Skip to main content

Advertisement

Log in

DC Electric Fields Direct Breast Cancer Cell Migration, Induce EGFR Polarization, and Increase the Intracellular Level of Calcium Ions

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Migration of cancer cells leads to invasion of primary tumors to distant organs (i.e., metastasis). Growing number of studies have demonstrated the migration of various cancer cell types directed by applied direct current electric fields (dcEF), i.e., electrotaxis, and suggested its potential implications in metastasis. MDA-MB-231 cell, a human metastatic breast cancer cell line, has been shown to migrate toward the anode of dcEF. Further characterizations of MDA-MB-231 cell electrotaxis and investigation of its underlying signaling mechanisms will lead to a better understanding of electrically guided cancer cell migration and metastasis. Therefore, we quantitatively characterized MDA-MB-231 cell electrotaxis and a few associated signaling events. Using a microfluidic device that can create well-controlled dcEF, we showed the anode-directing migration of MDA-MB-231 cells. In addition, surface staining of epidermal growth factor receptor (EGFR) and confocal microscopy showed the dcEF-induced anodal EGFR polarization in MDA-MB-231 cells. Furthermore, we showed an increase of intracellular calcium ions in MDA-MB-231 cells upon dcEF stimulation. Altogether, our study provided quantitative measurements of electrotactic migration of MDA-MB-231 cells, and demonstrated the electric field-mediated EGFR and calcium signaling events, suggesting their involvement in breast cancer cell electrotaxis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

dcEF:

Direct current electric fields

ECM:

Extracellular matrix

EGFR:

Epidermal growth factor receptor

PDMS:

Polydimethylsiloxane

EI:

Electrotactic index

SEM:

Standard error of the mean

MSD:

Mean square displacement

References

  1. Matsubayashi, Y., Ebisuya, M., Honjoh, S., & Nishida, E. (2004). ERK activation propagates in epithelial cell sheets and regulates their migration during wound healing. Current Biology, 14, 731–735.

    Article  PubMed  CAS  Google Scholar 

  2. McDougall, S., Dallon, J., Sherratt, J., & Maini, P. (2006). Fibroblast migration and collagen deposition during dermal wound healing: Mathematical modelling and clinical implications. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 364, 1385–1405.

    Article  PubMed  CAS  Google Scholar 

  3. Ayala, R., Shu, T., & Tsai, L. H. (2007). Trekking across the brain: The journey of neuronal migration. Cell, 128, 29–43.

    Article  PubMed  CAS  Google Scholar 

  4. Hatten, M. E. (2002). New directions in neuronal migration. Science, 297, 1660–1663.

    Article  PubMed  CAS  Google Scholar 

  5. Keller, R. (2005). Cell migration during gastrulation. Current Opinion in Cell Biology, 17, 533–541.

    Article  PubMed  CAS  Google Scholar 

  6. Friedl, P., & Wolf, K. (2003). Tumour-cell invasion and migration: Diversity and escape mechanisms. Nature Reviews Cancer, 3, 362–374.

    Article  PubMed  CAS  Google Scholar 

  7. Yamaguchi, H., Wyckoff, J., & Condeelis, J. (2005). Cell migration in tumors. Current Opinion in Cell Biology, 17, 559–564.

    Article  PubMed  CAS  Google Scholar 

  8. Kunkel, E. J., & Butcher, E. C. (2003). Plasma-cell homing. Nature Reviews Immunology, 3, 822–829.

    Article  PubMed  CAS  Google Scholar 

  9. Lin, F., Nguyen, C., Wang, S., Saadi, W., Gross, S., & Jeon, N. (2005). Neutrophil migration in opposing chemoattractant gradients using microfluidic chemotaxis devices. Annals of Biomedical Engineering, 33, 475–482.

    Article  PubMed  Google Scholar 

  10. Cooper, M., & Keller, R. (1984). Perpendicular orientation and directional migration of amphibian neural crest cells in DC electrical fields. Proceedings of the National Academy of Sciences USA, 81, 160–164.

    Article  CAS  Google Scholar 

  11. Tai, G., Reid, B., Cao, L., & Zhao, M. (2009). Electrotaxis and wound healing: Experimental methods to study electric fields as a directional signal for cell migration. Methods in Molecular Biology, 571, 77–97.

    Article  PubMed  CAS  Google Scholar 

  12. McCaig, C., Rajnicek, A., Song, B., & Zhao, M. (2005). Controlling cell behavior electrically: Current views and future potential. Physiological Reviews, 85, 943–978.

