Skip to main content

Advertisement

Log in

Role of MARK2 in the nervous system and cancer

  • Review Article
  • Published:
Cancer Gene Therapy Submit manuscript

Abstract

Microtubule-Affinity Regulating Kinase 2 (MARK2), a member of the serine/threonine protein kinase family, phosphorylates microtubule-associated proteins, playing a crucial role in cancer and neurodegenerative diseases. This kinase regulates multiple signaling pathways, including the WNT, PI3K/AKT/mTOR (PAM), and NF-κB pathways, potentially linking it to cancer and the nervous system. As a crucial regulator of the PI3K/AKT/mTOR pathway, the loss of MARK2 inhibits the growth and metastasis of cancer cells. MARK2 is involved in the excessive phosphorylation of tau, thus influencing neurodegeneration. Therefore, MARK2 emerges as a promising drug target for the treatment of cancer and neurodegenerative diseases. Despite its significance, the development of inhibitors for MARK2 remains limited. In this review, we aim to present detailed information on the structural features of MARK2 and its role in various signaling pathways associated with cancer and neurodegenerative diseases. Additionally, we further characterize the therapeutic potential of MARK2 in neurodegenerative diseases and cancer, and hope to facilitate basic research on MARK2 and the development of inhibitors targeting MARK2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: MARK2 gene changes in cancer.
Fig. 2: 2D and 3D structure of MARK2.
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Gu X, Jia C, Wang J. Advances in understanding the molecular mechanisms of neuronal polarity. Mol Neurobiol. 2023;60:2851–70.

    Article  CAS  PubMed  Google Scholar 

  2. Lafanechère L. The microtubule cytoskeleton: an old validated target for novel therapeutic drugs. Front Pharm. 2022;13:969183.

    Article  Google Scholar 

  3. Duly AMP, Kao FCL, Teo WS, Kavallaris M. βIII-tubulin gene regulation in health and disease. Front Cell Dev Biol. 2022;10:851542.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Adrian M, Weber M, Tsai M-C, Glock C, Kahn OI, Phu L, et al. Polarized microtubule remodeling transforms the morphology of reactive microglia and drives cytokine release. Nat Commun. 2023;14:6322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Duan D, Lyu W, Chai P, Ma S, Wu K, Wu C, et al. Abl2 repairs microtubules and phase separates with tubulin to promote microtubule nucleation. Curr Biol. 2023;33:4582–98.

    Article  CAS  PubMed  Google Scholar 

  6. Munro EM. PAR proteins and the cytoskeleton: a marriage of equals. Curr Opin Cell Biol. 2006;18:86–94.

    Article  CAS  PubMed  Google Scholar 

  7. Drewes G, Ebneth A, Preuss U, Mandelkow E-M, Mandelkow E. MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell. 1997;89:297–308.

    Article  CAS  PubMed  Google Scholar 

  8. Marx A, Nugoor C, Panneerselvam S, Mandelkow E. Structure and function of polarity-inducing kinase family MARK/Par-1 within the branch of AMPK/Snf1-related kinases. FASEB J. 2010;24:1637–48.

    Article  CAS  PubMed  Google Scholar 

  9. Biernat J, Wu YZ, Timm T, Zheng-Fischhofer Q, Mandelkow E, Meijer L, et al. Protein kinase MARK/PAR-1 is required for neurite outgrowth and establishment of neuronal polarity. Mol Biol Cell. 2002;13:4013–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dejanovic B, Sheng M, Hanson JE. Targeting synapse function and loss for treatment of neurodegenerative diseases. Nat Rev Drug Discov. 2024;23:23–42.

    Article  CAS  PubMed  Google Scholar 

  11. Younas N, Saleem T, Younas A, Zerr I. Nuclear face of Tau: an inside player in neurodegeneration. Acta Neuropathol Commun. 2023;11:196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen YM, Wang QJ, Hu HS, Yu PC, Zhu J, Drewes G, et al. Microtubule affinity-regulating kinase 2 functions downstream of the PAR-3/PAR-6/atypical PKC complex in regulating hippocampal neuronal polarity. Proc Natl Acad Sci USA. 2006;103:8534–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gu GJ, Wu D, Lund H, Sunnemark D, Kvist AJ, Milner R, et al. Elevated MARK2-dependent phosphorylation of Tau in Alzheimer’s disease. J Alzheimer’s Dis. 2013;33:699–713.

