Skip to main content

Advertisement

Log in

Detection and Clinical Significance of COX-2 Gene SNPs in Gastric Cancer

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Gastric cancer has high morbidity and mortality. Identification of patients with high gastric cancer risk at early stage will improve patient prognosis. In this study, we examined two single nucleotide polymorphism (SNP) sites of COX-2 gene in gastric cancer patients and explored the effect of the SNPs on the morbidity of gastric cancer. We found that the SNPs COX-2-1195G/A and COX-2-8473T/C are correlated with the occurrence of gastric cancer, and the patients with variants A and C of the SNPs are liable to have gastric cancer. Our study provides a potential method for screening of susceptible population of gastric cancer for early-stage intervention in patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shi, J., Qu, Y. P., & Hou, P. (2014). Pathogenetic mechanisms in gastric cancer. World Journal of Gastroenterology, 20(38), 13804–13819.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Chen, S., et al. (2014). Long noncoding RNA HMlincRNA717 and AC130710 have been officially named as gastric cancer associated transcript 2 (GACAT2) and GACAT3, respectively. Tumour Biology, 35(9), 8351–8352.

    Article  PubMed  Google Scholar 

  3. Cui, H. B., et al. (2014). Effect of neoadjuvant chemotherapy combined with hyperthermic intraperitoneal perfusion chemotherapy on advanced gastric cancer. Experimental and Therapeutic Medicine, 7(5), 1083–1088.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Shao, X. D., et al. (2014). The mechanism of COX-2 regulating HERG channel in gastric cancer cells. Bratislavske Lekarske Listy, 115(8), 487–491.

    CAS  PubMed  Google Scholar 

  5. Qiang, L., et al. (2013). Study of the mechanism of bystander effect of KDR-CDglyTK system mediated by adenovirus for the treatment of gastric cancer. Cell Biochemistry and Biophysics, 67(3), 1021–1027.

    Article  CAS  PubMed  Google Scholar 

  6. Wei, M., et al. (2010). A novel plant homeodomain finger 10-mediated antiapoptotic mechanism involving repression of caspase-3 in gastric cancer cells. Molecular Cancer Therapeutics, 9(6), 1764–1774.

    Article  CAS  PubMed  Google Scholar 

  7. Nadarajan, N., et al. (2013). Runt-related transcription factor 3: single nucleotide polymorphism rs760805, gene expression, and methylation status in Helicobacter pylori -infected patients for determination of gastric cancer risk. Journal of Gastrointestinal Cancer, 44(4), 444–449.

    Article  CAS  PubMed  Google Scholar 

  8. Hong, Y., et al. (2013). Functional promoter -308G>A variant in tumor necrosis factor alpha gene is associated with risk and progression of gastric cancer in a Chinese population. PLoS One, 8(1), e50856.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Pan, F., et al. (2012). CDH1 -160C>A gene polymorphism is an ethnicity-dependent risk factor for gastric cancer. Cytokine, 59(1), 20–21.

    Article  CAS  PubMed  Google Scholar 

  10. Sun, Y., et al. (2014). Genetic and intermediate phenotypic susceptibility markers of gastric cancer in Hispanic Americans: A case–control study. Cancer, 120(19), 3040–3048.

    Article  CAS  PubMed  Google Scholar 

  11. Qin, X. P., et al. (2014). XRCC3 Thr241Met polymorphism and gastric cancer susceptibility: A meta-analysis. Clinics and Research in Hepatology and Gastroenterology, 38(2), 226–234.

    Article  CAS  PubMed  Google Scholar 

  12. Qiao, W., et al. (2013). Association between single genetic polymorphisms of MDR1 gene and gastric cancer susceptibility in Chinese. Medical Oncology, 30(3), 643.

    Article  PubMed  Google Scholar 

  13. Yang, J. J., et al. (2012). Genetic susceptibility on CagA-interacting molecules and gene-environment interaction with phytoestrogens: A putative risk factor for gastric cancer. PLoS One, 7(2), e31020.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Wang, C., Weber, A., & Graham, D.Y. (2014). Age, period, and cohort effects on gastric cancer mortality. Digestive Diseases and Sciences

  15. Ljung, R., et al. (2013). Socio-demographic and geographical factors in esophageal and gastric cancer mortality in Sweden. PLoS One, 8(4), e62067.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Chang, E. Y., et al. (2012). Prostaglandin reductase 2 modulates ROS-mediated cell death and tumor transformation of gastric cancer cells and is associated with higher mortality in gastric cancer patients. American Journal of Pathology, 181(4), 1316–1326.

