Skip to main content
Log in

Selective Autophagy: Talking with the UPS

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Far from now are the days when investigators raced to identify the proteolytic system responsible for the degradation of their favorite protein. Nowadays, it is well accepted that a given protein can be degraded by different systems depending on factors such as cell type, cellular conditions, or functionality of each proteolytic pathway. The realization of this sharing of substrates among pathways has also helped to unveil deeper levels of communication among the different proteolytic systems. Thus, cells often respond to blockage of one degradative mechanism by upregulating any of the other available pathways. In addition, effectors and regulators of one proteolytic system can be degraded by a different proteolytic pathway that exerts, in this way, a regulatory function. In this mini review, we describe the different levels of cross-talk among autophagic pathways and the ubiquitin/proteasome system. We also provide examples of how this proteolytic communication is used for compensatory purposes in different pathological conditions and discuss the possible therapeutic potential of targeting the modulators of the cross-talk among proteolytic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. De Duve, C., & Wattiaux, R. (1966). Functions of lysosomes. Annual Review of Physiology, 28, 435–492.

    Article  PubMed  Google Scholar 

  2. Yang, Z., & Klionsky, D. J. (2010). Eaten alive: A history of macroautophagy. Nature Cell Biology, 12, 814–822.

    Article  PubMed  CAS  Google Scholar 

  3. Mizushima, N., Levine, B., Cuervo, A. M., & Klionsky, D. J. (2008). Autophagy fights disease through cellular self-digestion. Nature, 451, 1069–1075.

    Article  PubMed  CAS  Google Scholar 

  4. Klionsky, D. J., Codogno, P., Cuervo, A. M., et al. (2010). A comprehensive glossary of autophagy-related molecules and processes. Autophagy, 6, 438–448.

    Article  PubMed  Google Scholar 

  5. Mizushima, N., Yoshimori, T., & Ohsumi, Y. (2011). The Role of Atg proteins in autophagosome formation. Annual Review of Cell and Developmental Biology, 27, 107–132.

    Article  PubMed  CAS  Google Scholar 

  6. He, C., & Klionsky, D. J. (2009). Regulation mechanisms and signaling pathways of autophagy. Annual Review of Genetics, 43, 67–93.

    Article  PubMed  CAS  Google Scholar 

  7. Suzuki, K., & Ohsumi, Y. (2010). Current knowledge of the pre-autophagosomal structure (PAS). FEBS Letters, 584, 1280–1286.

    Article  PubMed  CAS  Google Scholar 

  8. Ravikumar, B., Moreau, K., Jahreiss, L., Puri, C., & Rubinsztein, D. C. (2010). Plasma membrane contributes to the formation of pre-autophagosomal structures. Nature Cell Biology, 12, 747–757.

    Article  PubMed  CAS  Google Scholar 

  9. Razi, M., Chan, E. Y., & Tooze, S. A. (2009). Early endosomes and endosomal coatomer are required for autophagy. Journal of Cell Biology, 185, 305–321.

    Article  PubMed  CAS  Google Scholar 

  10. Hailey, D. W., Rambold, A. S., Satpute-Krishnan, P., et al. (2010). Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell, 141, 656–667.

    Article  PubMed  CAS  Google Scholar 

  11. Kang, R., Zeh, H. J., Lotze, M. T., & Tang, D. (2011). The Beclin 1 network regulates autophagy and apoptosis. Cell Death and Differentiation, 18, 571–580.

    Article  PubMed  CAS  Google Scholar 

  12. Kim, J., Kim, Y. C., Fang, C., et al. (2013). Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell, 152, 290–303.

    Article  PubMed  CAS  Google Scholar 

  13. Vergne, I., & Deretic, V. (2010). The role of PI3P phosphatases in the regulation of autophagy. FEBS Letters, 584, 1313–1318.

    Article  PubMed  CAS  Google Scholar 

  14. Dall’armi, C., Devereaux, K. A., & Di Paolo, G. (2013). The role of lipids in the control of autophagy. Current Biology, 23, R33–R45.

