Skip to main content

Advertisement

Log in

The SP/NK1R system promotes the proliferation of breast cancer cells through NF-κB-mediated inflammatory responses

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Background

Numerous molecules have been introduced to participate in the formation of breast cancer, the most common malignancy in women. Among them, neuropeptide substance P (SP) and its related receptor neurokinin-1 receptor (NK1R) have attracted unprecedented attention in tumorigenesis processes. In this study, we investigated the effect of the SP/NK1R pathway on the induction of oxidative stress in breast cancer and examine the therapeutic potential of NK1R inhibition in this malignancy.

Methods

MCF-7 cells were treated with varying concentrations of SP and aprepitant, an FDA-approved NK1R antagonist, either as a single drug or in a combined modality. Resazurin assay was used to evaluate the anti-cancer ability of aprepitant. The alteration in the intracellular levels of reactive oxygen species (ROS) and gene expression were determined using ROS assay and the qRT-PCR analysis, respectively.

Results

The stimulation of the SP/NK1R axis in the MCF-7 cells was coupled with the accumulation of ROS as well as upregulation of NF-κB and its related pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α and IL-6. In contrast, the suppression of NK1R by aprepitant halted the viability of MCF-7 cells, at least partly due to p53-mediated upregulation of p21. Moreover, aprepitant attenuated the oncogenic properties of SP by preventing the oxidative property of this neuropeptide.

Conclusion

Overall, our results suggest that the SP/NK1R pathway might play a critical role in breast cancer pathogenesis, probably through inducing ROS/NF-κB-mediated inflammatory responses. Moreover, it seems that blockage of the axis has promising therapeutic value against breast cancer cells.

Graphical Abstract

Schematic representation proposed for the plausible mechanism by which the stimulation of the SP/NK1R might induce oxidative stress in breast cancer-derived MCF-7 cells. Once SP interacts with NK1R, this signaling axis could disturb the balance between the expression of p53 and NF-κB, an event that leads to the accumulation of ROS within MCF-7 cells. The produced ROS, in turn, elevates the expression of pro-inflammatory cytokines (TNF-α and IL-6) and downregulates the expression of p21. On the other hand, aprepitant, an antagonist of NK1R, could reduce the survival of proliferative capacity of MCF-7 cells by decreasing the intracellular levels of ROS and p53-mediated up-regulation of p21. Along with the effect on p53, aprepitant could also reduce the expression of NF-κB and its related pro-inflammatory cytokines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 68, 394–424.

    PubMed  Google Scholar 

  2. Caughran, J., Braun, T. M., Breslin, T. M., Smith, D. R., Kreinbrink, J. L., Parish, G. K., Davis, A. T., Bacon‐Baguley, T. A., Silver, S. M., & Henry, N. L. (2018). The Effect of the 2009 USPSTF breast cancer screening recommendations on breast cancer in Michigan: A longitudinal study. The Breast Journal, 24, 730–737.

    Article  PubMed  Google Scholar 

  3. Waks, A. G., & Winer, E. P. (2019). Breast cancer treatment: a review. Jama, 321, 288–300.

    Article  CAS  PubMed  Google Scholar 

  4. He, F., & Zuo, L. (2015). Redox roles of reactive oxygen species in cardiovascular diseases. International Journal of Molecular Sciences, 16, 27770–27780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Salmaninejad, A., Kangari, P., & Shakoori, A. (2017). Oxidative stress: development and progression of breast cancer. Tehran University Medical Journal TUMS Publications, 75, 1–9.

    Google Scholar 

  6. Tong, L., Chuang, C.-C., Wu, S., & Zuo, L. (2015). Reactive oxygen species in redox cancer therapy. Cancer Letters, 367, 18–25.

    Article  CAS  PubMed  Google Scholar 

  7. Schieber, M. S., & Chandel, N. S. (2013). ROS links glucose metabolism to breast cancer stem cell and EMT phenotype. Cancer Cell, 23, 265–267.