    Article  CAS  Google Scholar 

  14. Zulfiqar B, Farooq A, Kanwal S, Asghar K. Immunotherapy and targeted therapy for lung cancer: current status and future perspectives. Front Pharm. 2022;13:1035171.

    Article  CAS  Google Scholar 

  15. Nguyen K, Hebert K, McConnell E, Cullen N, Cheng T, Awoyode S, et al. LKB1 signaling and patient survival outcomes in hepatocellular carcinoma. Pharm Res. 2023;192:106757.

    Article  CAS  Google Scholar 

  16. Fischer GM, Gliem TJ, Greipp PT, Rosenberg AE, Folpe AL, Hornick JL. Anaplastic kaposi sarcoma: a clinicopathologic and molecular genetic analysis. Mod Pathol. 2023;36:100191.

    Article  PubMed  Google Scholar 

  17. Zamperone A, Cohen D, Stein M, Viard C, Müsch A. Inhibition of polarity-regulating kinase PAR1b contributes to Helicobacter pylori inflicted DNA Double Strand Breaks in gastric cells. Cell Cycle (Georget, Tex). 2019;18:299–311.

    Article  CAS  Google Scholar 

  18. Sapir T, Sapoznik S, Levy T, Finkelshtein D, Shmueli A, Timm T, et al. Accurate balance of the polarity kinase MARK2/Par-1 is required for proper cortical neuronal migration. J Neurosci. 2008;28:5710–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Matenia D, Mandelkow EM. Emerging modes of PINK1 signaling: another task for MARK2. Front Mol Neurosci. 2014;7:37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu L, Sun Z, Wei X, Tan H, Kong P, Li Z, et al. The inhibition of MARK2 suppresses cisplatin resistance of osteosarcoma stem cells by regulating DNA damage and repair. J Bone Oncol. 2020;23:100290.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wei X, Xu L, Jeddo SF, Li K, Li X, Li J. MARK2 enhances cisplatin resistance via PI3K/AKT/NF-κB signaling pathway in osteosarcoma cells. Am J Transl Res. 2020;12:1807–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Klutho PJ, Costanzo-Garvey DL, Lewis RE. Regulation of glucose homeostasis by KSR1 and MARK2. PLoS One. 2011;6:e29304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pasapera AM, Heissler SM, Eto M, Nishimura Y, Fischer RS, Thiam HR, et al. MARK2 regulates directed cell migration through modulation of myosin II contractility and focal adhesion organization. Curr Biol. 2022;32:12–2718.e6.

    Article  Google Scholar 

  24. Mishra JP, Cohen D, Zamperone A, Nesic D, Muesch A, Stein M. CagA of Helicobacter pylori interacts with and inhibits the serine-threonine kinase PRK2. Cell Microbiol. 2015;17:1670–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lu H, Murata-Kamiya N, Saito Y, Hatakeyama M. Role of partitioning-defective 1/microtubule affinity-regulating kinases in the morphogenetic activity of Helicobacter pylori CagA. J Biol Chem. 2009;284:23024–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Imai S, Ooki T, Murata-Kamiya N, Komura D, Tahmina K, Wu W, et al. Helicobacter pylori CagA elicits BRCAness to induce genome instability that may underlie bacterial gastric carcinogenesis. Cell Host Microbe. 2021;29:941–58.

    Article  CAS  PubMed  Google Scholar 

  27. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298:1912–34.

    Article  CAS  PubMed  Google Scholar 

  28. Courseaux A, Fernandes M, Grosgeorge J, Inglis J, Raynaud SD, Gaudray P. Human EMK1 is located on 11q12-q13, close to COX8 and FTH1. Mamm Genome. 1995;6:311–2.

    Article  CAS  PubMed  Google Scholar 

  29. Panneerselvam S, Marx A, Mandelkow EM, Mandelkow E. Structure of the catalytic and ubiquitin-associated domains of the protein kinase MARK/Par-1. Structure. 2006;14:173–83.

    Article  CAS  PubMed  Google Scholar 

  30. Yoshida H, Goedert M. Phosphorylation of microtubule-associated protein tau by AMPK-related kinases. J Neurochem. 2012;120:165–76.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang S, Wang C, Lu J, Ma X, Liu Z, Li D, et al. In-Cell NMR Study of Tau and MARK2 Phosphorylated Tau. Int J Mol Sci. 2018;20:90

    Article  PubMed  PubMed Central  Google Scholar 

  32. McDonald JA. Canonical and noncanonical roles of Par-1/MARK kinases in cell migration. Int Rev Cell Mol Biol. 2014;312:169–99.