    Article  PubMed  CAS  Google Scholar 

  15. Novak, I., & Dikic, I. (2011). Autophagy receptors in developmental clearance of mitochondria. Autophagy, 7, 301–303.

    Article  PubMed  CAS  Google Scholar 

  16. Sakai, Y., Koller, A., Rangell, L., Keller, G., & Subramani, S. (1998). Peroxisome degradation by microautophagy in Pichia pastoris. Identification of specific steps and morphological intermediates. Journal of Cell Biology, 141, 625–636.

    Article  PubMed  CAS  Google Scholar 

  17. Roberts, P., Moshitch-Moshkovitz, S., Kvam, E., et al. (2003). Piecemeal microautophagy of nucleus in Saccharomyces cerevisiae. Molecular Biology of the Cell, 14, 129–141.

    Article  PubMed  CAS  Google Scholar 

  18. Dubouloz, F., Deloche, O., Wanke, V., Cameroni, E., & De Virgilio, C. (2005). The TOR and EGO protein complexes orchestrate microautophagy in yeast. Molecular Cell, 19, 15–26.

    Article  PubMed  CAS  Google Scholar 

  19. Sahu, R., Kaushik, S., Clement, C. C., et al. (2011). Microautophagy of cytosolic proteins by late endosomes. Developmental Cell, 20, 131–139.

    Article  PubMed  CAS  Google Scholar 

  20. Chiang, H. L., Terlecky, S. R., Plant, C. P., & Dice, J. F. (1989). A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science, 246, 382–385.

    Article  PubMed  CAS  Google Scholar 

  21. Chiang, H. L., & Dice, J. F. (1988). Peptide sequences that target proteins for enhanced degradation during serum withdrawal. The Journal of Biological Chemistry, 263, 6797–6805.

    PubMed  CAS  Google Scholar 

  22. Cuervo, A. M., & Dice, J. F. (1996). A receptor for the selective uptake and degradation of proteins by lysosomes. Science, 273, 501–503.

    Article  PubMed  CAS  Google Scholar 

  23. Salvador, N., Aguado, C., Horst, M., & Knecht, E. (2000). Import of a cytosolic protein into lysosomes by chaperone-mediated autophagy depends on its folding state. The Journal of Biological Chemistry, 275, 27447–27456.

    PubMed  CAS  Google Scholar 

  24. Agarraberes, F. A., Terlecky, S. R., & Dice, J. F. (1997). An intralysosomal hsp70 is required for a selective pathway of lysosomal protein degradation. The Journal of Cell Biology, 137, 825–834.

    Article  PubMed  CAS  Google Scholar 

  25. Mizushima, N., & Komatsu, M. (2011). Autophagy: Renovation of cells and tissues. Cell, 147, 728–741.

    Article  PubMed  CAS  Google Scholar 

  26. Ravikumar, B., Sarkar, S., Davies, J. E., et al. (2010). Regulation of mammalian autophagy in physiology and pathophysiology. Physiological Reviews, 90, 1383–1435.

    Article  PubMed  CAS  Google Scholar 

  27. Kroemer, G., Marino, G., & Levine, B. (2010). Autophagy and the integrated stress response. Molecular Cell, 40, 280–293.

    Article  PubMed  CAS  Google Scholar 

  28. Singh, R., & Cuervo, A. M. (2012). Lipophagy: Connecting autophagy and lipid metabolism. International Journal of Cell Biology, 2012, 282041.

    Article  PubMed  CAS  Google Scholar 

  29. Mizushima, N., Yamamoto, A., Matsui, M., Yoshimori, T., & Ohsumi, Y. (2004). In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Molecular Biology of the Cell, 15, 1101–1111.

    Article  PubMed  CAS  Google Scholar 

  30. Singh, R., Kaushik, S., Wang, Y., et al. (2009). Autophagy regulates lipid metabolism. Nature, 458, 1131–1135.

    Article  PubMed  CAS  Google Scholar 

  31. Roth, D. M., & Balch, W. E. (2011). Modeling general proteostasis: Proteome balance in health and disease. Current Opinion in Cell Biology, 23, 126–134.