    Article  CAS  PubMed  Google Scholar 

  8. Yip, N., Fombon, I., Liu, P., Brown, S., Kannappan, V., Armesilla, A., Xu, B., Cassidy, J., Darling, J., & Wang, W. (2011). Disulfiram modulated ROS–MAPK and NF κ B pathways and targeted breast cancer cells with cancer stem cell-like properties. British Journal of Cancer, 104, 1564–1574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ghahremani, F., Sabbaghzadeh, R., Ebrahimi, S., Javid, H., Ghahremani, J., & Hashemy, S. I. (2021). Pathogenic role of the SP/NK1R system in GBM cells through inhibiting the thioredoxin system. Iranian Journal of Basic Medical Sciences, 24, 499.

    PubMed  PubMed Central  Google Scholar 

  10. Suvas, S. (2017). Role of substance P neuropeptide in inflammation, wound healing, and tissue homeostasis. The Journal of Immunology, 199, 1543–1552.

    Article  CAS  PubMed  Google Scholar 

  11. Mozafari, M., Ebrahimi, S., Darban, R. A., & Hashemy, S. I. (2022). Potential in vitro therapeutic effects of targeting SP/NK1R system in cervical cancer. Molecular Biology Reports, 49, 1067–1076.

    Article  CAS  PubMed  Google Scholar 

  12. Wang, L., Wang, N., Zhang, R., Dong, D., Liu, R., Zhang, L., Ji, W., Yu, M., Zhang, F., & Niu, R. (2020). TGFβ regulates NK1R-Tr to affect the proliferation and apoptosis of breast cancer cells. Life Sciences, 256, 117674.

    Article  CAS  PubMed  Google Scholar 

  13. Zhou, Y., Zhao, L., Xiong, T., Chen, X., Zhang, Y., Yu, M., Yang, J., & Yao, Z. (2013). Roles of full-length and truncated neurokinin-1 receptors on tumor progression and distant metastasis in human breast cancer. Breast Cancer Research and Treatment, 140, 49–61.

    Article  CAS  PubMed  Google Scholar 

  14. Davoodian, M., Boroumand, N., Bahar, M. M., Jafarian, A. H., Asadi, M., & Hashemy, S. I. (2019). Evaluation of serum level of substance P and tissue distribution of NK-1 receptor in breast cancer. Molecular Biology Reports, 46, 1285–93.

    Article  CAS  PubMed  Google Scholar 

  15. Hesketh, P. J., Grunberg, S. M., Gralla, R. J., Warr, D. G., Roila, F., de Wit, R., Chawla, S. P., Carides, A. D., Ianus, J., & Elmer, M. E. (2003). The oral neurokinin-1 antagonist aprepitant for the prevention of chemotherapy-induced nausea and vomiting: a multinational, randomized, double-blind, placebo-controlled trial in patients receiving high-dose cisplatin—the Aprepitant Protocol 052 Study Group. Journal of Clinical Oncology, 21, 4112–4119.

    Article  CAS  PubMed  Google Scholar 

  16. Bashash, D., Safaroghli-Azar, A., Bayati, S., Razani, E., Pourbagheri-Sigaroodi, A., Gharehbaghian, A., Momeny, M., Sanjadi, M., Rezaie-Tavirani, M., & Ghaffari, S. H. (2018). Neurokinin-1 receptor (NK1R) inhibition sensitizes APL cells to anti-tumor effect of arsenic trioxide via restriction of NF-κB axis: Shedding new light on resistance to Aprepitant. The International Journal of Biochemistry & Cell Biology, 103, 105–114.

    Article  CAS  Google Scholar 

  17. Oyama, K., Fushida, S., Kaji, M., Takeda, T., Kinami, S., Hirono, Y., Yoshimoto, K., Yabushita, K., Hirosawa, H., & Takai, Y. (2013). Aprepitant plus granisetron and dexamethasone for prevention of chemotherapy-induced nausea and vomiting in patients with gastric cancer treated with S-1 plus cisplatin. Journal of Gastroenterology, 48, 1234–1241.

