Skip to main content
Log in

The Surfactant-Induced Conformational and Activity Alterations in Rhizopus niveus Lipase

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

In this study, we have reported the effect of nonionic, anionic, cationic, and zwitterionic detergents on the enzymatic activity and structural stability of Rhizopus niveus lipase. Secondary structural changes were monitored by Far-UV CD which shows that surfactant induces helicity in the Rhizopus niveus lipase protein which was maximum in case of CTAB followed by SDS, CHAPS, and Brij-35. Similarly, tertiary structural changes were monitored by tryptophan fluorescence. We also carried out enzyme kinetics assays which showed that activity was enhanced by 1.5- and 1.1-fold in the presence of CHAPS and Brij-35, respectively. Furthermore, there was a decline in activity by 20 and 30 % in case of SDS and CTAB, respectively. These studies may be helpful in understanding detergent–lipase interaction in greater detail as lipases are used in many industrial processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bhardwaj, K., Raju, A., & Rajasekharan, R. (2000). Identification, purification and characterization of thermally stable lipase from rice bran, a new member of the (phospho) lipase family. Plant Physiology, 127, 1728–1738.

    Article  Google Scholar 

  2. Carrière, F., Thirstrup, K., Hjorth, S., & Boel, E. (1994). Cloning of the classical guinea pig pancreatic lipase and comparison with lipase related protein 2. FEBS Letters, 338, 63–68.

    Article  PubMed  Google Scholar 

  3. Olempska-Beer, Z. S., Merker, R. I., Ditto, M. D., & DiNovi, M. J. (2006). Food processing enzymes from recombinant microorganism: A review. Regulatory Toxicology and Pharmacology, 45, 144–158.

    Article  CAS  PubMed  Google Scholar 

  4. Hasan, F., Shah, A. A., & Hameed, A. (2006). Industrial applications of microbial lipases. Enzyme and Microbial Technology, 39, 235–251.

    Article  CAS  Google Scholar 

  5. Rahman, R. N., Baharum, S. N., Basri, M., & Salleh, A. B. (2005). High-yielding purification of an organic solvent-tolerant lipase from Pseudomonas sp. Analytical Biochemistry, 341, 267–274.

    Article  CAS  PubMed  Google Scholar 

  6. Villeneuve, P., & Foglia, T. (1997). Lipase specificities: Potential applications in lipid bioconversions. Inform, 8, 640–650.

    Google Scholar 

  7. Saxena, R. K., Sheoran, A., Giri, B., & Davidson, W. S. (2003). Purification strategies for microbial lipases. Journal of Microbiol Methods, 52, 1–18.

    Article  CAS  Google Scholar 

  8. Li, H., & Zhang, X. (2005). Characterization of thermostable lipase from thermophilic Geobacillus sp. TW1. Protein Expression and Purification, 42, 153–159.

    Article  PubMed  Google Scholar 

  9. Ollis, D. L., Cheah, E., Cygler, M., Dijkstra, B., Frolow, F., Franken, S. M., et al. (1992). The alpha/beta hydrolase fold. Protein Engineering, 5, 197–211.

    Article  CAS  PubMed  Google Scholar 

  10. Svendsen, A. (2000). Lipase protein engineering. Biochimica et Biophysica Acta, 1543, 223–238.

    Article  CAS  PubMed  Google Scholar 

  11. Beer, H. D., McCathy, J. E., Borncheuer, U. T., & Schmidit, R. D. (1998). Cloning, expression, characterization and role of leader sequence of lipase from Rhizopusoryzae. Biochimica et Biophysica Acta, 1399, 173–180.

    Article  CAS  PubMed  Google Scholar 

  12. Kohno, M., Kugimiya, W., Hashimoto, Y., & Morita, Y. (1994). Purification, characterization and crystallisation of two types of lipase from Rhizopus niveus. Bioscience, Biotechnology, and Biochemistry, 58, 1007–1012.

    Article  CAS  PubMed  Google Scholar 

  13. Ben, Salah A., Sayarri, A., Verger, R., & Gargouri, Y. (2001). Kinetic study of Rhizopusoryzae using monomolecular film technique. Biochemie, 83, 463–493.

    Article  Google Scholar 

  14. Reis, P., Holmberg, K., Watzke, H., Leser, M. E., & Miller, R. (2009). Lipases at interfaces: A review. Advances in Colloid and Interface Science, 148, 237–250.