    Article  PubMed  CAS  Google Scholar 

  32. Sarkar, S., Ravikumar, B., & Rubinsztein, D. C. (2009). Autophagic clearance of aggregate-prone proteins associated with neurodegeneration. Methods in Enzymology, 453, 83–110.

    Article  PubMed  CAS  Google Scholar 

  33. Yao, T. P. (2010). The role of ubiquitin in autophagy-dependent protein aggregate processing. Genes Cancer, 1, 779–786.

    Article  PubMed  CAS  Google Scholar 

  34. Youle, R. J., & Narendra, D. P. (2011). Mechanisms of mitophagy. Nature Reviews Molecular Cell Biology, 12, 9–14.

    Article  PubMed  CAS  Google Scholar 

  35. Kim, I., Rodriguez-Enriquez, S., & Lemasters, J. (2007). Selective degradation of mitochondria by mitophagy. Archives of Biochemistry and Biophysics, 462, 245–253.

    Article  PubMed  CAS  Google Scholar 

  36. Kawakami, T., Inagi, R., Takano, H., et al. (2009). Endoplasmic reticulum stress induces autophagy in renal proximal tubular cells. Nephrology, Dialysis, Transplantation, 24, 2665–2672.

    Article  PubMed  CAS  Google Scholar 

  37. Hayashi-Nishino, M., Fujita, N., Noda, T., et al. (2010). Electron tomography reveals the endoplasmic reticulum as a membrane source for autophagosome formation. Autophagy, 6, 301–303.

    Article  PubMed  CAS  Google Scholar 

  38. Ferdous, A., Battiprolu, P. K., Ni, Y. G., Rothermel, B. A., & Hill, J. A. (2010). FoxO, autophagy, and cardiac remodeling. Journal of Cardiovascular Translational Research, 3, 355–364.

    Article  PubMed  Google Scholar 

  39. Mizushima, N., & Levine, B. (2010). Autophagy in mammalian development and differentiation. Nature Cell Biology, 12, 823–830.

    Article  PubMed  CAS  Google Scholar 

  40. Tsukamoto, S., Kuma, A., & Mizushima, N. (2008). The role of autophagy during the oocyte-to-embryo transition. Autophagy, 4, 1076–1078.

    PubMed  Google Scholar 

  41. Singh, R., Xiang, Y., Wang, Y., et al. (2009). Autophagy regulates adipose mass and differentiation in mice. The Journal of Clinical Investigation, 119, 3329–3339.

    Article  PubMed  CAS  Google Scholar 

  42. Levine, B., Mizushima, N., & Virgin, H. W. (2011). Autophagy in immunity and inflammation. Nature, 469, 323–335.

    Article  PubMed  CAS  Google Scholar 

  43. Levine, B., & Kroemer, G. (2008). Autophagy in the pathogenesis of disease. Cell, 132, 27–42.

    Article  PubMed  CAS  Google Scholar 

  44. Sridhar, S., Botbol, Y., Macian, F., & Cuervo, A. M. (2012). Autophagy and disease: Always two sides to a problem. The Journal of Pathology, 226, 255–273.

    Article  PubMed  Google Scholar 

  45. Wong, E., & Cuervo, A. M. (2010). Autophagy gone awry in neurodegenerative diseases. Nature Neuroscience, 13, 806–811.

    Article  CAS  Google Scholar 

  46. Liang, X. H., Jackson, S., Seaman, M., et al. (1999). Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 402, 672–676.

    Article  PubMed  CAS  Google Scholar 

  47. Qu, X., Yu, J., Bhagat, G., et al. (2003). Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. The Journal of Clinical Investigation, 112, 1809–1820.

    PubMed  CAS  Google Scholar 

  48. Takamura, A., Komatsu, M., Hara, T., et al. (2011). Autophagy-deficient mice develop multiple liver tumors. Genes & Development, 25, 795–800.

    Article  CAS  Google Scholar 

  49. Lock, R., Roy, S., Kenific, C. M., et al. (2011). Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Molecular Biology of the Cell, 22, 165–178.