    Article  PubMed  Google Scholar 

  33. Timm T, Li X-Y, Biernat J, Jiao J, Mandelkow E, Vandekerckhove J, et al. MARKK, a Ste20-like kinase, activates the polarity-inducing kinase MARK/PAR-1. EMBO J. 2003;22:5090–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lizcano JM, Göransson O, Toth R, Deak M, Morrice NA, Boudeau J, et al. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J. 2004;23:833–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Watkins JL, Lewandowski KT, Meek SEM, Storz P, Toker A, Piwnica-Worms H. Phosphorylation of the Par-1 polarity kinase by protein kinase D regulates 14-3-3 binding and membrane association. Proc Natl Acad Sci USA. 2008;105:18378–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Deng S-S, Wu L-Y, Wang Y-C, Cao P-R, Xu L, Li Q-R, et al. Protein kinase A rescues microtubule affinity-regulating kinase 2-induced microtubule instability and neurite disruption by phosphorylating serine 409. J Biol Chem. 2015;290:3149–60.

    Article  CAS  PubMed  Google Scholar 

  37. Shiomi K, Uchida H, Keino-Masu K, Masu M. Masu M. Ccd1, a novel protein with a DIX domain, is a positive regulator in the Wnt signaling during zebrafish neural patterning. Curr Biol. 2003;13:73–7.

    Article  CAS  PubMed  Google Scholar 

  38. Rosso SB, Sussman D, Wynshaw-Boris A, Salinas PC. Wnt signaling through Dishevelled, Rac and JNK regulates dendritic development. Nat Neurosci. 2005;8:34–42.

    Article  CAS  PubMed  Google Scholar 

  39. Terabayashi T, Itoh TJ, Yamaguchi H, Yoshimura Y, Funato Y, Ohno S, et al. Polarity-regulating kinase partitioning-defective 1/microtubule affinity-regulating kinase 2 negatively regulates development of dendrites on hippocampal neurons. J Neurosci Off J Soc Neurosci. 2007;27:13098–107.

    Article  CAS  Google Scholar 

  40. King LE, Zhang H-H, Gould CM, Thomas DW, Whitehead LW, Simpson KJ, et al. Genes regulating membrane-associated E-cadherin and proliferation in adenomatous polyposis coli mutant colon cancer cells: High content siRNA screen. PloS One. 2020;15:e0240746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Elbert M, Cohen D, Müsch A. PAR1b promotes cell-cell adhesion and inhibits dishevelled-mediated transformation of Madin-Darby canine kidney cells. Mol Biol Cell. 2006;17:3345–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Terabayashi T, Funato Y, Miki H. Dishevelled-induced phosphorylation regulates membrane localization of Par1b. Biochem Biophys Res Commun. 2008;375:660–5.

    Article  CAS  PubMed  Google Scholar 

  43. Chen S, Zhang Q, Bai B, Ouyang S, Bao Y, Li H, et al. MARK2/Par1b insufficiency attenuates DVL gene transcription via histone deacetylation in lumbosacral spina bifida. Mol Neurobiol. 2017;54:6304–16.

    Article  CAS  PubMed  Google Scholar 

  44. Mamidi A, Inui M, Manfrin A, Soligo S, Enzo E, Aragona M, et al. Signaling crosstalk between TGFβ and Dishevelled/Par1b. Cell Death Differ. 2012;19:1689–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nishimura Y, Applegate K, Davidson MW, Danuser G, Waterman CM. Automated screening of microtubule growth dynamics identifies MARK2 as a regulator of leading edge microtubules downstream of Rac1 in migrating cells. PloS One. 2012;7:e41413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ahmad I, Hoque M, Alam SSM, Zughaibi TA, Tabrez S. Curcumin and plumbagin synergistically target the PI3K/Akt/mTOR pathway: a prospective role in cancer treatment. Int J Mol Sci. 2023;24:6651.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chow LML, Baker SJ. PTEN function in normal and neoplastic growth. Cancer Lett. 2006;241:184–96.