    Article  Google Scholar 

  15. Borgstrom, B., & Donnér, J. (1976). Interaction of pancreatic lipase with bile salts and dodecyl sulphate. Lipid Research, 17, 491–507.

    CAS  Google Scholar 

  16. Cherif, S., Mnif, S., Hadrich, F., Abdelkafi, F., & Sayadi, S. (2011). A newly highly alkaline lipase: An ideal choice for application in detergent formulations. Lipids in Health and Disease, 10, 221.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Chen, Y. H., Yang, J. T., & Martinez, H. (1972). Determination of the secondary structures of proteins by circular dichroism and optical rotator dispersion. Biochemistry, 11, 4120–4131.

    Article  CAS  PubMed  Google Scholar 

  18. Andrade, M. A., Chacón, P., Merelo, J. J., & Morán, F. (1993). Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsurprised learning neural network. Protein Engineering, 6, 383–390.

    Article  CAS  PubMed  Google Scholar 

  19. Naeem, A., Fatima, S., & Khan, R. H. (2006). Characterization of partially folded intermediates of papain in presence of cationic, anionic and nonionic detergents at low pH. Biopolymers, 83(1), 1–10.

    Article  CAS  PubMed  Google Scholar 

  20. Lakowicz, J. R. (1992). Topics in fluorescence spectroscopy: Biological applications (Vol. 3, pp. 289–343). New York: Plenum Press.

    Google Scholar 

  21. Gasymov, O. K., & Glasgow, B. J. (2007). ANS fluorescence: potential to augment the identification of the external binding sites of proteins. Biochimica et Biophysica Acta, 1774, 403–411.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Ptisyn, O. B. (1992). The molten globule State. In T. E. Creighton (Ed.), Protein folding (pp. 243–300). New York: W. H. freeman.

    Google Scholar 

  23. Mogensen, J. E., Sehgal, P., & Otzen, D. E. (2005). Activation, inhibition and destabilization of Thermomyceslanuginosus lipase by detergents. Biochemistry, 44, 1719–1730.

    Article  CAS  PubMed  Google Scholar 

  24. Andreas, B., Tobias, R., Matthias, H., Winfried, H., Jochen, B., & Marion, A. S. (2005). pH optima in lipase catalysed esterification. Biocatalysis and Biotransformation, 23, 307–314.

    Article  Google Scholar 

  25. Paiva, A. L., Balca, V. M., & Malacta, F. X. (2000). Kinetics and mechanism of reactions catalysed by immobilized lipases. Enzyme and Microbial Technology, 27, 187–204.

    Article  CAS  PubMed  Google Scholar 

  26. Martinell, M., Holmquist, M., & Hulk, K. (1995). On the interfacial activation of Candida Antarctica lipase A and B as compared with Humicola lanuginosa lipase. Biochimica et Biophysica Acta, 1258, 272–276.

    Article  Google Scholar 

  27. Hermoso, J., Pignol, D., Kerfelec, B., Crenon, I., Chapus, C., & Fontecilla-Camps, J.-C. (1996). Lipase activation by non-ionic detergents, The crystal structure of the porcine lipase–colipasetetraethylene glycol monooctyl ether complex. Protein Journal of Biological Chemistry, 271, 8007–80016.

    Google Scholar 

  28. Antonov, V. K., Dyakov, V. L., Mishin, A. A., & Rotanovo, T. V. (1998). Catalytic activity and association of pancreatic lipase. Biochimie, 70, 1235–1244.

    Article  Google Scholar 

  29. Ruiz, C., Falcocchio, S., Xoxi, E., Pastor, F. I., Diaz, P., & Saso, L. (2004). Activation and inhibition of Candida rugosa and Bacillus- related lipases by saturated fatty acids evaluated by new calorimetric microassay. Biochimica et Biophysica Acta, 1672, 184–191.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors are thankful for the financial support from Council for Scientific and Industrial Research (PA is recipient of CSIR-JRF and GR is recipient of CSIR-SRF), New Delhi and the Central facility of Interdisciplinary Biotechnology Unit, AMU Aligarh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rizwan Hasan Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, P., Rabbani, G., Badr, G. et al. The Surfactant-Induced Conformational and Activity Alterations in Rhizopus niveus Lipase. Cell Biochem Biophys 71, 1199–1206 (2015). https://doi.org/10.1007/s12013-014-0329-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0329-2

Keywords

Navigation