Skip to main content
Log in

Metastasis from human breast cancer cell lines

  • Metastasis models
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Summary

Immunodeficient animals, principally nude mice, when used in appropriately designed studies have been shown to be useful for the experimental analysis of human breast cancer metastasis. As with many other human tumors, the implantation of breast cancer cells into an anatomically appropriate tissue (the mammary fatpad) results in increased tumor take and incidence of metastasis for certain cell lines compared with subcutaneous injection. Testing a number of widely available human breast cancer cell lines identified the MDA-MB-435 cell line as the most metastatic, producing lung and lymph node metastases in a high proportion of nude and severe combined immunodeficient (SCID) mice after injection in the mammary fatpad. Mixing human breast cancer cells with normal fibroblasts or with Matrigel also increases the tumor incidence and growth rates in nude mice. Different routes of injection can be used to assess the ability of human breast cancer cells to form metastatic lesions in the lungs (i.v. injection), the liver (injection in the spleen), the brain (direct or intracarotid artery injection) and the bone marrow and bone (injection into the left ventricle of the heart). These different approaches demonstrate the potential of experimental studies of human breast cancer growth and metastasis using immunodeficient mice; this model is valuable for experiments that test the role of metastasis-associated genes and the efficacy of novel forms of therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marshall E: Breast cancer research: a special report. Search for a killer: focus shifts from fat to hormones. Science 259:618–619, 1993

    PubMed  Google Scholar 

  2. Hagemeister FB, Buzdar AU, Luna MA, Blumenschein GR: Causes of death in breast cancer: a clinicopathological study. Cancer 46:162–167, 1980

    PubMed  Google Scholar 

  3. Fidler IJ: Critical factors in the biology of human cancer metastasis: Twenty-eighth GHA Clowes Memorial Award lecture. Cancer Res 50:6130–6138, 1990

    PubMed  Google Scholar 

  4. Zetter BR: The cellular basis of site-specific tumor metastasis. N Engl J Med 322:605–612, 1993

    Google Scholar 

  5. Paget S: The distribution of secondary growths in cancer of the breast. Lancet i:571–573, 1889

    Google Scholar 

  6. Nicolson GL: Cancer progression and growth: relationship of paracrine and autocrine growth mechanisms to organ preference of metastasis. Exp Cell Res 204:171–180, 1993

    PubMed  Google Scholar 

  7. Albini A, Iwamoto Y, Kleinman HK, Maartin GR, Aaronson SA, Kozlowski JM, McEwan T: A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res 47:3239–3245, 1987

    PubMed  Google Scholar 

  8. Okada T, Okuno H, Mitsui Y: A novel in vitro assay system for transendothelial tumor cell invasion: significance of E-selectin and α3 integrin in the transendothelial invasion by HT1080 fibrosarcoma cell. Clin Exp Metastasis 12:305–314, 1994

    PubMed  Google Scholar 

  9. Price JE: Clonogenicity and experimental metastatic potential of spontaneous mouse mammary neoplasms. J Natl Cancer Inst 77:529–535, 1986

    PubMed  Google Scholar 

  10. Fidler IJ, Li L, Anathaswamy HN, Esumi N, Radinsky R, Price JE: Correlation of growth capacity of cells in hard agarose with successful transfection by the activated c-HA-ras oncogene and in vivo proliferation capacity at metastatic sites. Anticancer Res 11:17–26, 1991

    PubMed  Google Scholar 

  11. Li L, Price JE, Fan D, Zhang RD, Bucan CD, Fidler IJ: Correlation of growth capacity of human tumor cells in hard agarose with their in vivo proliferative capacity at specific metastatic sites. J Natl Cancer Inst 81:1406–1412, 1989