    Article  CAS  PubMed  Google Scholar 

  48. Glaviano A, Foo ASC, Lam HY, Yap KCH, Jacot W, Jones RH, et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer. 2023;22:138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cai Y, Xu G, Wu F, Michelini F, Chan C, Qu X, et al. Genomic alterations in PIK3CA-mutated breast cancer result in mTORC1 activation and limit the sensitivity to PI3Kα inhibitors. Cancer Res. 2021;81:2470–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dickey CA, Koren J, Zhang YJ, Xu YF, Jinwal UK, Birnbaum MJ, et al. Akt and CHIP coregulate tau degradation through coordinated interactions. Proc Natl Acad Sci USA. 2008;105:3622–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xu Z, Mei J, Tan Y. Baicalin attenuates DDP (cisplatin) resistance in lung cancer by downregulating MARK2 and p-Akt. Int J Oncol. 2017;50:93–100.

    Article  CAS  PubMed  Google Scholar 

  52. Yoshimura Y, Terabayashi T, Miki H. Par1b/MARK2 phosphorylates kinesin-like motor protein GAKIN/KIF13B to regulate axon formation. Mol Cell Biol. 2010;30:2206–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tsay A, Wang J-C. The role of PIK3R1 in metabolic function and insulin sensitivity. Int J Mol Sci. 2023;24:12665.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Venkateswarlu K, Hanada T, Chishti AH. Centaurin-alpha1 interacts directly with kinesin motor protein KIF13B. J Cell Sci. 2005;118:2471–84.

    Article  CAS  PubMed  Google Scholar 

  55. Milman P, Fu A, Screaton RA, Woulfe JM. Depletion of intranuclear rodlets in mouse models of diabetes. Endocr Pathol. 2010;21:230–5.

    Article  CAS  PubMed  Google Scholar 

  56. Ponnusamy L, Natarajan SR, Manoharan R. MARK2 potentiate aerobic glycolysis-mediated cell growth in breast cancer through regulating mTOR/HIF-1α and p53 pathways. J Cell Biochem. 2022;123:759–71.

    Article  CAS  PubMed  Google Scholar 

  57. Shi Y, Zhao T, Yang X, Sun B, Li Y, Duan J, et al. PM2.5-induced alteration of DNA methylation and RNA-transcription are associated with inflammatory response and lung injury. Sci Total Environ. 2019;650:908–21.

    Article  CAS  PubMed  Google Scholar 

  58. Hueso M, Beltran V, Moreso F, Ciriero E, Fulladosa X, Grinyó JM, et al. Splicing alterations in human renal allografts: detection of a new splice variant of protein kinase Par1/Emk1 whose expression is associated with an increase of inflammation in protocol biopsies of transplanted patients. Biochim Biophys Acta. 2004;1689:58–65.

    Article  CAS  PubMed  Google Scholar 

  59. Zhang L, Ludden CM, Cullen AJ, Tew KD, Branco de Barros AL, Townsend DM. Nuclear factor kappa B expression in non-small cell lung cancer. Biomed Pharmacother. 2023;167:115459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shi P, Xu J, Cui H. The recent research progress of NF-κB signaling on the proliferation, migration, invasion, immune escape and drug resistance of glioblastoma. Int J Mol Sci. 2023;24:10337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Oh A, Pardo M, Rodriguez A, Yu C, Nguyen L, Liang O, et al. NF-κB signaling in neoplastic transition from epithelial to mesenchymal phenotype. Cell Commun Signal. 2023;21:291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Xu G, Ge Y, Tao X, Gao Q, Liang X. MARK2 inhibits the growth of HeLa cells through AMPK and reverses epithelial-mesenchymal transition. Oncol Rep. 2017;38:237–44.

    Article  CAS  PubMed  Google Scholar 

  63. Cancro MP. Living in context with the survival factor BAFF. Immunity. 2008;28:300–1.

    Article  CAS  PubMed  Google Scholar 

  64. Hubaux R, Thu KL, Vucic EA, Pikor LA, Kung SHY, Martinez VD, et al. Microtubule affinity-regulating kinase 2 is associated with DNA damage response and cisplatin resistance in non-small cell lung cancer. Int J Cancer. 2015;137:2072–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Calcagno SR, Li S, Shahid MW, Wallace MB, Leitges M, Fields AP, et al. Protein kinase C iota in the intestinal epithelium protects against dextran sodium sulfate-induced colitis. Inflamm Bowel Dis. 2011;17:1685–97.