    Article  PubMed  CAS  Google Scholar 

  50. Kon, M., Kiffin, R., Koga, H., et al. (2011). Chaperone-mediated autophagy is required for tumor growth. Science Translational Medicine, 3, 109ra117.

    Google Scholar 

  51. Wang, R. C., & Levine, B. (2010). Autophagy in cellular growth control. FEBS Letters, 584, 1417–1426.

    Article  PubMed  CAS  Google Scholar 

  52. Hamasaki, M., Noda, T., Baba, M., & Ohsumi, Y. (2005). Starvation triggers the delivery of the endoplasmic reticulum to the vacuole via autophagy in yeast. Traffic, 6, 56–65.

    Article  PubMed  CAS  Google Scholar 

  53. Kraft, C., Deplazes, A., Sohrmann, M., & Peter, M. (2008). Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nature Cell Biology, 10, 602–610.

    Article  PubMed  CAS  Google Scholar 

  54. Dunn, W. A, Jr, Cregg, J. M., Kiel, J. A., et al. (2005). Pexophagy: The selective autophagy of peroxisomes. Autophagy, 1, 75–83.

    Article  PubMed  CAS  Google Scholar 

  55. Yamamoto, A., & Simonsen, A. (2011). The elimination of accumulated and aggregated proteins: A role for aggrephagy in neurodegeneration. Neurobiology of Disease, 43, 17–28.

    Article  PubMed  CAS  Google Scholar 

  56. Lamark, T., Kirkin, V., Dikic, I., & Johansen, T. (2009). NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle, 8, 1986–1990.

    Article  PubMed  CAS  Google Scholar 

  57. Thurston, T. L., Ryzhakov, G., Bloor, S., von Muhlinen, N., & Randow, F. (2009). The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nature Immunology, 10, 1215–1221.

    Article  PubMed  CAS  Google Scholar 

  58. Pankiv, S., Clausen, T. H., Lamark, T., et al. (2007). p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. Journal of Biological Chemistry, 282, 24131–24145.

    Article  PubMed  CAS  Google Scholar 

  59. Wong, E., Bejarano, E., Rakshit, M., et al. (2012). Molecular determinants of selective clearance of protein inclusions by autophagy. Nature Communications, 3, 1240.

    Article  PubMed  CAS  Google Scholar 

  60. Arndt, V., Dick, N., Tawo, R., et al. (2010). Chaperone-assisted selective autophagy is essential for muscle maintenance. Current Biology: CB, 20, 143–148.

    Article  PubMed  CAS  Google Scholar 

  61. Veenhuis, M., Salomons, F. A., & Van Der Klei, I. J. (2000). Peroxisome biogenesis and degradation in yeast: A structure/function analysis. Microscopy Research and Technique, 51, 584–600.

    Article  PubMed  CAS  Google Scholar 

  62. Kotoulas, O. B., Kalamidas, S. A., & Kondomerkos, D. J. (2006). Glycogen autophagy in glucose homeostasis. Pathology, Research and Practice, 202, 631–638.

    Article  PubMed  CAS  Google Scholar 

  63. Kiffin, R., Christian, C., Knecht, E., & Cuervo, A. M. (2004). Activation of chaperone-mediated autophagy during oxidative stress. Molecular Biology of the Cell, 15, 4829–4840.

    Article  PubMed  CAS  Google Scholar 

  64. Massey, A. C., Kaushik, S., Sovak, G., Kiffin, R., & Cuervo, A. M. (2006). Consequences of the selective blockage of chaperone-mediated autophagy. Proceedings of the National Academy of Sciences, 103, 5805–5810.

    Article  CAS  Google Scholar 

  65. Cuervo, A. M., Hildebrand, H., Bomhard, E. M., & Dice, J. F. (1999). Direct lysosomal uptake of [agr]2-microglobulin contributes to chemically induced nephropathy. Kidney International, 55, 529–545.

