57. Nichols J, Evans EP, Smith AG. Establishment of germ-line-competent embryonic stem (ES) cells using differentiation inhibiting activity. Development. 1990;110(4):1341–8.

    Article  CAS  Google Scholar 

  58. Niu C-S, et al. Expression of NANOG in human gliomas and its relationship with undifferentiated glioma cells. Oncol Rep. 2011;26(3):593–601. https://doi.org/10.3892/or.2011.1308.

    Article  CAS  PubMed  Google Scholar 

  59. Olempska M, et al. Detection of tumor stem cell markers in pancreatic carcinoma cell lines. Hepatobiliary Pancreat Dis Int. 2007;6(1):92–7.

    CAS  PubMed  Google Scholar 

  60. Pattabiraman DR, Weinberg RA. Tackling the cancer stem cells—what challenges do they pose? Nat Rev Drug Discov. 2014;13(7):497–512. https://doi.org/10.1038/nrd4253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Peacock CD, et al. Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc Natl Acad Sci USA. 2007;104(10):4048–53. https://doi.org/10.1073/pnas.0611682104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rahadiani N, et al. Expression of aldehyde dehydrogenase 1 (ALDH1) in endometrioid adenocarcinoma and its clinical implications. Cancer Sci. 2011;102(4):903–8. https://doi.org/10.1111/j.1349-7006.2011.01864.x.

    Article  CAS  PubMed  Google Scholar 

  63. Rasheed ZA, et al. Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma. J Natl Cancer Inst. 2010;102(5):340–51. https://doi.org/10.1093/jnci/djp535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rentala S, Mangamoori LN. Oct-4 expression maintained stem cell properties in prostate cancer-derived CD133+MDR1+ cells. Trop J Pharm Res. 2009;8(1):3–9. https://doi.org/10.4314/tjpr.v8i1.14706.

    Article  CAS  Google Scholar 

  65. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434(7035):843–50. https://doi.org/10.1038/nature03319.

    Article  CAS  PubMed  Google Scholar 

  66. Ricci-Vitiani L, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445(7123):111–5. https://doi.org/10.1038/nature05384.

    Article  CAS  PubMed  Google Scholar 

  67. Rybak AP, Tang D. SOX2 plays a critical role in EGFR-mediated self-renewal of human prostate cancer stem-like cells. Cell Signal. 2013;25(12):2734–42. https://doi.org/10.1016/j.cellsig.2013.08.041.

    Article  CAS  PubMed  Google Scholar 

  68. Salcido CD, et al. Molecular characterisation of side population cells with cancer stem cell-like characteristics in small-cell lung cancer. Br J Cancer. 2010;102(11):1636–44. https://doi.org/10.1038/sj.bjc.6605668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Santini R, et al. SOX2 regulates self-renewal and tumorigenicity of human melanoma-initiating cells. Oncogene. 2014;33(38):4697–708. https://doi.org/10.1038/onc.2014.71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sicchieri RD, et al. ABCG2 is a potential marker of tumor-initiating cells in breast cancer. Tumour Biol. 2015;36(12):9233–43. https://doi.org/10.1007/s13277-015-3647-0.

    Article  CAS  PubMed  Google Scholar 

  71. Singh SK, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63(18):5821–8.

    CAS  PubMed  Google Scholar 

  72. Singh SK, et al. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396–401. https://doi.org/10.1038/nature03128.

    Article  CAS  PubMed  Google Scholar 

  73. Suetsugu A, et al. Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun. 2006;351(4):820–4. https://doi.org/10.1016/j.bbrc.2006.10.128.

    Article  CAS  PubMed  Google Scholar 

  74. Tiezzi DG, et al. ABCG2 as a potential cancer stem cell marker in breast cancer. J Clin Oncol. 2013;31(15_suppl):e12007. https://doi.org/10.1200/jco.2013.31.15_suppl.e12007.

    Article  Google Scholar 

  75. Tomita H, et al. Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget. 2016;7(10):11018–32. https://doi.org/10.18632/oncotarget.6920.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ucar D, et al. Aldehyde dehydrogenase activity as a functional marker for lung cancer. Chem Biol Interact. 2009;178(1):48–55. https://doi.org/10.1016/j.cbi.2008.09.029.

    Article  CAS  PubMed  Google Scholar 

  77. Vermeulen L, et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol. 2010;12(5):468–76. https://doi.org/10.1038/ncb2048.

    Article  CAS  PubMed  Google Scholar 

  78. Visvader JE, Lindeman GJ. Cancer stem cells: current status and evolving complexities. Cell Stem Cell. 2012;10(6):717–28. https://doi.org/10.1016/j.stem.2012.05.007.

    Article  CAS  PubMed  Google Scholar 

  79. Wang J, et al. c-Myc is required for maintenance of glioma cancer stem cells. PLoS One. 2008;3(11):e3769. https://doi.org/10.1371/journal.pone.0003769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yeung TM, et al. Cancer stem cells from colorectal cancer-derived cell lines. Proc Natl Acad Sci USA. 2010;107(8):3722–7. https://doi.org/10.1073/pnas.0915135107.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Yin S, et al. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer. 2007;120(7):1444–50. https://doi.org/10.1002/ijc.22476.

    Article  CAS  PubMed  Google Scholar 

  82. Yin XY, et al. Inverse regulation of cyclin B1 by c-Myc and p53 and induction of tetraploidy by cyclin B1 overexpression. Cancer Res. 2001;61(17):6487–93.

    CAS  PubMed  Google Scholar 

  83. Yue L, et al. Targeting ALDH1 to decrease tumorigenicity, growth and metastasis of human melanoma. Melanoma Res. 2015;25(2):138–48. https://doi.org/10.1097/CMR.0000000000000144.

    Article  CAS  PubMed  Google Scholar 

  84. Zbinden M, et al. NANOG regulates glioma stem cells and is essential in vivo acting in a cross-functional network with GLI1 and p53. EMBO J. 2010;29(15):2659–74. https://doi.org/10.1038/emboj.2010.137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang G, et al. Expression of potential cancer stem cell marker ABCG2 is associated with malignant behaviors of hepatocellular carcinoma. Gastroenterol Res Pract. 2013;2013:782581. https://doi.org/10.1155/2013/782581.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Zhang S, et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res. 2008;68(11):4311–20. https://doi.org/10.1158/0008-5472.CAN-08-0364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhao C, et al. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature. 2009;458(7239):776–9. https://doi.org/10.1038/nature07737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhou X, et al. Expression of the stem cell marker Nanog in human endometrial adenocarcinoma. Int J Gynecol Pathol. 2011;30(3):262–70. https://doi.org/10.1097/PGP.0b013e3182055a1f.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruby Ghadially .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghadially, R., Kim, R.W., Charruyer-Reinwald, A. (2022). Cancer Stem Cells and Their Role in Metastasis. In: Leong, S.P., Nathanson, S.D., Zager, J.S. (eds) Cancer Metastasis Through the Lymphovascular System. Springer, Cham. https://doi.org/10.1007/978-3-030-93084-4_71

Download citation

Publish with us

Policies and ethics