    Article  CAS  PubMed  Google Scholar 

  17. Sonnenberg, A. (2011). Time trends of mortality from gastric cancer in Europe. Digestive Diseases and Sciences, 56(4), 1112–1118.

    Article  PubMed  Google Scholar 

  18. Pasechnikov, V., et al. (2014). Gastric cancer: Prevention, screening and early diagnosis. World Journal of Gastroenterology, 20(38), 13842–13862.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Jang, J. Y., & Chun, H. J. (2014). Efficacy of Helicobacter pylori eradication for the prevention of metachronous gastric cancer after endoscopic resection for early gastric cancer. World Journal of Gastroenterology, 20(11), 2760–2764.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Kim, D. J., Lee, J. H., & Kim, W. (2013). Lower esophageal sphincter-preserving laparoscopy-assisted proximal gastrectomy in patients with early gastric cancer: A method for the prevention of reflux esophagitis. Gastric Cancer, 16(3), 440–444.

    Article  PubMed  Google Scholar 

  21. Gonzalez, C. A., & Agudo, A. (2012). Carcinogenesis, prevention and early detection of gastric cancer: Where we are and where we should go. International Journal of Cancer, 130(4), 745–753.

    Article  CAS  Google Scholar 

  22. Li, M., Wang, Y., & Gu, Y. (2014). Quantitative assessment of the influence of tumor necrosis factor alpha polymorphism with gastritis and gastric cancer risk. Tumour Biology, 35(2), 1495–1502.

    Article  CAS  PubMed  Google Scholar 

  23. Yu, J. Y., et al. (2013). Tumor necrosis factor-alpha 238 G/A polymorphism and gastric cancer risk: A meta-analysis. Tumour Biology, 34(6), 3859–3863.

    Article  CAS  PubMed  Google Scholar 

  24. Yuasa, Y., et al. (2012). Insulin-like growth factor 2 hypomethylation of blood leukocyte DNA is associated with gastric cancer risk. International Journal of Cancer, 131(11), 2596–2603.

    Article  CAS  Google Scholar 

  25. Qiu, L. X., et al. (2011). GSTM1 null allele is a risk factor for gastric cancer development in Asians. Cytokine, 55(1), 122–125.

    Article  CAS  PubMed  Google Scholar 

  26. Reim, D., et al. (2010). Preoperative clinically inapparent leucopenia in patients undergoing neoadjuvant chemotherapy for locally advanced gastric cancer is not a risk factor for surgical or general postoperative complications. Journal of Surgical Oncology, 102(4), 321–324.

    Article  PubMed  Google Scholar 

  27. Yi, C., et al. (2014). Melatonin enhances the anti-tumor effect of fisetin by inhibiting COX-2/iNOS and NF-kappaB/p300 signaling pathways. PLoS One, 9(7), e99943.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Vu, D., et al. (2013). Influence of Cyclooxygenase-2 (COX-2) gene promoter-1195 and allograft inflammatory factor-1 (AIF-1) polymorphisms on allograft outcome in Hispanic kidney transplant recipients. Human Immunology, 74(10), 1386–1391.

    Article  CAS  PubMed  Google Scholar 

  29. Sade, A., et al. (2012). Celecoxib reduces fluidity and decreases metastatic potential of colon cancer cell lines irrespective of COX-2 expression. Bioscience Reports, 32(1), 35–44.

    Article  CAS  PubMed  Google Scholar 

  30. Casos, K., et al. (2011). Tumor cells induce COX-2 and mPGES-1 expression in microvascular endothelial cells mainly by means of IL-1 receptor activation. Microvascular Research, 81(3), 261–268.

    Article  CAS  PubMed  Google Scholar 

  31. Liu, Y., et al. (2011). Peritoneal fluid of patients with endometriosis promotes proliferation of endometrial stromal cells and induces COX-2 expression. Fertility and Sterility, 95(5), 1836–1838.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, Y., et al. (2014). Combined therapy with COX-2 inhibitor and 20-HETE inhibitor reduces colon tumor growth and the adverse effects of ischemic stroke associated with COX-2 inhibition. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 307(6), R693–R703.

    CAS  PubMed  Google Scholar 

  33. Gaur, V., & Kumar, A. (2012). Effect of nonselective and selective COX-2 inhibitors on memory dysfunction, glutathione system, and tumor necrosis factor alpha level against cerebral ischemia reperfusion injury. Drug and Chemical Toxicology, 35(2), 218–224.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingre Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Chen, F., Liu, X. et al. Detection and Clinical Significance of COX-2 Gene SNPs in Gastric Cancer. Cell Biochem Biophys 72, 657–660 (2015). https://doi.org/10.1007/s12013-014-0465-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0465-8

Keywords

Navigation