    Article  PubMed  CAS  Google Scholar 

  66. Cuervo, A. M., Knecht, E., Terlecky, S. R., & Dice, J. F. (1995). Activation of a selective pathway of lysosomal proteolysis in rat liver by prolonged starvation. American Journal of Physiology: Cell Physiology, 269, C1200–C1208.

    CAS  Google Scholar 

  67. Dice, J. F. (1990). Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends in Biochemical Sciences, 15, 305–309.

    Article  PubMed  CAS  Google Scholar 

  68. Zheng, Q., Su, H., Tian, Z., & Wang, X. (2011). Proteasome malfunction activates macroautophagy in the heart. American Journal of Cardiovascular Disease, 1, 214–226.

    PubMed  CAS  Google Scholar 

  69. Ding, W. X., Ni, H. M., Gao, W., et al. (2007). Linking of autophagy to ubiquitin–proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. The American Journal of Pathology, 171, 513–524.

    Article  PubMed  CAS  Google Scholar 

  70. Zhu, K., Dunner, K, Jr, & McConkey, D. J. (2010). Proteasome inhibitors activate autophagy as a cytoprotective response in human prostate cancer cells. Oncogene, 29, 451–462.

    Article  PubMed  CAS  Google Scholar 

  71. Pan, T., Kondo, S., Zhu, W., et al. (2008). Neuroprotection of rapamycin in lactacystin-induced neurodegeneration via autophagy enhancement. Neurobiology of Disease, 32, 16–25.

    Article  PubMed  CAS  Google Scholar 

  72. Du, Y., Yang, D., Li, L., et al. (2009). An insight into the mechanistic role of p53-mediated autophagy induction in response to proteasomal inhibition-induced neurotoxicity. Autophagy, 5, 663–675.

    Article  PubMed  CAS  Google Scholar 

  73. Pandey, U. B., Nie, Z., Batlevi, Y., et al. (2007). HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature, 447, 859–863.

    Article  PubMed  CAS  Google Scholar 

  74. Iwata, A., Riley, B. E., Johnston, J. A., & Kopito, R. R. (2005). HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. Journal of Biological Chemistry, 280, 40282–40292.

    Article  PubMed  CAS  Google Scholar 

  75. Bennett, E., Bence, N., Jayakumar, R., & Kopito, R. (2005). Global impairment of the ubiquitin–proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation. Molecular Cell, 17, 351–365.

    Article  PubMed  CAS  Google Scholar 

  76. Bence, N. F., Sampat, R. M., & Kopito, R. R. (2001). Impairment of the ubiquitin–proteasome system by protein aggregation. Science, 292, 1552–1555.

    Article  PubMed  CAS  Google Scholar 

  77. McNaught, K. S., Olanow, C. W., Halliwell, B., Isacson, O., & Jenner, P. (2001). Failure of the ubiquitin–proteasome system in Parkinson’s disease. Nature Reviews Neuroscience, 2, 589–594.

    Article  PubMed  CAS  Google Scholar 

  78. Zhang, X. D., Wang, Y., Zhang, X., et al. (2009). p53 mediates mitochondria dysfunction-triggered autophagy activation and cell death in rat striatum. Autophagy, 5, 339–350.

    Article  PubMed  CAS  Google Scholar 

  79. Tavernarakis, N., Pasparaki, A., Tasdemir, E., Maiuri, M. C., & Kroemer, G. (2008). The effects of p53 on whole organism longevity are mediated by autophagy. Autophagy, 4, 870–873.

    PubMed  CAS  Google Scholar 

  80. Crighton, D., Wilkinson, S., O’Prey, J., et al. (2006). DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell, 126, 121–134.

    Article  PubMed  CAS  Google Scholar 

  81. Klappan, A. K., Hones, S., Mylonas, I., & Bruning, A. (2012). Proteasome inhibition by quercetin triggers macroautophagy and blocks mTOR activity. Histochemistry and Cell Biology, 137, 25–36.

