Skip to main content
Log in

Accelerated Regeneration of Skin Injury by Co-transplantation of Mesenchymal Stem Cells from Wharton’s Jelly of the Human Umbilical Cord Mixed with Microparticles

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

This study was set to explore a new strategy for repairing skin wounds, co-transplantation of mesenchymal stem cells from Wharton’s Jelly of the human umbilical cord (hUC-Wharton’s jelly-MSCs) and microparticles. A mixture of hUC-Wharton’s jelly-MSCs and microparticles was co-transplanted to 10-mm diameter, full-thickness, mid-dorsal, excisional skin wounds of mice. After 7, 14, and 21 days, the tissue sections were sampled for reconstruction analysis and histological examination. Our results showed that hUC-Wharton’s jelly-MSCs possess the potentials for multi-directional differentiation. After co-transplantation, there was remarkable development of newborn skin and its appendages. Newly generated layers of epidermis, sebaceous glands, hair follicle, and sweat glands were observed. This promising innovative strategy could significantly increase the quality of repair and regeneration of skin after injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cartotto, R., Cicuto, B. J., Kiwanuka, H. N., et al. (2014). Common postburn deformities and their management. Surgical Clinics of North America, 94(4), 817–837.

    Article  PubMed  Google Scholar 

  2. Grefkes, C., & Fink, G. R. (2014). Connectivity-based approaches in stroke and recovery of function. The Lancet Neurology, 13(2), 206–216.

    Article  PubMed  Google Scholar 

  3. Chen, X., Feng, X., Xie, J., et al. (2013). Application of acellular dermal xenografts in full-thickness skin burns. Experimental and Therapeutic Medicine, 6(1), 194–198.

    PubMed Central  PubMed  Google Scholar 

  4. Li, R., Ren, G., Tan, X., et al. (2013). Free flap transplantation combined with skin grafting and vacuum sealing drainage for repair of circumferential or sub-circumferential soft-tissue wounds of the lower leg. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 19, 510.

    Article  Google Scholar 

  5. Tam, J., Wang, Y., Farinelli, W. A., et al. (2013). Fractional skin harvesting: autologous skin grafting without donor-site morbidity. Plastic and Reconstructive Surgery—Global Open, 1(6), e47.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Hu, M. S., Hong, W., Senarath-Yapa, K., et al. (2014). Adipose-derived stem cells promote engraftment of autologous skin grafts in diabetic mouse models. Journal of Surgical Research, 186(2), 578–579.

    Article  Google Scholar 

  7. Kim, D. C., Shin, H. S., Jung, S. G., et al. (2013). Clinical experience of matriderm (R) with autologous skin graft in full thickness burns. Journal of Korean Burn Society, 16(2), 115–121.

    Google Scholar 

  8. Gautam, S., Chou, C. F., Dinda, A. K., et al. (2014). Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering. Materials Science and Engineering C, 34, 402–409.

    Article  CAS  PubMed  Google Scholar 

  9. Willard, J. J., Drexler, J. W., Das, A., et al. (2013). Plant-derived human collagen scaffolds for skin tissue engineering. Tissue Engineering Part A, 19(13–14), 1507–1518.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Choi, S. M., Singh, D., Kumar, A., et al. (2013). Porous three-dimensional PVA/gelatin sponge for skin tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 62(7), 384–389.

    Article  CAS  Google Scholar 

  11. Voswinkel, J., Francois, S., Simon, J. M., et al. (2013). Use of mesenchymal stem cells (MSC) in chronic inflammatory fistulizing and fibrotic diseases: a comprehensive review. Clinical Reviews in Allergy and Immunology, 45(2), 180–192.

    Article  PubMed  Google Scholar 

  12. Luz-Crawford, P., Tejedor, G., Bonnefont, A. L., et al. (2014). A1. 38 Mesenchymal stem cells induce non-classical IL-10-producing regulatory TH17 cells in arthritis: role of gilz. Annals of the Rheumatic Diseases, 73(Suppl 1), A16.

    Article  Google Scholar 

  13. Li J, Ariunbold U, Suhaimi N, et al. (2014) Collecting duct-derived cells display mesenchymal stem cell properties and retain selective in vitro and in vivo epithelial capacity. Journal of the American Society of Nephrology, ASN. 2013050517.

  14. Jiménez-González, M., Jaques, F., Rodríguez, S., et al. (2013). Cardiotrophin 1 protects beta cells from apoptosis and prevents streptozotocin-induced diabetes in a mouse model. Diabetologia, 56(4), 838–846.