    Article  PubMed  Google Scholar 

  66. Mashukova A, Forteza R, Shah VN, Salas PJ. The cell polarity kinase Par1b/MARK2 activation selects specific NF-kB transcripts via phosphorylation of core mediator Med17/TRAP80. Mol Biol Cell. 2021;32:690–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Saadat I, Higashi H, Obuse C, Umeda M, Murata-Kamiya N, Saito Y, et al. Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature. 2007;447:330–3.

    Article  CAS  PubMed  Google Scholar 

  68. Hayashi K, Suzuki A, Ohno S. PAR-1/MARK: a kinase essential for maintaining the dynamic state of microtubules. Cell Struct Funct. 2012;37:21–5.

    Article  CAS  PubMed  Google Scholar 

  69. Goldstein B, Macara IG. The PAR proteins: fundamental players in animal cell polarization. Dev Cell. 2007;13:609–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mejia-Gervacio S, Murray K, Sapir T, Belvindrah R, Reiner O, Lledo P-M. MARK2/Par-1 guides the directionality of neuroblasts migrating to the olfactory bulb. Mol Cell Neurosci. 2012;49:97–103.

    Article  CAS  PubMed  Google Scholar 

  71. Uoselis L, Nguyen TN, Lazarou M. Mitochondrial degradation: mitophagy and beyond. Mol Cell. 2023;83:3404–20.

    Article  CAS  PubMed  Google Scholar 

  72. Matenia D, Hempp C, Timm T, Eikhof A, Mandelkow E-M. Microtubule affinity-regulating kinase 2 (MARK2) turns on phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1) at Thr-313, a mutation site in Parkinson disease: effects on mitochondrial transport. J Biol Chem. 2012;287:8174–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zuo Y-C, Xiong N-X, Shen J-Y, Yu H, Huang Y-Z, Zhao H-Y. MARK2 rescues Nogo-66-induced inhibition of neurite outgrowth via regulating microtubule-associated proteins in neurons in vitro. Neurochem Res. 2016;41:2958–68.

    Article  CAS  PubMed  Google Scholar 

  74. Reeks C, Screaton RA. Identification of Kinase-substrate Pairs using high throughput screening. J Vis Exp. 2015:e53152.

  75. Deng Q, Wu C, Parker E, Liu TC-Y, Duan R, Yang L. Microglia and astrocytes in Alzheimer’s disease: significance and summary of recent advances. Aging Dis. 2023; Preprint. https://doi.org/10.14336/AD.2023.0907.

  76. Zhu H, Guan A, Liu J, Peng L, Zhang Z, Wang S. Noteworthy perspectives on microglia in neuropsychiatric disorders. J Neuroinflamm. 2023;20:223.

    Article  Google Scholar 

  77. DiBona VL, Zhu W, Shah MK, Rafalia A, Ben Cheikh H, Crockett DP, et al. Loss of Par1b/MARK2 primes microglia during brain development and enhances their sensitivity to injury. J Neuroinflamm. 2019;16:11.

    Article  Google Scholar 

  78. Ocañas SR, Pham KD, Cox JEJ, Keck AW, Ko S, Ampadu FA, et al. Microglial senescence contributes to female-biased neuroinflammation in the aging mouse hippocampus: implications for Alzheimer’s disease. J Neuroinflamm. 2023;20:188.

    Article  Google Scholar 

  79. Guneykaya D, Ugursu B, Logiacco F, Popp O, Feiks MA, Meyer N, et al. Sex-specific microglia state in the Neuroligin-4 knock-out mouse model of autism spectrum disorder. Brain Behav Immun. 2023;111:61–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Müller J, Ritt DA, Copeland TD, Morrison DK. Functional analysis of C-TAK1 substrate binding and identification of PKP2 as a new C-TAK1 substrate. EMBO J. 2003;22:4431–42.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wu Q, DiBona VL, Bernard LP, Zhang H. The polarity protein partitioning-defective 1 (PAR-1) regulates dendritic spine morphogenesis through phosphorylating postsynaptic density protein 95 (PSD-95). J Biol Chem. 2012;287:30781–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Levy AM, Gomez-Puertas P, Tümer Z. Neurodevelopmental disorders associated with PSD-95 and its interaction partners. Int J Mol Sci. 2022;23:4390.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Thies E, Mandelkow E-M. Missorting of tau in neurons causes degeneration of synapses that can be rescued by the kinase MARK2/Par-1. J Neurosci Off J Soc Neurosci. 2007;27:2896–907.

