Skip to main content

Advertisement

Log in

Aberrant methylation of RASSF1A is associated with poor survival in Tunisian breast cancer patients

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Introduction

Epigenetic gene silencing is one of the major causes of inactivation of tumor-suppressor genes in many human cancers.

Materials and methods

The aim of the present study was to determine the methylation status of the promoter region CpG islands of four cancer-related genes RASSF1A, RARβ2, CDH1, and p16 INK4a in 78 breast cancer specimens and to evaluate whether the methylation status is associated with estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2/neu) together with the major clinico-pathological parameters.

Results

We showed that the methylation frequencies ranged from 19.6% (p16 INK4a) to 87% (RASSF1A) in primary breast tumors of Tunisian patients. Aberrant methylation of RARβ2 was observed in 66.6% of cases and associated with age at diagnosis (P = 0.043), while CDH1 was methylated in 47.4% of tumors and was correlated with tumor size (P = 0.013). RASSF1A presented the highest percentage of methylation (87%) and was strongly associated with poor survival (P = 0.014), with age (P = 0.048), and tumor stage (P = 0.033). Loss of ER and PR was strongly associated with GIII tumors (P = 0.000 and 0.037 respectively) while HER2/neu was associated with lymph node involvement (P = 0.026) and 5-year survival rate (P = 0.028).

Conclusions

Our preliminary findings suggested that aberrant methylation of RASSF1A and RARβ2 occurs frequently in Tunisian breast cancer patients compared with others. Furthermore, RASSF1A hypermethylation could be used as a potential marker of poor prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agathanggelou A, Honorio S, Macartney DP, Martinez A, Dallol A, Rader J et al (2001) Methylation associated inactivation of RASSF1A from region 3p21.3 in lung, breast and ovarian tumours. Oncogene 20:1509–1518. doi:10.1038/sj.onc.1204175

    Article  CAS  PubMed  Google Scholar 

  • Asch BB, Barcellos-Hoff MH (2001) Epigenetics and breast cancer. J Mammary Gland Biol Neoplasia 6:151–152. doi:10.1023/A:1011306222533

    Article  CAS  PubMed  Google Scholar 

  • Bae YK, Brown A, Garrett E, Bornman D, Fackler MJ, Sukumar S et al (2004) Hypermethylation in histologically distinct classes of breast cancer. Clin Cancer Res 10:5998–6005. doi:10.1158/1078-0432.CCR-04-0667

    Article  CAS  PubMed  Google Scholar 

  • Bagadi SAR, Prasad CP, Kaur J, Srivastava A, Prashad R, Gupta SD et al (2008) Clinical significance of promoter hypermethylation of RASSF1A, RARβ2, BRCA1 and HOXA5 in breast cancers of Indian patients. Life Sci 82:1288–1292. doi:10.1016/j.lfs.2008.04.020

    Article  CAS  PubMed  Google Scholar 

  • Baylin SB, Ohm JE (2006) Epigenetic gene silencing in cancer: a mechanism for early oncogenic pathway addiction. Nat Rev Cancer 6:107–116. doi:10.1038/nrc1799

    Article  CAS  PubMed  Google Scholar 

  • Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21. doi:10.1101/gad.947102

    Article  CAS  PubMed  Google Scholar 

  • Brock MV, Gou MG, Akiyama Y, Muller A, Wu TT, Montgomery E et al (2003) Prognostic importance of promoter hypermethylation of multiple genes in esophageal adenocarcinoma. Clin Cancer Res 9:2912–2919

    CAS  PubMed  Google Scholar 

  • Byun DS, Lee MG, Chae KS, Ryu BG, Chi SG (2001) Frequent epigenetic inactivation of RASSF1A by aberrant promoter hypermethylation in human gastric adenocarcinoma. Cancer Res 61:7034–7038

    CAS  PubMed  Google Scholar 

  • Caldeira JR, Prando EC, Quevedo FC, Neto FA, Rainho CA, Rogatto SR (2006) CDH1 promoter hypermethylation and E-cadherin protein expression in infiltrating breast cancer. BMC Cancer 6:1–9. doi:10.1186/1471-2407-6-48

    Article  CAS  Google Scholar 

  • Dammann R, Yang G, Pfeifer GP (2001) Hypermethylation of the CpG island of Ras association domain family 1A (RASSF1A), a putative tumor suppressor gene from the 3p21.3 locus, occurs in a large percentage of human breast cancers. Cancer Res 61:3105–3109

    CAS  PubMed  Google Scholar 

  • Dreijerink K, Braga E, Kuzmin I, Geil L, Duh FM, Angeloni D et al (2001) The candidate tumor suppressor gene, RASSF1A, from human chromosome 3p21.3 is involved in kidney tumorigenesis. Proc Natl Acad Sci USA 98:7504–7509. doi:10.1073/pnas.131216298