    Article  PubMed  CAS  Google Scholar 

  82. Koga, H., Martinez-Vicente, M., Macian, F., Verkhusha, V. V., & Cuervo, A. M. (2011). A photoconvertible fluorescent reporter to track chaperone-mediated autophagy. Nature Communications, 2, 386.

    Article  PubMed  CAS  Google Scholar 

  83. Kaushik, S., Massey, A., Mizushima, N., & Cuervo, A. M. (2008). Constitutive activation of chaperone-mediated autophagy in cells with impaired macroautophagy. Molecular Biology of the Cell, 19, 2179–2192.

    Article  PubMed  CAS  Google Scholar 

  84. Korolchuk, V. I., Mansilla, A., Menzies, F. M., & Rubinsztein, D. C. (2009). Autophagy inhibition compromises degradation of ubiquitin–proteasome pathway substrates. Molecular Cell, 33, 517–527.

    Article  PubMed  CAS  Google Scholar 

  85. Ding, Q., Dimayuga, E., Martin, S., et al. (2003). Characterization of chronic low-level proteasome inhibition on neural homeostasis. Journal of Neurochemistry, 86, 489–497.

    Article  PubMed  CAS  Google Scholar 

  86. Karin, M. (1999). How NF-kappaB is activated: The role of the IkappaB kinase (IKK) complex. Oncogene, 18, 6867–6874.

    Article  PubMed  CAS  Google Scholar 

  87. Milligan, S. A., Owens, M. W., & Grisham, M. B. (1996). Inhibition of IkappaB-alpha and IkappaB-beta proteolysis by calpain inhibitor I blocks nitric oxide synthesis. Archives of Biochemistry and Biophysics, 335, 388–395.

    Article  PubMed  CAS  Google Scholar 

  88. Miyamoto, S., Seufzer, B. J., & Shumway, S. D. (1998). Novel IkappaB alpha proteolytic pathway in WEHI231 immature B cells. Molecular and Cellular Biology, 18, 19–29.

    PubMed  CAS  Google Scholar 

  89. Cuervo, A. M., Hu, W., Lim, B., & Dice, J. F. (1998). IkappaB is a substrate for a selective pathway of lysosomal proteolysis. Molecular Biology of the Cell, 9, 1995–2010.

    Article  PubMed  CAS  Google Scholar 

  90. Cuervo, A. M., Stefanis, L., Fredenburg, R., Lansbury, P. T., & Sulzer, D. (2004). Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science, 305, 1292–1295.

    Article  PubMed  CAS  Google Scholar 

  91. Stefanis, L., Larsen, K., Rideout, H., Sulzer, D., & Greene, L. (2001). Expression of A53T mutant but not wild-type alpha-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. Journal of Neuroscience, 21, 9549–9560.

    PubMed  CAS  Google Scholar 

  92. Webb, J., Ravikumar, B., Atkins, J., Skepper, J., & Rubinsztein, D. (2003). Alpha-synuclein is degraded by both autophagy and the proteasome. Journal of Biological Chemistry, 278, 25009–25013.

    Article  PubMed  CAS  Google Scholar 

  93. Walters, K. J., Goh, A. M., Wang, Q., Wagner, G., & Howley, P. M. (2004). Ubiquitin family proteins and their relationship to the proteasome: A structural perspective. Biochimica et Biophysica Acta, 1695, 73–87.

    Article  PubMed  CAS  Google Scholar 

  94. Hara, T., Nakamura, K., Matsui, M., et al. (2006). Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature, 441, 885–889.

    Article  PubMed  CAS  Google Scholar 

  95. Komatsu, M., Waguri, S., Chiba, T., et al. (2006). Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature, 441, 880–884.

    Article  PubMed  CAS  Google Scholar 

  96. Kim, P. K., Hailey, D. W., Mullen, R. T., & Lippincott-Schwartz, J. (2008). Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proceedings of the National Academy of Sciences of the United States of America, 105, 20567–20574.

    Article  PubMed  CAS  Google Scholar 

  97. Ikeda, F., & Dikic, I. (2008). Atypical ubiquitin chains: New molecular signals. ‘Protein Modifications: Beyond the Usual Suspects’ review series. EMBO Reports, 9, 536–542.