    Article  PubMed  Google Scholar 

  13. Mycielska, M., & Djamgoz, M. (2004). Cellular mechanisms of direct-current electric field effects: Galvanotaxis and metastatic disease. Journal of Cell Science, 117, 1631–1639.

    Article  PubMed  CAS  Google Scholar 

  14. Robinson, K., & Messerli, M. (2003). Left/right, up/down: The role of endogenous electrical fields as directional signals in development, repair and invasion. Bioessays, 25, 759–766.

    Article  PubMed  Google Scholar 

  15. Nuccitelli, R. (1988). Physiological electric fields can influence cell motility, growth and polarity. Advanced Cell Biology, 2, 21.

    Google Scholar 

  16. Djamgoz, M. B. A., Mycielska, M., Madeja, Z., Fraser, S., & Korohoda, W. (2001). Directional movement of rat prostate cancer cells in direct-current electric field: Involvement of voltagegated Na+ channel activity. Journal of Cell Science, 114, 2697–2705.

    PubMed  CAS  Google Scholar 

  17. Yan, X., Han, J., Zhang, Z., Wang, J., Cheng, Q., Gao, K., et al. (2009). Lung cancer A549 cells migrate directionally in DC electric fields with polarized and activated EGFRs. Bioelectromagnetics, 30, 29–35.

    Article  PubMed  Google Scholar 

  18. Pu, J., McCaig, C. D., Cao, L., Zhao, Z., Segall, J. E., & Zhao, M. (2007). EGF receptor signalling is essential for electric-field-directed migration of breast cancer cells. Journal of Cell Science, 120, 3395–3403.

    Article  PubMed  CAS  Google Scholar 

  19. Price, J. E. (1996). Metastasis from human breast cancer cell lines. Breast Cancer Research and Treatment, 39, 93–102.

    Article  PubMed  CAS  Google Scholar 

  20. Christofori, G. (2003). Changing neighbours, changing behaviour: Cell adhesion molecule-mediated signalling during tumour progression. EMBO Journal, 22, 2318–2323.

    Article  PubMed  CAS  Google Scholar 

  21. Segall, J. E., Tyerech, S., Boselli, L., Masseling, S., Helft, J., Chan, A., et al. (1996). EGF stimulates lamellipod extension in metastatic mammary adenocarcinoma cells by an actin-dependent mechanism. Clinical & Experimental Metastasis, 14, 61–72.

    Article  CAS  Google Scholar 

  22. Levine, M. D., Liotta, L. A., & Stracke, M. L. (1995). Stimulation and regulation of tumor cell motility in invasion and metastasis. EXS, 74, 157–179.

    PubMed  CAS  Google Scholar 

  23. Xue, C., Wyckoff, J., Liang, F., Sidani, M., Violini, S., Tsai, K. L., et al. (2006). Epidermal growth factor receptor overexpression results in increased tumor cell motility in vivo coordinately with enhanced intravasation and metastasis. Cancer Research, 66, 192–197.

    Article  PubMed  CAS  Google Scholar 

  24. Hirsch, D. S., Shen, Y., & Wu, W. J. (2006). Growth and motility inhibition of breast cancer cells by epidermal growth factor receptor degradation is correlated with inactivation of Cdc42. Cancer Research, 66, 3523–3530.

    Article  PubMed  CAS  Google Scholar 

  25. Zhao, M., Dick, A., Forrester, J., & McCaig, C. (1999). Electric field-directed cell motility involves up-regulated expression and asymmetric redistribution of the epidermal growth factor receptors and is enhanced by fibronectin and laminin. Molecular Biology of the Cell, 10, 1259–1276.

    Article  PubMed  CAS  Google Scholar 

  26. Zhao, M., Pu, J., Forrester, J. V., & McCaig, C. D. (2002). Membrane lipids, EGF receptors, and intracellular signals colocalize and are polarized in epithelial cells moving directionally in a physiological electric field. FASEB J, 16, 857–859.

    PubMed  CAS  Google Scholar 

  27. Fang, K. S., Ionides, E., Oster, G., Nuccitelli, R., & Isseroff, R. R. (1999). Epidermal growth factor receptor relocalization and kinase activity are necessary for directional migration of keratinocytes in DC electric fields. Journal of Cell Science, 112(Pt 12), 1967–1978.

