Skip to main content
Log in

CircMYC Regulates Glycolysis and Cell Proliferation in Melanoma

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Circular RNAs (cicRNAs) have been identified to play pivotal roles in several cancer types. However, functions of circRNA in malignant melanoma are poor defined. Our current study demonstrated that human circMYC was obviously upregulated in human melanoma tissue. Furthermore, circMYC promoted the proliferation of human melanoma cells and Mel-CV cells. The expression of circMYC can repress Mel-CV cell glycolysis and LDHA activities in the in vitro glycolysis and lactate production evaluations. circMYC directly bound to miR-1236 as a molecular sponge that targeting miR-1236 in Mel-CV cells via bioinformatics analysis, pull-down assay, and luciferase reporter assays. Our present study revealed that 3′ UTR of LDHA acted as a target of miR-1236 using Mel-CV cells. Based on our findings, c-MYC-SRSF1 axis may regulate the production of circMYC. Overall, these results elucidate potential effects of circMYC in melanoma development and provide a promising biomarker for melanoma diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D., & Jemal, A. (2018). Cancer statistics. CA: A Cancer Journal for Clinicians, 68, 7–30. https://doi.org/10.3322/caac.21442.

    Article  Google Scholar 

  2. Mahadevan, A., Patel, V. L., & Dagoglu, N. (2015). Radiation therapy in the management of malignant melanoma. Oncology, 29, 743–751.

    PubMed  Google Scholar 

  3. Meng, S., Zhou, H., Feng, Z., Xu, Z., Tang, Y., Li, P., & Wu, M. (2017). CircRNA: functions and properties of a novel potential biomarker for cancer. Molecular Cancer, 16, 94. https://doi.org/10.1186/s12943-017-0663-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Armakola, M., Higgins, M. J., Figley, M. D., Barmada, S. J., Scarborough, E. A., Diaz, Z., Fang, X., Shorter, J., Krogan, N. J., & Finkbeiner, S. (2012). Inhibition of RNA lariat debranching enzyme suppresses TDP-43 toxicity in ALS disease models. Nature Genetics, 44, 1302.

    Article  CAS  Google Scholar 

  5. Li, Z., Huang, C., Bao, C., Chen, L., Lin, M., Wang, X., Zhong, G., Yu, B., Hu, W., & Dai, L. (2015). Exon-intron circular RNAs regulate transcription in the nucleus. Nature Structural Molecular Biology, 22, 256.

    Article  Google Scholar 

  6. Li, F., Zhang, L., Li, W., Deng, J., Zheng, J., An, M., Lu, J., & Zhou, Y. (2015). Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway. Oncotarget, 6, 6001.

    PubMed  PubMed Central  Google Scholar 

  7. Ashwal-Fluss, R., Meyer, M., Pamudurti, N. R., Ivanov, A., Bartok, O., Hanan, M., Evantal, N., Memczak, S., Rajewsky, N., & Kadener, S. (2014). circRNA biogenesis competes with pre-mRNA splicing. Molecular Cell, 56, 55–66.

    Article  CAS  Google Scholar 

  8. Du, W. W., Yang, W., Liu, E., Yang, Z., Dhaliwal, P., & Yang, B. B. (2016). Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Research, 44, 2846–2858.

    Article  Google Scholar 

  9. Pant, S., Hilton, H., & Burczynski, M. E. (2012). The multifaceted exosome: biogenesis, role in normal and aberrant cellular function, and frontiers for pharmacological and biomarker opportunities. Biochemical Pharmacology, 83, 1484–1494.

    Article  CAS  Google Scholar 

  10. Salzman, J., Chen, R. E., Olsen, M. N., Wang, P. L., & Brown, P. O. (2013). Cell-type specific features of circular RNA expression. PLoS Genetics, 9, e1003777.

    Article  CAS  Google Scholar 

  11. Wang, X., Zhang, Y., Huang, L., Zhang, J., Pan, F., Li, B., Yan, Y., Jia, B., Liu, H., & Li, S. (2015). Decreased expression of hsa_circ_001988 in colorectal cancer and its clinical significances. International Journal of Clinical and Experimental Pathology, 8, 16020.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bian, D., Wu, Y., & Song, G. (2018). Novel circular RNA, hsa_circ_0025039 promotes cell growth, invasion and glucose metabolism in malignant melanoma via the miR-198/CDK4 axis. Biomedicine & Pharmacotherapy, 108, 165–176.

    Article  CAS  Google Scholar 

  13. Luan, W., Shi, Y., Zhou, Z., Xia, Y., & Wang, J. (2018). circRNA_0084043 promote malignant melanoma progression via miR-153-3p/Snail axis. Biochemical and Biophysical Research Communications, 502, 22–29.