    Article  CAS  PubMed  Google Scholar 

  18. Garnier, A., Vykoukal, J., Hubertus, J., Alt, E., Von Schweinitz, D., Kappler, R., Berger, M., & Ilmer, M. (2015). Targeting the neurokinin-1 receptor inhibits growth of human colon cancer cells. International Journal of Oncology, 47, 151–160.

    Article  CAS  PubMed  Google Scholar 

  19. Zhou, Y., Wang, M., Tong, Y., Liu, X., Dong, D., & Shao, J. (2015). Expression of neurokinin receptors and the effect of their antago-nists on human breast cancer. Chinese Journal of Clinical Oncology, 24, 1167–1173.

    Google Scholar 

  20. Korfi, F., Javid, H., Assaran Darban, R., & Hashemy, S. I. (2021). The Effect of SP/NK1R on the Expression and Activity of Catalase and Superoxide Dismutase in Glioblastoma Cancer Cells. Biochemistry Research International, 2021, 6620708.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Blaser, H., Dostert, C., Mak, T. W., & Brenner, D. (2016). TNF and ROS crosstalk in inflammation. Trends in Cell Biology, 26, 249–261.

    Article  CAS  PubMed  Google Scholar 

  22. Ko, E.-Y., Heo, S.-J., Cho, S.-H., Lee, W., Kim, S.-Y., Yang, H.-W., Ahn, G., Cha, S.-H., Kwon, S.-H., & Jeong, M. S. (2019). 3‑Bromo‑5‑(ethoxymethyl)‑1, 2‑benzenediol inhibits LPS-induced pro-inflammatory responses by preventing ROS production and downregulating NF-κB in vitro and in a zebrafish model. International Immunopharmacology, 67, 98–105.

    Article  CAS  PubMed  Google Scholar 

  23. Yang, C.-R., Wilson-Van Patten, C., Planchon, S. M., Wuerzberger-Davis, S. M., Davis, T. W., Cuthill, S., Miyamoto, S., & Boothman, D. A. (2000). Coordinate modulation of Sp1, NF‐kappa B, and p53 in confluent human malignant melanoma cells after ionizing radiation. The FASEB Journal, 14, 379–390.

    Article  CAS  PubMed  Google Scholar 

  24. Reddy, B. Y., Trzaska, K. A., Murthy, R. G., Navarro, P., & Rameshwar, P. (2008). Neurokinin receptors as potential targets in breast cancer treatment. Current Drug Discovery Technologies, 5, 15–19.

    Article  CAS  PubMed  Google Scholar 

  25. Singh, D., Joshi, D. D., Hameed, M., Qian, J., Gascon, P., Maloof, P. B., Mosenthal, A., & Rameshwar, P. (2000). Increased expression of preprotachykinin-I and neurokinin receptors in human breast cancer cells: implications for bone marrow metastasis. Proceedings of National Academy of Sciences of the United States of America, 97, 388–393.

    Article  CAS  Google Scholar 

  26. Mayuri, M., & Vijayakumar, T. M. (2021). A comprehensive review on neurokinin-1 receptor antagonism in breast cancer. Journal of Applied Pharmaceutical Science, 11, 009–014.

    CAS  Google Scholar 

  27. Sosa, V., Moline, T., Somoza, R., Paciucci, R., Kondoh, H., & Lleonart, M. E. (2013). Oxidative stress and cancer: an overview. Ageing Research Reviews, 12, 376–390.

    Article  CAS  PubMed  Google Scholar 

  28. Liu, B., Chen, Y., & Clair, D. K. S. (2008). ROS and p53: a versatile partnership. Free Radical Biology and Medicine, 44, 1529–1535.