    Article  CAS  Google Scholar 

  84. Lin J, Hou KK, Piwnica-Worms H, Shaw AS. The polarity protein Par1b/EMK/MARK2 regulates T cell receptor-induced microtubule-organizing center polarization. J Immunol. 2009;183:1215–21.

    Article  CAS  PubMed  Google Scholar 

  85. Segu L, Pascaud A, Costet P, Darmon M, Buhot M-C. Impairment of spatial learning and memory in ELKL Motif Kinase1 (EMK1/MARK2) knockout mice. Neurobiol Aging. 2008;29:231–40.

    Article  CAS  PubMed  Google Scholar 

  86. Schwalbe M, Biernat J, Bibow S, Ozenne V, Jensen MR, Kadavath H, et al. Phosphorylation of human Tau protein by microtubule affinity-regulating kinase 2. Biochemistry. 2013;52:9068–79.

    Article  CAS  PubMed  Google Scholar 

  87. Drange OK, Smeland OB, Shadrin AA, Finseth PI, Witoelar A, Frei O, et al. Genetic overlap between Alzheimer’s disease and bipolar disorder implicates the MARK2 and VAC14 genes. Front Neurosci. 2019;13:220.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Zhou X, Wang L, Xiao W, Su Z, Zheng C, Zhang Z, et al. Memantine Improves Cognitive Function and Alters Hippocampal and Cortical Proteome in Triple Transgenic Mouse Model of Alzheimer’s Disease. Exp Neurobiol. 2019;28:390–403.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Zhang T, Xia Y, Hu L, Chen D, Gan C-L, Wang L, et al. Death-associated protein kinase 1 mediates Aβ42 aggregation-induced neuronal apoptosis and tau dysregulation in Alzheimer’s disease. Int J Biol Sci. 2022;18:693–706.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Wu PR, Tsai PI, Chen GC, Chou HJ, Huang YP, Chen YH, et al. DAPK activates MARK1/2 to regulate microtubule assembly, neuronal differentiation, and tau toxicity. Cell Death Differ. 2011;18:1507–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Duan D-X, Chai G-S, Ni Z-F, Hu Y, Luo Y, Cheng X-S, et al. Phosphorylation of tau by death-associated protein kinase 1 antagonizes the kinase-induced cell apoptosis. J Alzheimer’s Dis : JAD. 2013;37:795–808.

    Article  CAS  PubMed  Google Scholar 

  92. Aghazadeh N, Beilankouhi EAV, Fakhri F, Gargari MK, Bahari P, Moghadami A, et al. Involvement of heat shock proteins and parkin/α-synuclein axis in Parkinson’s disease. Mol Biol Rep. 2022;49:11061–70.

    Article  CAS  PubMed  Google Scholar 

  93. Zhang S, Zhu Y, Lu J, Liu Z, Lobato AG, Zeng W, et al. Specific binding of Hsp27 and phosphorylated Tau mitigates abnormal Tau aggregation-induced pathology. Elife. 2022;11.

  94. Santiago JA, Karthikeyan M, Lackey M, Villavicencio D, Potashkin JA. Diabetes: a tipping point in neurodegenerative diseases. Trends Mol Med. 2023;29:1029–44.

    Article  CAS  PubMed  Google Scholar 

  95. Lennerz JK, Hurov JB, White LS, Lewandowski KT, Prior JL, Planer GJ, et al. Loss of Par-1a/MARK3/C-TAK1 kinase leads to reduced adiposity, resistance to hepatic steatosis, and defective gluconeogenesis. Mol Cell Biol. 2010;30:5043–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Razidlo GL, Kortum RL, Haferbier JL, Lewis RE. Phosphorylation regulates KSR1 stability, ERK activation, and cell proliferation. J Biol Chem. 2004;279:47808–14.

    Article  CAS  PubMed  Google Scholar 

  97. Alam M, Ahmed S, Abid M, Hasan GM, Islam A, Hassan MI. Therapeutic targeting of microtubule affinity-regulating kinase 4 in cancer and neurodegenerative diseases. J Cell Biochem. 2023;124:1223–40.

    Article  CAS  PubMed  Google Scholar 

  98. Lou X, Deng W, Shuai L, Chen Y, Xu M, Xu J, et al. RAI2 acts as a tumor suppressor with functional significance in gastric cancer. Aging (Albany NY). 2023;15:11831–44.