    Article  CAS  Google Scholar 

  14. Lin, X., Sun, R., Zhao, X., Zhu, D., Zhao, X., Gu, Q., Dong, X., Zhang, D., Zhang, Y., & Li, Y. (2017). C-myc overexpression drives melanoma metastasis by promoting vasculogenic mimicry via c-myc/snail/Bax signaling. Journal of Molecular Medicine, 95, 53–67.

    Article  CAS  Google Scholar 

  15. Meyer, N., & Penn, L. Z. (2008). Reflecting on 25 years with MYC. Nature Reviews Cancer, 8, 976.

    Article  CAS  Google Scholar 

  16. Kraehn, G., Utikal, J., Udart, M., Greulich, K., Bezold, G., Kaskel, P., Leiter, U., & Peter, R. (2001). Extra c-myc oncogene copies in high risk cutaneous malignant melanoma and melanoma metastases. British Journal of Cancer, 84, 72.

    Article  CAS  Google Scholar 

  17. Nilsson, J. A., & Cleveland, J. L. (2003). Myc pathways provoking cell suicide and cancer. Oncogene, 22, 9007.

    Article  CAS  Google Scholar 

  18. Wang, Y., Mo, Y., Gong, Z., Yang, X., Yang, M., Zhang, S., Xiong, F., Xiang, B., Zhou, M., & Liao, Q. (2017). Circular RNAs in human cancer. Molecular Cancer, 16, 25.

    Article  CAS  Google Scholar 

  19. Gou, Q., Wu, K., Zhou, J.-K., Xie, Y., Liu, L., & Peng, Y. (2017). Profiling and bioinformatic analysis of circular RNA expression regulated by c-Myc. Oncotarget, 8, 71587.

    PubMed  PubMed Central  Google Scholar 

  20. Yang, Q., Du, W. W., Wu, N., Yang, W., Awan, F. M., Fang, L., Ma, J., Li, X., Zeng, Y., & Yang, Z. (2017). A circular RNA promotes tumorigenesis by inducing c-myc nuclear translocation. Cell Death and Differentiation, 24, 1609.

    Article  CAS  Google Scholar 

  21. Yu, T., Wang, Y., Fan, Y., Fang, N., Wang, T., Xu, T., & Shu, Y. (2019). CircRNAs in cancer metabolism: a review. Journal of Hematology & Oncology, 12, 90.

    Article  Google Scholar 

  22. Ruan, H., Xiang, Y., Ko, J., Li, S., Jing, Y., Zhu, X., Ye, Y., Zhang, Z., Mills, T., & Feng, J. (2019). Comprehensive characterization of circular RNAs in ~1000 human cancer cell lines. Genome Medicine, 11, 1–14.

    Article  CAS  Google Scholar 

  23. Sunters, A., Armstrong, V. J., Zaman, G., Kypta, R. M., Kawano, Y., Lanyon, L. E., & Price, J. S. (2010). Mechano-transduction in osteoblastic cells involves strain-regulated estrogen receptor α-mediated control of insulin-like growth factor (IGF) I receptor sensitivity to ambient IGF, leading to phosphatidylinositol 3-kinase/AKT-dependent Wnt/LRP5 receptor-independent activation of β-catenin signaling. Journal of Biological Chemistry, 285, 8743–8758.

    Article  CAS  Google Scholar 

  24. Panda A. C., Gorospe M. (2018). Detection and analysis of circular RNAs by RT-PCR. Bio Protocol, 8, e2775.

  25. Gernapudi, R., Wolfson, B., Zhang, Y., Yao, Y., Yang, P., Asahara, H., & Zhou, Q. (2016). MicroRNA 140 promotes expression of long noncoding RNA NEAT1 in adipogenesis. Molecular and Cellular Biology, 36, 30–38.

    CAS  PubMed  Google Scholar 

  26. Qu, S., Yang, X., Li, X., Wang, J., Gao, Y., Shang, R., Sun, W., Dou, K., & Li, H. (2015). Circular RNA: a new star of noncoding RNAs. Cancer Letters, 365, 141–148.

    Article  CAS  Google Scholar 

  27. Zdralevic, M., Brand, A., Di Ianni, L., Dettmer, K., Reinders, J., Singer, K., Peter, K., Schnell, A., Bruss, C., Decking, S. M., Koehl, G., Felipe-Abrio, B., Durivault, J., Bayer, P., Evangelista, M., O'Brien, T., Oefner, P. J., Renner, K., Pouyssegur, J., & Kreutz, M. (2018). Double genetic disruption of lactate dehydrogenases A and B is required to ablate the “Warburg effect” restricting tumor growth to oxidative metabolism. Journal of Biological Chemistry, 293, 15947–15961. https://doi.org/10.1074/jbc.RA118.004180.