    PubMed  Google Scholar 

  12. Giovanella BC, Fogh J: The nude mouse in cancer research. Adv Cancer Res 44:69–120, 1985

    PubMed  Google Scholar 

  13. Giovanella BC, Varademan DM, Williams LJ, Taylor DJ, de Ipolyi PD, Greef PJ, Stehlin JS, Ullrich A, Cailleau R, Slamon DJ, Gary HE: Heterotransplantation of human breast carcinomas in nude mice. Correlation between successful heterotransplants, poor prognosis and amplification of the HER-2/NEU oncogene. Int J Cancer 47:66–71, 1991

    PubMed  Google Scholar 

  14. Sharkey FE, Fogh J: Metastasis of human tumors in athymic nude mice. Int J Cancer 24:733–738, 1979

    PubMed  Google Scholar 

  15. Fidler IJ: Rationale and methods for the use of nude mice to study the biology and therapy of human cancer metastasis. Cancer Metastasis Rev 5:29–49, 1986

    PubMed  Google Scholar 

  16. Stephenson RA, Dinney CPN, Gohji K, Ordonez NG, Killion JJ, Fidler IJ: Metastatic model for human prostate cancer using orthotopic implantation in nude mice. J Natl Cancer Inst 84:951–957, 1992

    PubMed  Google Scholar 

  17. Berry KK, Siegal GP, Boyd JA, Singh RK, Fidler IJ: Development of a metastatic model for human endometrial carcinoma using orthotopic implantation in nude mice. Int J Oncol 4:1163–1171, 1994

    Google Scholar 

  18. Cornil I, Man MS, Fernanadez B, Kerbel RS: Enhanced tumorigenicity, melanogenesis and metastasis of a human malignant melanoma observed after subdermal implantation in nude mice. J Natl Cancer Inst 81:938–944, 1989

    PubMed  Google Scholar 

  19. Kubota T: Metastatic models of human cancer xenografted in the nude mouse: the importance of orthotopic transplantation. J Cell Biochem 56:4–8, 1994

    PubMed  Google Scholar 

  20. DeOme KB, Faulkin LJ, Bern HA, Blair PB: Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fatpads of female C3H mice. Cancer Res 19:515–520, 1959

    PubMed  Google Scholar 

  21. Unemori EN, Ways N, Pitelka DR: Metastasis of murine mammary tumour lines from the mammary gland and ectopic sites. Br J Cancer 49:603–614, 1984

    PubMed  Google Scholar 

  22. Miller FR, McInerny D: Epithelial component of hosttumor interactions in the orthotopic preference of a mouse mammary tumor. Cancer Res 48:3698–3701, 1988

    PubMed  Google Scholar 

  23. Price JE, Polyzos A, Zhang RD, Daniels LM: Tumorigenicity and metastasis of human breast carcinoma cell lines in nude mice. Cancer Res 50:717–721, 1990

    PubMed  Google Scholar 

  24. Price JE, Zhang RD: Studies of human breast cancer metastasis using nude mice. Cancer Metastasis Rev 8:285–297, 1990

    PubMed  Google Scholar 

  25. Sweeney TM, Kibbey MC, Zain M, Fridman R, Kleinman HK: Basement membrane and the SKIVAV laminin-derived peptide promote tumor growth and metastases. Cancer Metastasis Rev 10:245–254, 1991

    PubMed  Google Scholar 

  26. Camps JL, Chang S-M, Hsu TC, Freeman MR, Hong S-J, Zhan HE, von Eschenbach AC, Chung LWK: Fibroblast mediated acceleration of human epithelial growth in vivo. Proc Natl Acad Sci USA 87:75–79, 1990

    PubMed  Google Scholar 

  27. Picard O, Rolland Y, Poupon MF: Fibroblast-dependent tumorigenicity of cells in nude mice: implications for implantation of metastases. Cancer Res 46:3290–3294, 1986

    PubMed  Google Scholar 

  28. Fridman R, Giaccone G, Kanemoto T, Martin GR, Gazdar AF, Mulshine JL: Reconstituted basement membrane (matrigel) and laminin can enhance the tumorigenicity and the drug resistance of small cell lung cancer cell lines. Proc Natl Acad Sci USA 87:6698–6702, 1990

