Skip to main content

Advertisement

Log in

Effect of Tween Type Non-Ionic Detergent on the Activity of Lipase of Pseudomonas aeruginosa

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa is a Gram-negative and rod-shaped bacterium. It can use a variety of carbon sources and grow in different culture media. Its versatile extracellular enzymes give it the ability to grow on complex carbon sources. One of the most important enzymes of this bacterium is lipase, which is an extracellular enzyme. Lipases are one of the most useful enzymes in medicine and industry, especially in the detergent industry. In recent years, lipases have become an important component of detergent powders, so it is important to evaluate the performance of lipases in the presence of detergents. The aim of this study was to investigate the effect of non-ionic detergents Tween 20 and 80 on the activity of the Pseudomonas lipase. These detergents reduced Km and increased Vmax of the enzyme. The enzyme activity increased in the presence of these detergents at optimal pH and temperature. Conformational studies with the purified enzyme by fluorescence spectrophotometry showed that in the presence of Tween 20 and 80, there was a hypochromicity in emission peak of the enzyme, which indicated that the enzyme became less compact in vicinity of these detergents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gellatly, S. L., & Hancock, R. E. (2013). Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathogens and Disease, 67, 159–173.

    Article  CAS  Google Scholar 

  2. Williams, B. J., Dehnbostel, J., & Blackwell, T. S. (2010). Pseudomonas aeruginosa: host defense in lung diseases. Respirology, 15, 1037–1056 .

    Article  Google Scholar 

  3. Traill, Z. C., Miller, R. F., Ali, N., & Shaw, P. J. (1996). Pseudomonas aeruginosa bronchopulmonary infection in patients with advanced human immunodeficiency virus disease. British Journal of Radiology, 69, 1099–1103.

    Article  CAS  Google Scholar 

  4. Allouche, N., Damak, M., Ellouz, R., & Sayadi, S. (2004). Use of whole cells of Pseudomonas aeruginosa for synthesis of the antioxidant hydroxytyrosol via conversion of Tyrosol. Applied and Environmental Microbiology, 70, 2105–2109.

    Article  CAS  Google Scholar 

  5. Kalyani, D. C., Telke, A. A., Surwase, S. N., et al. (2012). Effectual decolorization and detoxification of triphenylmethane dye malachite green (MG) by Pseudomonas aeruginosa NCIM 2074 and its enzyme system. Clean Technologies and Environmental Policy, 14, 989–1001.

    Article  CAS  Google Scholar 

  6. Ojewumi, M. E., Okeniyi, J. O., Ikotun, J. O., Okeniyi, E. T., Ejemen, V. A., & Popoola, A. P. I. (2018). Bioremediation: data on Pseudomonas aeruginosa effects on the bioremediation of crude oil polluted soil. Data Brief, 19, 101–113.

    Article  Google Scholar 

  7. Lee, J., Boyapati, G., Song, K., Rhee, S., & Kim, C. (2000). Cloning and sequence analysis of the estA gene encoding enzyme for producing(R)-beta-acetyl mercapto isobutyric acid from Pseudomonas aeruginosa 1001. Journal of Bioscience and Bioengineering, 90, 684–687.

    Article  CAS  Google Scholar 

  8. Javed, S., Azeem, F., Hussain, S., Rasul, I., Siddique, M. H., Riaz, M., Afzal, M., Kouser, A., & Nadeem, H. (2018). Bacterial lipases: a review on purification and characterization. Progress in Biophysics and Molecular Biology, 132, 23–34.

    Article  CAS  Google Scholar 

  9. Houde, A., Kademi, A., & Leblanc, D. (2004). Lipases and their industrial applications: an overview. Applied Biochemistry and Biotechnology, 118, 155–170.

    Article  CAS  Google Scholar 

  10. Kumar, C. G., Malik, R. K., & Tiwari, M. P. (1998). Novel enzyme-based detergents: an Indian perspective. Current Science, 75, 1312–1318.

    CAS  Google Scholar 

  11. Ito, S., Kobayashi, T., Ara, K., Ozaki, K., Kawai, S., & Hatada, Y. (1998). Alkaline detergent enzymes from alkaliphiles: enzymatic properties, genetics, and structures. Extremophiles, 2, 185–190.

    Article  CAS  Google Scholar 

  12. Hasan, F., Shah, A. A., Javed, S., & Hameed, A. (2010). Enzymes used in detergents: Lipases. African Journal of Biotechnology, 9, 4836–4844.

    CAS  Google Scholar 

  13. Smulders, S., Rybinski, W., Sung, E., Rähse, W., Steber, J., Wiebel, F., & Nordskog, N. (2007). Laundry detergents. In Ullmann’s encyclopedia of industrial chemistry, 7th edn. Wiley-VCH: Weinheim, Germany (pp. 1–184).

  14. Glittenberg, D. (2012). Starch-based biopolymers in paper, corrugating, and other industrial applications. Polymer Science, 10, 165–193.

    Google Scholar 

  15. European Food Safety Authority (EFSA). (2015). Scientific opinion on the re-evaluation of polyoxyethylene sorbitan monolaurate (E 432), polyoxyethylene sorbitan monooleate (E 433), polyoxyethylene sorbitan monopalmitate (E 434), polyoxyethylene sorbitan monostearate (E 435) and polyoxyethylene sorbitan tristearate (E 436) as food additives. EFSA Journal, 13(7), 4152.