    Article  PubMed  Google Scholar 

  15. Richardson, S. J., Leete, P., Bone, A. J., et al. (2013). Expression of the enteroviral capsid protein VP1 in the islet cells of patients with type 1 diabetes is associated with induction of protein kinase R and downregulation of Mcl-1. Diabetologia, 56(1), 185–193.

    Article  CAS  PubMed  Google Scholar 

  16. Hsieh, J. Y., Wang, H. W., Chang, S. J., et al. (2013). Mesenchymal stem cells from human umbilical cord express preferentially secreted factors related to neuroprotection, neurogenesis, and angiogenesis. PLoS ONE, 8(8), e72604.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Bongso, A., & Fong, C. Y. (2013). The therapeutic potential, challenges and future clinical directions of stem cells from the Wharton’s jelly of the human umbilical cord. Stem Cell Reviews and Reports, 9(2), 226–240.

    Article  CAS  PubMed  Google Scholar 

  18. Roswall, P., Haller, K., Petersson, A., et al. (2013). Abstract B28: signaling by PDGF-CC in the maintenance of a protumorigenic breast cancer microenvironment. Cancer Research, 73(3 Supplement), B28.

    Article  Google Scholar 

  19. Leventoğlu, S., Ege, B., Menteş, B. B., et al. (2013). Treatment for horseshoe fistula with the modified Hanley procedure using a hybrid seton: results of 21 cases. Techniques in Coloproctology, 17(4), 411–417.

    Article  PubMed  Google Scholar 

  20. Kesting, M. R., Wolff, K. D., Nobis, C. P., et al. (2014). Amniotic membrane in oral and maxillofacial surgery. Oral and Maxillofacial Surgery, 18(2), 153–164.

    Article  PubMed  Google Scholar 

  21. Song, L., Murphy, S. V., Yang, B., et al. (2013). Bladder acellular matrix and its application in bladder augmentation. Tissue Engineering Part B: Reviews, 20(2), 163–172.

    Article  Google Scholar 

  22. Yu, Z., Wu, S., Liu, Z., et al. (2014). Sonic hedgehog and retinoic acid induce bone marrow-derived stem cells to differentiate into glutamatergic neural cells. Journal of Immunoassay and Immunochemistry (just-accepted).

  23. Lu, Z. F., Wang, G. C., Roohani-Esfahani, I., et al. (2013). Baghdadite ceramics modulate the cross talk between human adipose stem cells and osteoblasts for bone regeneration. Tissue Engineering Part A, 20(5–6), 992–1002.

    PubMed  Google Scholar 

  24. Muruganandan, S., & Sinal, C. J. (2014). The impact of bone marrow adipocytes on osteoblast and osteoclast differentiation. IUBMB Life, 66(3), 147–155.

    Article  CAS  Google Scholar 

  25. Gao, M., Sim, C. K., Leung, C. W. T., et al. (2014). A fluorescent light-up probe with AIE characteristics for specific mitochondrial imaging to identify differentiating brown adipose cells. Chemical Communications, 50(61), 8312–8315.

    Article  CAS  PubMed  Google Scholar 

  26. Roswall, P., Haller, K., Petersson, A., et al. (2013). Abstract B28: signaling by PDGF-CC in the maintenance of a protumorigenic breast cancer microenvironment. Cancer Research, 73(3 Supplement), B28–B28.

    Article  Google Scholar 

  27. Ridnour, L. A., Cheng, R. Y. S., Switzer, C. H., et al. (2013). Molecular pathways: toll-like receptors in the tumor microenvironment—poor prognosis or new therapeutic opportunity. Clinical Cancer Research, 19(6), 1340–1346.

    Article  CAS  PubMed  Google Scholar 

  28. Guo, G., Marrero, L., Rodriguez, P., et al. (2013). Trp53 inactivation in the tumor microenvironment promotes tumor progression by expanding the immunosuppressive lymphoid-like stromal network. Cancer Research, 73(6), 1668–1675.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingwen Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, S., Jia, S., Liu, J. et al. Accelerated Regeneration of Skin Injury by Co-transplantation of Mesenchymal Stem Cells from Wharton’s Jelly of the Human Umbilical Cord Mixed with Microparticles. Cell Biochem Biophys 71, 951–956 (2015). https://doi.org/10.1007/s12013-014-0292-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0292-y

Keywords

Navigation