    PubMed  Google Scholar 

  29. Wewer UM, Liotta LA, Jaye M, Riccca GA, Drohan WN, Claysmith AP, Rao CN, Wirth P, Coligan JE, Albrechtsen R, Mudryj M, Sobel ME: Altered levels of laminin receptor mRNA in various human carcinoma cells that have different abilities to bind laminin. Proc Natl Acad Sci USA 83:7137–7141, 1986

    PubMed  Google Scholar 

  30. van Roozendaal CEP, van Ooijen B, Klijn JGM, Claassen C, Eggermont AMM, Henzen-Logmans SC, Foekens JA: Stromal influences on breast cancer cell growth. Br J Cancer 65:77–81, 1992

    PubMed  Google Scholar 

  31. Mehta RR, Graves JM, Hart GD, Shilkaitis A, Gupta TKD: Growth and metastasis of human breast carcinomas with Matrigel in athymic mice. Breast Cancer Res Treat 25:65–71, 1993

    PubMed  Google Scholar 

  32. Meschter CL, Connolly JM, Rose DP: Influence of regional location of the inoculation site and dietary fat on the pathology of MDA-MB-435 human breast cancer cell-derived tumors grown in nude mice. Clin Exp Metastasis 10:167–173, 1992

    PubMed  Google Scholar 

  33. Kyriazis AA, Kyriazis AP: Preferential sites of growth of human tumors in nude mice following subcutaneous transplantation. Cancer Res 40:4509–4511, 1980

    PubMed  Google Scholar 

  34. Xie X, Brunner N, Jensen G, Albrectsen J, Gotthadsen B, Rygaard J: Comparative studies on the growth and metastatic behavior of xenografted human tumors. Clin Exp Metastasis 10:201–210, 1992

    PubMed  Google Scholar 

  35. Mule JJ, Jicha DL, Aebersol PM, Travis WD, Rosenberg SA: Disseminated human malignant melanoma in congenitally immune-deficient (bg/nu/xid) mice. J Natl Cancer Inst 83:350–355, 1991

    PubMed  Google Scholar 

  36. Garofalo A, Chirivi RGS, Scanziani E, Mayo JG, Vecchi A, Giavazzi R: Comparative study on the metastatic behavior of human tumors in nude, beige/nude/xid and severe combined immunodeficient mice. Invasion Metastasis 13:82–91, 1993

    PubMed  Google Scholar 

  37. Zhang RD, Fidler IJ, Price JE: Relative malignant potential of human breast carcinoma cell lines established from pleural effusions and a brain metastasis. Invasion Metastasis 11:204–215, 1991

    PubMed  Google Scholar 

  38. Tarin D, Price JE: Influence of microenvironment and vascular anatomy on "metastatic" colonization potential of mammary tumors. Cancer Res 41:3604–3609, 1981

    PubMed  Google Scholar 

  39. Price JE, Daniels LM, Campbell DE, Giavazzi R: Organ distribution of experimental metastases of a human colorectal carcinoma injected into nude mice. Clin Exp Metastasis 7:55–68, 1989

    PubMed  Google Scholar 

  40. Schackert G, Price JE, Bucana CD, Fidler IJ: Unique patterns of brain metastasis produced by different human carcinomas in athymic nude mice. Int J Cancer 44:892–897, 1989

    PubMed  Google Scholar 

  41. Zhang RD, Price JE, Schackert G, Itoh K, Fidler IJ: Malignant potential of cells isolated from lymph node or brain metastases of melanoma patients and implications for prognosis. Cancer Res 51:2029–2035, 1991

    PubMed  Google Scholar 

  42. Kjønniksen I, Winderen M, Bruland Ø, Fodstad Ø: Validity and usefulness of human tumor models established by intratibial cell inoculation in nude rats. Cancer Res 54:1715–1719, 1994