    Article  CAS  PubMed  Google Scholar 

  • Duffy MJ (2006) Estrogen receptors: role in breast cancer. Crit Rev Clin Lab Sci 43:325–347. doi:10.1080/10408360600739218

    Article  CAS  PubMed  Google Scholar 

  • Elston CW, Ellis IO, Goulging H, Pindre SE (1998) Role of pathology in the prognosis and management of breast cancer. In: Elston CW, Ellis IO (eds) Systemic pathology, vol 13, 3rd edn. Churchill Livingstone, London, pp 385–433

    Google Scholar 

  • Esteller M (2002) CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 21:5427–5440. doi:10.1038/sj.onc.1205600

    Article  CAS  PubMed  Google Scholar 

  • Esteller M, Corn PG, Baylin SB, Herman JGA (2001) Gene hypermethylation profile of human cancer. Cancer Res 61:3225–3229

    CAS  PubMed  Google Scholar 

  • Fackler MJ, McVeigh M, Evron E, Garrett E, Mehrotra J, Polyak K et al (2003) DNA methylation of RASSF1A, HIN-1, RAR-beta, Cyclin D2 and Twist in in situ and invasive lobular breast carcinoma. Int J Cancer 107:970–975. doi:10.1002/ijc.11508

    Article  CAS  PubMed  Google Scholar 

  • Fendri A, Masmoudi A, Khabir A, Sellami-Boudawara T, Daoud J, Frikha M, Ghorbel A, Gargouri A, Mokdad-Gargouri R (2008) Inactivation of RASSF1A, RARβ2 and DAP-kinase by promoter methylation correlates with lymph node metastasis in nasopharyngeal carcinoma. Cancer Biol Ther [Epub ahead of print]

  • Feng W, Shen L, Wen S, Rosen DG, Jelinek J, Hu X et al (2007) Correlation between CpG methylation profiles and hormone receptor status in breast cancers. Breast Cancer Res 9:1–13. doi:10.1186/bcr1762

    Article  CAS  Google Scholar 

  • Feuer EJ, Wun LM, Boring CC, Flanders WD, Timmel MJ, Tong T (1993) The lifetime risk of developing breast cancer. J Natl Cancer Inst 85:892–897. doi:10.1093/jnci/85.11.892

    Article  CAS  PubMed  Google Scholar 

  • Francis G, Beadle G, Thomas S, Mengersen K, Stein S (2006) Evaluation of estrogen and progesterone receptor status in HER-2 positive breast carcinomas and correlation with outcome. Pathology 38:391–398. doi:10.1080/00313020600922488

    Article  CAS  PubMed  Google Scholar 

  • Hachana M, Trimeche M, Ziadi S, Amara K, Korbi S (2009) Evidence for a role of the Simian Virus 40 in human breast carcinoma. Breast Cancer Res Treat 113:43–58. doi:10.1007/s10549-008-9901-z

    Article  CAS  PubMed  Google Scholar 

  • Herman JG, Merlo A, Mao L, Lapidus RG, Issa JP, Davidson NE et al (1995) Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res 55:4525–4530

    CAS  PubMed  Google Scholar 

  • Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 93:9821–9826. doi:10.1073/pnas.93.18.9821

    Article  CAS  PubMed  Google Scholar 

  • Issa JP (2003) Methylation and prognosis: of molecular clocks and hypermethylator phenotypes. Clin Cancer Res 9:2879–2881

    CAS  PubMed  Google Scholar 

  • Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428. doi:10.1038/nrg962

    Article  CAS  PubMed  Google Scholar 

  • Lee MG, Kim HY, Byun DS, Lee SJ, Lee CH, Kim JI et al (2001) Frequent epigenetic inactivation of RASSF1A in human bladder carcinoma. Cancer Res 61:6688–6692

    CAS  PubMed  Google Scholar 

  • Lee JS, Fackler LPK, Argani MJ, Zhang P, Garrett-Mayer Z, Sukumar ES (2007) A comparative study of Korean with Caucasian breast cancer reveals frequency of methylation in multiple genes correlates with breast cancer in young, ER, PR-negative breast cancer in Korean women. Cancer Biol Ther 6:1114–1120. doi:10.1158/1535-7163.MCT-07-0002

    Article  CAS  PubMed  Google Scholar 

  • Lehmann U, Langer F, Feist H, Glockner S, Hasemeier B, Kreipe H (2002) Quantitative assessment of promoter hypermethylation during breast cancer development. Am J Pathol 160:605–612

    CAS  PubMed  Google Scholar 

  • Li S, Rong M, Iacopetta B (2006) DNA hypermethylation in breast cancer and its association with clinicopathological features. Cancer Lett 237:272–280. doi:10.1016/j.canlet.2005.06.011