    PubMed  CAS  Google Scholar 

  28. Poo, M., & Robinson, K. (1977). Electrophoresis of concanavalin A receptors along embryonic muscle cell membrane. Nature, 265, 602–605.

    Article  PubMed  CAS  Google Scholar 

  29. Brown, M. J., & Loew, L. M. (1994). Electric field-directed fibroblast locomotion involves cell surface molecular reorganization and is calcium independent. Journal of Cell Biology, 127, 117–128.

    Article  PubMed  CAS  Google Scholar 

  30. Wu, D., & Lin, F. (2011). A receptor-electromigration-based model for cellular electrotactic sensing and migration. Biochemical and Biophysical Research Communications, 411, 695–701.

    Article  PubMed  CAS  Google Scholar 

  31. Yang, S., & Huang, X. Y. (2005). Ca2+ influx through L-type Ca2+ channels controls the trailing tail contraction in growth factor-induced fibroblast cell migration. Journal of Biological Chemistry, 280, 27130–27137.

    Article  PubMed  CAS  Google Scholar 

  32. Agle, K. A., Vongsa, R. A., & Dwinell, M. B. (2010). Calcium mobilization triggered by the chemokine CXCL12 regulates migration in wounded intestinal epithelial monolayers. Journal of Biological Chemistry, 285, 16066–16075.

    Article  PubMed  CAS  Google Scholar 

  33. Prevarskaya, N., Skryma, R., & Shuba, Y. (2011). Calcium in tumour metastasis: New roles for known actors. Nature Reviews Cancer, 11, 609–618.

    Article  PubMed  CAS  Google Scholar 

  34. Brundage, R. A., Fogarty, K. E., Tuft, R. A., & Fay, F. S. (1991). Calcium gradients underlying polarization and chemotaxis of eosinophils. Science, 254, 703–706.

    Article  PubMed  CAS  Google Scholar 

  35. Hahn, K., DeBiasio, R., & Taylor, D. L. (1992). Patterns of elevated free calcium and calmodulin activation in living cells. Nature, 359, 736–738.

    Article  PubMed  CAS  Google Scholar 

  36. Davis, F. M., Kenny, P. A., Soo, E. T., van Denderen, B. J., Thompson, E. W., Cabot, P. J., et al. (2011). Remodeling of purinergic receptor-mediated Ca2+ signaling as a consequence of EGF-induced epithelial–mesenchymal transition in breast cancer cells. PLoS ONE, 6, e23464.

    Article  PubMed  CAS  Google Scholar 

  37. Raimondi, C., Chikh, A., Maffucci, T., & Falasca, M. (2012). A novel regulatory mechanism links PLCγ1 to PDK1. Journal of Cell Science, 125(Pt 13), 3153–3163.

    Article  PubMed  CAS  Google Scholar 

  38. Onuma, E., & Hui, S. (1985). A calcium requirement for electric field-induced cell shape changes and preferential orientation. Cell Calcium, 6, 281–292.

    Article  PubMed  CAS  Google Scholar 

  39. Hammerick, K. E., Longaker, M. T., & Prinz, F. B. (2010). In vitro effects of direct current electric fields on adipose-derived stromal cells. Biochemical and Biophysical Research Communications, 397, 12–17.

    Article  PubMed  CAS  Google Scholar 

  40. Shanley, L., Walczysko, P., Bain, M., MacEwan, D., & Zhao, M. (2006). Influx of extracellular Ca2+ is necessary for electrotaxis in Dictyostelium. Journal of Cell Science, 119, 4741–4748.

    Article  PubMed  CAS  Google Scholar 

  41. Li, J., Nandagopal, S., Wu, D., Romanuik, S. F., Paul, K., Thomson, D. J., et al. (2011). Activated T lymphocytes migrate toward the cathode of DC electric fields in microfluidic devices. Lab on a Chip, 11, 1298–1304.

    Article  PubMed  CAS  Google Scholar 

  42. Wang, S. J., Saadi, W., Lin, F., Minh-Canh Nguyen, C., & Li Jeon, N. (2004). Differential effects of EGF gradient profiles on MDA-MB-231 breast cancer cell chemotaxis. Experimental Cell Research, 300, 180–189.

    Article  PubMed  CAS  Google Scholar 

  43. Lin, F., & Butcher, E. (2006). T cell chemotaxis in a simple microfluidic device. Lab on a Chip, 6, 1462–1469.

    Article  PubMed  CAS  Google Scholar 

  44. Lin, F., Baldessari, F., Gyenge, C. C., Sato, T., Chambers, R. D., Santiago, J. G., et al. (2008). Lymphocyte electrotaxis in vitro and in vivo. The Journal of Immunology, 181, 2465–2471.