    Google Scholar 

  16. Talebi, M., Minai-Tehrani, D., Fazilati, M., & Minai-Tehrani, A. (2018). Inhibitory action of dicyclomine on lipase activity, kinetics and molecular study. International Journal of Biological Macromolecules, 107, 2422–2428.

    Article  CAS  Google Scholar 

  17. Kerwin, B. A. (2008). Polysorbates 20 and 80 used in the formulation of protein biotherapeutics: structure and degradation pathways. Journal of Pharmaceutical Sciences, 97, 2924–2935.

    Article  CAS  Google Scholar 

  18. Mozaffar, Z., Weete, J. D., & Dute, R. (1994). Influence of surfactants on an extracellular lipase from Pythium ultimum. Journal of the American Oil Chemists’ Society, 71, 75.

    Article  CAS  Google Scholar 

  19. Xia, J., Chen, X., & Nnanna, I. A. (1996). Activity and stability of Penicillium cyclopium lipase in surfactant and detergent solutions. Journal of the American Oil Chemists’ Society, 73, 115–120.

    Article  CAS  Google Scholar 

  20. Mogensen, J. E., Sehgal, P., & Otzen, D. E. (2005). Activation, inhibition, and destabilization of Thermomyces lanuginosus lipase by detergents. Biochemistry, 44, 1719–1730.

    Article  CAS  Google Scholar 

  21. Liu, Y. Y., Xu, J. H., & Hu, Y. (2000). Enhancing effect of Tween-80 on lipase performance in enantioselective hydrolysis of ketoprofen ester. Journal of Molecular Catalysis B: Enzymatic, 10, 523–529.

    Article  CAS  Google Scholar 

  22. Goswami, D. (2020). Lipase catalysis in presence of nonionic surfactants. Applied Biochemistry and Biotechnology, 191, 744–762.

    Article  CAS  Google Scholar 

  23. Lailaja, V. P., & Chandrasekaran, M. (2013). Detergent compatible alkaline lipase produced by marine Bacillus smithii BTMS 11. World Journal of Microbiology & Biotechnology, 29, 1349–1360.

    Article  CAS  Google Scholar 

  24. Mobarak-Qamsari, E., Kasra-Kermanshahi, R., & Moosavi-Nejad, Z. (2011). Isolation and identification of a novel, lipase-producing bacterium, Pseudomnas aeruginosa KM110. Iranian Journal of Microbiology, 3, 92–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Saisubramanian, N., Edwinoliver, N. G., Nandakumar, N., Kamini, N. R., & Puvanakrishnan, R. (2006). Efficacy of lipase from Aspergillus niger as an additive in detergent formulations: a statistical approach. Journal of Industrial Microbiology and Biotechnology, 33, 669–676.

    Article  CAS  Google Scholar 

  26. Chauhan, M., Chauhan, R. S., & Garlapati, V. K. (2013). Evaluation of a new lipase from Staphylococcus sp. for detergent additive capability. BioMed Research International, 2013, 1–6.

    Article  Google Scholar 

  27. Cherif, S., Mnif, S., Hadrich, F., Abdelkafi, S., & Sayadi, S. (2011). A newly high alkaline lipase: an ideal choice for application in detergent formulations. Lipids in Health and Disease, 10, 221–228.

    Article  CAS  Google Scholar 

  28. Niyonzima, F. N., & More, S. S. (2015). Microbial detergent compatible lipases. Journal of Scientific and Industrial Research (India), 74, 105–113.

    CAS  Google Scholar 

  29. Jafari, N., Dehganpour, H., Ghavanini, N., Mollasalehi, H., & Minai-Tehrani, D. (2017). Interaction of antipsychotic drugs with sucrase, kinetics and structural study. Current Clinical Pharmacology, 12, 50–54.

    Article  CAS  Google Scholar 

  30. Lundahl, P., Mascher, E., Kameyama, K., & Takagi, T. (1990). Water-soluble proteins do not bind octyl glucoside as judged by molecular sieve chromatographic techniques. Journal of Chromatography A, 518, 111–21.

    Article  CAS  Google Scholar 

  31. Otzen, D. E., Sehgal, P., & Westh, P. (2009). Alpha-Lactalbumin is unfolded by all classes of surfactants but by different mechanisms. Journal of Colloid and Interface Science, 329, 273–283.

    Article  CAS  Google Scholar 

  32. Yang, Z., Wang, C., Zhou, Q., et al. (2014). Membrane protein stability can be compromised by detergent interactions with the extramembranous soluble domains. Protein Science, 23, 769–789.

    Article  CAS  Google Scholar 

  33. Dwivedi, P., Rodriguez, J., Ibe, N. U., & Weers, P. M. M. (2016). Deletion of the N- or C-terminal helix of apolipophorin III to create a four-helix bundle protein. Biochemistry, 55, 3607–3615.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariush Minai-Tehrani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoja, M., Minai-Tehrani, D. Effect of Tween Type Non-Ionic Detergent on the Activity of Lipase of Pseudomonas aeruginosa. Cell Biochem Biophys 79, 87–92 (2021). https://doi.org/10.1007/s12013-020-00946-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-020-00946-x

Keywords

Navigation