    Article  CAS  PubMed  Google Scholar 

  29. Papa, S., Bubici, C., Pham, C., Zazzeroni, F., & Franzoso, G. (2005). NF-kB meets ROS: an “iron-ic” encounter. Cell Death Differ, 12, 1259–1262.

    Article  CAS  PubMed  Google Scholar 

  30. Ghahremanloo, A., Javid, H., Afshari, A. R., & Hashemy, S. I. (2021). Investigation of the Role of Neurokinin-1 Receptor Inhibition Using Aprepitant in the Apoptotic Cell Death through PI3K/Akt/NF-κB Signal Transduction Pathways in Colon Cancer Cells. BioMed Research International, 2021, 1383878.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bayati, S., Bashash, D., Ahmadian, S., Safaroghli-Azar, A., Alimoghaddam, K., Ghavamzadeh, A., & Ghaffari, S. H. (2016). Inhibition of tachykinin NK1 receptor using aprepitant induces apoptotic cell death and G1 arrest through Akt/p53 axis in pre-B acute lymphoblastic leukemia cells. European Journal of Pharmacology, 791, 274–283.

    Article  CAS  PubMed  Google Scholar 

  32. Bragado, P., Armesilla, A., Silva, A., & Porras, A. (2007). Apoptosis by cisplatin requires p53 mediated p38α MAPK activation through ROS generation. Apoptosis,, 12, 1733–1742.

    Article  CAS  PubMed  Google Scholar 

  33. Ozben, T. (2007). Oxidative stress and apoptosis: impact on cancer therapy. Journal of Pharmaceutical Sciences, 96, 2181–2196.

    Article  CAS  PubMed  Google Scholar 

  34. Kim, E. M., Jung, C.-H., Kim, J., Hwang, S.-G., Park, J. K., & Um, H.-D. (2017). The p53/p21 complex regulates cancer cell invasion and apoptosis by targeting Bcl-2 family proteins. Cancer Research, 77, 3092–3100.

    Article  CAS  PubMed  Google Scholar 

  35. Luo, J.-L., Kamata, H., & Karin, M. (2005). IKK/NF-κB signaling: balancing life and death–a new approach to cancer therapy. The Journal of Clinical Investigation, 115, 2625–2632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Maolake, A., Izumi, K., Natsagdorj, A., Iwamoto, H., Kadomoto, S., Makino, T., Naito, R., Shigehara, K., Kadono, Y., & Hiratsuka, K. (2018). Tumor necrosis factor‐α induces prostate cancer cell migration in lymphatic metastasis through CCR 7 upregulation. Cancer Science, 109, 1524–1531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chung, S. S., Wu, Y., Okobi, Q., Adekoya, D., Atefi, M., Clarke, O., Dutta, P., & Vadgama, J. V. (2017). Proinflammatory cytokines IL-6 and TNF-α increased telomerase activity through NF-κB/STAT1/STAT3 activation, and withaferin A inhibited the signaling in colorectal cancer cells. Mediators of Inflammation, 2017, 5958429.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Munoz, M., Gonzalez-Ortega, A., Salinas-Martín, M. V., Carranza, A., Garcia-Recio, S., Almendro, V., & Covenas, R. (2014). The neurokinin-1 receptor antagonist aprepitant is a promising candidate for the treatment of breast cancer. International Journal of Oncology, 45, 1658–1672.

    Article  CAS  PubMed  Google Scholar 

Download references

Author contributions

RAD and SIH contributed to the study conception and design. Material preparation, data collection and analysis were performed by SJ and HJ. The first draft of the manuscript was written by SJ and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Reza Assaran Darban or Seyed Isaac Hashemy.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafarinezhad, S., Assaran Darban, R., Javid, H. et al. The SP/NK1R system promotes the proliferation of breast cancer cells through NF-κB-mediated inflammatory responses. Cell Biochem Biophys 81, 787–794 (2023). https://doi.org/10.1007/s12013-023-01171-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-023-01171-y

Keywords

Navigation