    PubMed  CAS  Google Scholar 

  45. Li, J., & Lin, F. (2011). Microfluidic devices for studying chemotaxis and electrotaxis. Trends in Cell Biology, 21, 489–497.

    Article  PubMed  Google Scholar 

  46. Morita, M., Higuchi, C., Moto, T., Kozuka, N., Susuki, J., Itofusa, R., et al. (2003). Dual regulation of calcium oscillation in astrocytes by growth factors and pro-inflammatory cytokines via the mitogen-activated protein kinase cascade. Journal of Neuroscience, 23, 10944–10952.

    PubMed  CAS  Google Scholar 

  47. Morita, M., & Kudo, Y. (2010). Growth factors upregulate astrocyte [Ca2+]i oscillation by increasing SERCA2b expression. Glia, 58, 1988–1995.

    Article  PubMed  Google Scholar 

  48. Mishra, S., & Hamburger, A. W. (1993). Role of intracellular Ca2+ in the epidermal growth factor induced inhibition of protein tyrosine phosphatase activity in a breast cancer cell line. Biochemical and Biophysical Research Communications, 191, 1066–1072.

    Article  PubMed  CAS  Google Scholar 

  49. Faupel, M., Vanel, D., Barth, V., Davies, R., Fentiman, I. S., Holland, R., et al. (1997). Electropotential evaluation as a new technique for diagnosing breast lesions. European Journal of Radiology, 24, 33–38.

    Article  PubMed  CAS  Google Scholar 

  50. Li, J., Zhu, L., Zhang, M., & Lin, F. (2012). Microfluidic device for studying cell migration in single or co-existing chemical gradients and electric fields. Biomicrofluidics, 6, 24121–2412113.

    Article  PubMed  Google Scholar 

  51. Minc, N., & Chang, F. (2010). Electrical control of cell polarization in the fission yeast Schizosaccharomyces pombe. Current Biology, 20, 710–716.

    Article  PubMed  CAS  Google Scholar 

  52. Rezai, P., Siddiqui, A., Selvaganapathy, P. R., & Gupta, B. P. (2010). Electrotaxis of Caenorhabditis elegans in a microfluidic environment. Lab on a Chip, 10, 220–226.

    Article  PubMed  CAS  Google Scholar 

  53. Even-Ram, S., & Yamada, K. M. (2005). Cell migration in 3D matrix. Current Opinion in Cell Biology, 17, 524–532.

    Article  PubMed  CAS  Google Scholar 

  54. Sun, Y. S., Peng, S. W., Lin, K. H., & Cheng, J. Y. (2012). Electrotaxis of lung cancer cells in ordered three-dimensional scaffolds. Biomicrofluidics, 6, 14102–1410214.

    Article  PubMed  Google Scholar 

  55. Nabeshima, K., Inoue, T., Shimao, Y., Kataoka, H., & Koono, M. (1999). Cohort migration of carcinoma cells: Differentiated colorectal carcinoma cells move as coherent cell clusters or sheets. Histology and Histopathology, 14, 1183–1197.

    PubMed  CAS  Google Scholar 

  56. Li, L., Hartley, R., Reiss, B., Sun, Y., Pu, J., Wu, D., et al. (2012). E-cadherin plays an essential role in collective directional migration of large epithelial sheets. Cellular and Molecular Life Sciences, 69, 2779–2789.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This Research is supported by Grants from the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Foundation for Innovation (CFI), the Manitoba Health Research Council (MHRC), and the University of Manitoba. We thank The Nano Systems Fabrication Laboratory (NSFL) at the University of Manitoba, and the Manitoba Centre for Proteomics and Systems Biology for research support. We thank Saravanan Nandagopal for helping collect chemical reagents, Jing Li and Jiandong Wu for helping with microfluidic device preparation. D.W. thanks MHRC for a postdoctoral fellowship.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Lin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 297 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, D., Ma, X. & Lin, F. DC Electric Fields Direct Breast Cancer Cell Migration, Induce EGFR Polarization, and Increase the Intracellular Level of Calcium Ions. Cell Biochem Biophys 67, 1115–1125 (2013). https://doi.org/10.1007/s12013-013-9615-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9615-7

Keywords

Navigation