    Article  CAS  PubMed  Google Scholar 

  • Mehrotra J, Ganpat MM, Kanaan Y, Fackler MJ, McVeigh M, Lahti-Domenici J et al (2004) Estrogen receptor/progesterone receptor negative breast cancers of young African-American women have a higher frequency of methylation of multiple genes than those of Caucasian women. Clin Cancer Res 10:2052–2057. doi:10.1158/1078-0432.CCR-03-0514

    Article  CAS  PubMed  Google Scholar 

  • Mourali N, Muenz LR, Tabbane F, Belhassen S, Bahi J, Levine PH (1980) Epidemiologic features of rapidly progressing breast cancer in Tunisia. Cancer 46:2741–2746. doi:10.1002/1097-0142(19801215)46:12<2741::AID-CNCR2820461234>3.0.CO;2-W

    Article  CAS  PubMed  Google Scholar 

  • Nass SJ, Herman JG, Gabrielson E, Iversen PW, Parl FF, Davidson NE et al (2000) Aberrant methylation of the estrogen receptor and E-cadherin CpG islands increases with malignant progression in human breast cancer. Cancer Res 60:4346–4348

    CAS  PubMed  Google Scholar 

  • Nielsen NH, Roos G, Emdin SO, Landberg G (2001) Methylation of the p16INK4a tumour suppressor gene: CpG island in breast cancer. Cancer Lett 163:59–69. doi:10.1016/S0304-3835(00)00674-1

    Article  CAS  PubMed  Google Scholar 

  • Parkin DM, Ferlay J, Hamdi-Cherif M, Sitas F, Thomas J, Wabinga H et al (2003) Breast cancer in Africa: epidemiology and prevention. IARC Scientific Publication No. 153. IARC, Lyon, pp 262–267

  • Parrella P, Poeta ML, Gallo AP, Prencipe M, Scintu M, Apicella A et al (2004) Nonrandom distribution of aberrant promoter methylation of cancer-related genes in sporadic breast tumour. Clin Cancer Res 10:5349–5354. doi:10.1158/1078-0432.CCR-04-0555

    Article  CAS  PubMed  Google Scholar 

  • Rusiecki JA, Holford TR, Zahm SH, Zheng T (2005) Breast cancer risk factors according to joint estrogen receptor and progesterone receptor status. Cancer Detect Prev 29:419–426. doi:10.1016/j.cdp.2005.07.004

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sharma G, Mirza S, Prasad C, Srivastava A, Gupta SD, Ralhan R (2007) Promoter hypermethylation of p16INK4A, p14ARF, CyclinD2 and Slit2 in serum and tumor DNA from breast cancer patients. Life Sci 80:1873–1881. doi:10.1016/j.lfs.2007.02.026

    Article  CAS  PubMed  Google Scholar 

  • Shukla S, Mirza S, Sharma G, Parshad R, Gupta SD, Ralhan R (2006) Detection of RASSF1A and RARβ: hypermethylation in serum DNA from breast cancer patients. Epigenetics 1:88–93

    Article  PubMed  Google Scholar 

  • Sobin LH, Wittekind CH (eds) (1997) International Union Against Cancer, TNM classification of malignant tumours, 5th edn edn. Wiley-Liss, New York, pp 25–32

    Google Scholar 

  • Sunami E, Shinozaki M, Sim MS, Nguyen SL, Vu AT, Giuliano AE, Hoon DSB (2008) Estrogen receptor and HER2/neu status affect epigenetic differences of tumor-related genes in primary breast tumors. Breast Cancer Res [Epub ahead of print]

  • Szyf M, Pakneshan P, Rabbani SA (2004) DNA methylation and breast cancer. Biochem Pharmacol 68:1187–1197. doi:10.1016/j.bcp.2004.04.030

    Article  CAS  PubMed  Google Scholar 

  • Widschwendter M, Jones PA (2002) DNA methylation and breast carcinogenesis. Oncogene 21:5462–5482. doi:10.1038/sj.onc.1205606

    Article  CAS  PubMed  Google Scholar 

  • Widschwendter M, Berger J, Hermann M, Muller HM, Amberger A, Zeschnigk M et al (2000) Methylation and silencing of the retinoic acid receptor-beta2 gene in breast cancer. J Natl Cancer Inst 29:826–832. doi:10.1093/jnci/92.10.826

    Article  Google Scholar 

  • Yang Q, Mori I, Shan L, Nakamura M, Nakamura Y, Utsunomiya H et al (2001) Biallelic inactivation of retinoic acid receptor b2 gene by epigenetic change in breast cancer. Am J Pathol 158:299–303

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant of the Ministère de l’Enseignement Supérieur et de la Recherche Scientifique Tunisien.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raja Mokdad-Gargouri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karray-Chouayekh, S., Trifa, F., Khabir, A. et al. Aberrant methylation of RASSF1A is associated with poor survival in Tunisian breast cancer patients. J Cancer Res Clin Oncol 136, 203–210 (2010). https://doi.org/10.1007/s00432-009-0649-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-009-0649-6

Keywords

Navigation