    Article  PubMed  CAS  Google Scholar 

  98. Ravid, T., & Hochstrasser, M. (2008). Diversity of degradation signals in the ubiquitin–proteasome system. Nature Reviews Molecular Cell Biology, 9, 679–690.

    Article  PubMed  CAS  Google Scholar 

  99. Lv, L., Li, D., Zhao, D., et al. (2011). Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Molecular Cell, 42, 719–730.

    Article  PubMed  CAS  Google Scholar 

  100. Thompson, L. M., Aiken, C. T., Kaltenbach, L. S., et al. (2009). IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome. Journal of Cell Biology, 187, 1083–1099.

    Article  PubMed  CAS  Google Scholar 

  101. Kaushik, S., & Cuervo, A. M. (2012). Chaperones in autophagy. Pharmacological Research, 66, 484–493.

    Article  PubMed  CAS  Google Scholar 

  102. McDonough, H., & Patterson, C. (2003). CHIP: A link between the chaperone and proteasome systems. Cell Stress Chaperones, 8, 303–308.

    Article  PubMed  CAS  Google Scholar 

  103. Narendra, D., Tanaka, A., Suen, D. F., & Youle, R. J. (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. The Journal of Cell Biology, 183, 795–803.

    Article  PubMed  CAS  Google Scholar 

  104. Tanaka, A. (2010). Parkin-mediated selective mitochondrial autophagy, mitophagy: Parkin purges damaged organelles from the vital mitochondrial network. FEBS Letters, 584, 1386–1392.

    Article  PubMed  CAS  Google Scholar 

  105. Tanaka, A., Cleland, M. M., Xu, S., et al. (2010). Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. The Journal of Cell Biology, 191, 1367–1380.

    Article  PubMed  CAS  Google Scholar 

  106. Van Humbeeck, C., Cornelissen, T., Hofkens, H., et al. (2011). Parkin interacts with Ambra1 to induce mitophagy. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31, 10249–10261.

    Article  CAS  Google Scholar 

  107. Jin, S. M., & Youle, R. J. (2012). PINK1- and Parkin-mediated mitophagy at a glance. Journal of Cell Science, 125, 795–799.

    Article  PubMed  CAS  Google Scholar 

  108. Gegg, M. E., Cooper, J. M., Chau, K. Y., et al. (2010). Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Human Molecular Genetics, 19, 4861–4870.

    Article  PubMed  CAS  Google Scholar 

  109. Cuervo, A. M., Palmer, A., Rivett, A. J., & Knecht, E. (1995). Degradation of proteasomes by lysosomes in rat liver. European Journal of Biochemistry, 227, 792–800.

    Article  PubMed  CAS  Google Scholar 

  110. Kaushik, S., Bandyopadhyay, U., Sridhar, S., et al. (2011). Chaperone-mediated autophagy at a glance. Journal of Cell Science, 124, 495–499.

    Article  PubMed  CAS  Google Scholar 

  111. Rothenberg, C., Srinivasan, D., Mah, L., et al. (2010). Ubiquilin functions in autophagy and is degraded by chaperone-mediated autophagy. Human Molecular Genetics, 19, 3219–3232.

    Article  PubMed  CAS  Google Scholar 

  112. Komatsu, M., & Ichimura, Y. (2010). Physiological significance of selective degradation of p62 by autophagy. FEBS Letters, 584, 1374–1378.

    Article  PubMed  CAS  Google Scholar 

  113. Tanida, I., Minematsu-Ikeguchi, N., Ueno, T., & Kominami, E. (2005). Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy, 1, 84–91.

    Article  PubMed  CAS  Google Scholar 

  114. Cuervo, A. M. (2008). Autophagy and aging: Keeping that old broom working. Trends in Genetics, 24, 604–612.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Maria Cuervo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, C., Cuervo, A.M. Selective Autophagy: Talking with the UPS. Cell Biochem Biophys 67, 3–13 (2013). https://doi.org/10.1007/s12013-013-9623-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9623-7

Keywords

Navigation