    PubMed  Google Scholar 

  43. Kjønniksen I, Breistøl K, Fodstad Ø: Site-dependent differences in sensitivity of LOX human melanoma tumors in nude rats to dacarbazine and mitozolomide, but not to doxorubicin and cisplatin. Cancer Res 52:1347–1351, 1992

    PubMed  Google Scholar 

  44. Shevrin DH, Kukreja SC, Ghosh L, Lad TE: Development of skeletal metastasis by human prostate cancer in athymic nude mice. Clin Exp Metastasis 6:401–409, 1988

    PubMed  Google Scholar 

  45. Arguello F, Baggs RB, Eskenazi AE, Duerst RE, Frantz CN: Vascular anatomy and organ-specific tumor growth as critical factors in the development of metastases and their distribution among organs. Int J Cancer 48:583–590, 1991

    PubMed  Google Scholar 

  46. Nakai M, Mundy G, Williams P, Boyce B, Yomeda T: A synthetic antagonist to laminin inhibits the formation of osteolytic metastases by human melanoma cells in nude mice. Cancer Res 52:5393–5399, 1992

    Google Scholar 

  47. Verschraegen CF, Kozielski T, Medoza J: Development of a bone metastasis model from a human breast carcinoma in the nude mouse [abstract]. Proc AACR 34:70 (A418), 1993

    Google Scholar 

  48. Hall DG, Stoica G: Characterization of brain and bone-metastasizing clones selected from an ethylnitrosourea-induced rat mammary carcinoma. Clin Exp Metastasis 12:283–295, 1994

    PubMed  Google Scholar 

  49. Haq M, Goltzman D, Tremblay G, Brodt P: Rat prostate adenocarcinoma cells disseminate to bone and adhere preferentially to bone marrow-derived endothelial cells. Cancer Res 52:4613–4619, 1992

    PubMed  Google Scholar 

  50. Rose DP, Connolly JM, Meschter CL: Effect of dietary fat on human breast cancer growth and lung metastasis in nude mice. J Natl Cancer Inst 83:1491–1495, 1991

    PubMed  Google Scholar 

  51. Bitonti AJ, Dumont JA, Bush TL, Cashman EA, Cross-Doersen DE, Wright PS, Matthews DP, McCarthy JR, Kaplan DA: Regression of human breast tumor xenografts in response to (E)-2′-deoxy-2′-(fluoromethylene)cytidine, an inhibitor of ribonucleoside diphosphate reductase. Cancer Res 54:1485–1490, 1994

    PubMed  Google Scholar 

  52. Steeg PS, de la Rosa A, Flatow U, MacDonald NJ, Benedict M, Leone A: Nm23 and breast cancer metastasis. Breast Cancer Res Treat 25:175–187, 1993

    PubMed  Google Scholar 

  53. Hennessey C, Henry JA, May FEB, Westley BR, Angus B, Lennard TWJ: Expression of the antimetastatic gene nm23 in human breast cancer: an association with good prognosis. J Natl Cancer Inst 83:281–285, 1991

    PubMed  Google Scholar 

  54. Sager R, Anisowicz JW, Neveu M, Liang P, Sotiropoulou G: Identification by differential display of alpha 6 integrin as a candidate tumor suppressor gene. FASEB J 7:964–970, 1993

    PubMed  Google Scholar 

  55. Zou Z, Anisowicz JW, Hendrix MJC, Thor A, Neveu M, Sheng S, Rafidi K, Seftor E, Sager R: Maspin, a serpin with tumor-suppressing activity in human mammary epithelial cells. Science 263:526–529, 1994

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Price, J.E. Metastasis from human breast cancer cell lines. Breast Cancer Res Tr 39, 93–102 (1996). https://doi.org/10.1007/BF01806081

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01806081

Key words

Navigation