    Article  CAS  PubMed  Google Scholar 

  28. Augoff, K., Hryniewicz-Jankowska, A., & Tabola, R. (2015). Lactate dehydrogenase 5: an old friend and a new hope in the war on cancer. Cancer Letters, 358, 1–7.

    Article  CAS  Google Scholar 

  29. Sheng, S. L., Liu, J. J., Dai, Y. H., Sun, X. G., Xiong, X. P., & Huang, G. (2012). Knockdown of lactate dehydrogenase A suppresses tumor growth and metastasis of human hepatocellular carcinoma. The FEBS Journal, 279, 3898–3910.

    Article  CAS  Google Scholar 

  30. Wang, Z.-Y., Loo, T. Y., Shen, J.-G., Wang, N., Wang, D.-M., Yang, D.-P., Mo, S.-L., Guan, X.-Y., & Chen, J.-P. (2012). LDH-A silencing suppresses breast cancer tumorigenicity through induction of oxidative stress mediated mitochondrial pathway apoptosis. Breast Cancer Research and Treatment, 131, 791–800.

    Article  CAS  Google Scholar 

  31. Xie, H., Hanai J-i, Ren, J.-G., Kats, L., Burgess, K., Bhargava, P., Signoretti, S., Billiard, J., Duffy, K. J., & Grant, A. (2014). Targeting lactate dehydrogenase-a inhibits tumorigenesis and tumor progression in mouse models of lung cancer and impacts tumor-initiating cells. Cell Metabolism, 19, 795–809.

    Article  CAS  Google Scholar 

  32. Ho, J., de Moura, M. B., Lin, Y., Vincent, G., Thorne, S., Duncan, L. M., Hui-Min, L., Kirkwood, J. M., Becker, D., & Van Houten, B. (2012). Importance of glycolysis and oxidative phosphorylation in advanced melanoma. Molecular Cancer, 11, 76.

    Article  CAS  Google Scholar 

  33. Hansen, T. B., Jensen, T. I., Clausen, B. H., Bramsen, J. B., Finsen, B., Damgaard, C. K., & Kjems, J. (2013). Natural RNA circles function as efficient microRNA sponges. Nature, 495, 384.

    Article  CAS  Google Scholar 

  34. An, J.-X., Ma, M.-H., Zhang, C.-D., Shao, S., Zhou, N.-M., & Dai, D.-Q. (2018). miR-1236-3p inhibits invasion and metastasis in gastric cancer by targeting MTA2. Cancer Cell International, 18, 66. https://doi.org/10.1186/s12935-018-0560-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, Y., Yan, S., Liu, X., Zhang, W., Li, Y., Dong, R., Zhang, Q., Yang, Q., Yuan, C., & Shen, K. (2014). miR-1236-3p represses the cell migration and invasion abilities by targeting ZEB1 in high-grade serous ovarian carcinoma. Oncology Reports, 31, 1905–1910.

    Article  CAS  Google Scholar 

  36. Dang, C. V. (2013). MYC, metabolism, cell growth, and tumorigenesis. Cold Spring Harbor perspectives in Medicine, 3, a014217. https://doi.org/10.1101/cshperspect.a014217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Das, S., Anczuków, O., Akerman, M., & Krainer, A. R. (2012). Oncogenic splicing factor SRSF1 is a critical transcriptional target of MYC. Cell Reports, 1, 110–117.

    Article  CAS  Google Scholar 

  38. Fischer G. M., Vashisht Gopal Y. N., McQuade J. L., Peng W., DeBerardinis R. J., Davies M. A. (2018). Metabolic strategies of melanoma cells: mechanisms, interactions with the tumor microenvironment, and therapeutic implications. Pigment Cell & Melanoma Research, 31, 11–30. https://doi.org/10.1111/pcmr.12661.

    Article  Google Scholar 

  39. Parmenter, T. J., Kleinschmidt, M., Kinross, K. M., Bond, S. T., Li, J., Kaadige, M. R., Rao, A., Sheppard, K. E., Hugo, W., Pupo, G. M., Pearson, R. B., McGee, S. L., Long, G. V., Scolyer, R. A., Rizos, H., Lo, R. S., Cullinane, C., Ayer, D. E., Ribas, A., Johnstone, R. W., Hicks, R. J., & McArthur, G. A. (2014). Response of BRAF-mutant melanoma to BRAF inhibition is mediated by a network of transcriptional regulators of glycolysis. Cancer Discovery, 4, 423–433. https://doi.org/10.1158/2159-8290.CD-13-0440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was supported by the Wuxi municipal health and Family Planning Commission Fund (MS201711).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meishan Piao.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, C., Dong, D., Yang, Z. et al. CircMYC Regulates Glycolysis and Cell Proliferation in Melanoma. Cell Biochem Biophys 78, 77–88 (2020). https://doi.org/10.1007/s12013-019-00895-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-019-00895-0

Keywords

Navigation