    Article  PubMed  Google Scholar 

  99. Hou W, Zhao Y, Zhu H. Predictive biomarkers for immunotherapy in gastric cancer: current status and emerging prospects. Int J Mol Sci. 2023;24:15321.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Hashi K, Murata-Kamiya N, Varon C, Mégraud F, Dominguez-Bello MG, Hatakeyama M. Natural variant of the Helicobacter pylori CagA oncoprotein that lost the ability to interact with PAR1. Cancer Sci. 2014;105:245–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tegtmeyer N, Wessler S, Backert S. Role of the cag-pathogenicity island encoded type IV secretion system in Helicobacter pylori pathogenesis. FEBS J. 2011;278:1190–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hashi K, Imai C, Yahara K, Tahmina K, Hayashi T, Azuma T, et al. Evaluating the origin and virulence of a Helicobacter pylori cagA-positive strain isolated from a non-human primate. Sci Rep. 2018;8:15981.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Nesić D, Miller MC, Quinkert ZT, Stein M, Chait BT, Stebbins CE. Helicobacter pylori CagA inhibits PAR1-MARK family kinases by mimicking host substrates. Nat Struct Mol Biol. 2010;17:130–2.

    Article  PubMed  Google Scholar 

  104. Hatakeyama M. Helicobacter pylori and gastric carcinogenesis. J Gastroenterol. 2009;44:239–48.

    Article  CAS  PubMed  Google Scholar 

  105. Zeaiter Z, Cohen D, Müsch A, Bagnoli F, Covacci A, Stein M. Analysis of detergent-resistant membranes of Helicobacter pylori infected gastric adenocarcinoma cells reveals a role for MARK2/Par1b in CagA-mediated disruption of cellular polarity. Cell Microbiol. 2008;10:781–94.

    Article  CAS  PubMed  Google Scholar 

  106. Nishikawa H, Hayashi T, Arisaka F, Senda T, Hatakeyama M. Impact of structural polymorphism for the Helicobacter pylori CagA oncoprotein on binding to polarity-regulating kinase PAR1b. Sci Rep. 2016;6:30031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lu H-S, Saito Y, Umeda M, Murata-Kamiya N, Zhang H-M, Higashi H, et al. Structural and functional diversity in the PAR1b/MARK2-binding region of Helicobacter pylori CagA. Cancer Sci. 2008;99:2004–11.

    Article  CAS  PubMed  Google Scholar 

  108. Mohammed Zaidh S, Aher KB, Bhavar GB, Irfan N, Ahmed HN, Ismail Y. Genes adaptability and NOL6 protein inhibition studies of fabricated flavan-3-ols lead skeleton intended to treat breast carcinoma. Int J Biol Macromol. 2023;258:127661.

    Article  PubMed  Google Scholar 

  109. Nguyen K, Rivera A, Alzoubi M, Wathieu H, Dong S, Yousefi H, et al. Evaluation of liver kinase B1 downstream signaling expression in various breast cancers and relapse free survival after systemic chemotherapy treatment. Oncotarget. 2021;12:1110–5.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Abduh MS. Anticancer analysis of CD44 targeted cyclosporine loaded thiolated chitosan nanoformulations for sustained release in triple-negative breast cancer. Int J Nanomed. 2023;18:5713–32.

    Article  CAS  Google Scholar 

  111. Ooki T, Murata-Kamiya N, Takahashi-Kanemitsu A, Wu W, Hatakeyama M. High-molecular-weight hyaluronan is a hippo pathway ligand directing cell density-dependent growth inhibition via PAR1b. Dev Cell. 2019;49:590–604.e9.

    Article  CAS  PubMed  Google Scholar 

  112. Juric D, Janku F, Rodón J, Burris HA, Mayer IA, Schuler M, et al. Alpelisib plus fulvestrant in PIK3CA-altered and PIK3CA-wild-type estrogen receptor-positive advanced breast cancer: a phase 1b clinical trial. JAMA Oncol. 2019;5:e184475.

    Article  PubMed  Google Scholar 

  113. Lilienthal I, Herold N. Targeting molecular mechanisms underlying treatment efficacy and resistance in osteosarcoma: a review of current and future strategies. Int J Mol Sci. 2020;21:6885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Pasapera AM, Plotnikov SV, Fischer RS, Case LB, Egelhoff TT, Waterman CM. Rac1-dependent phosphorylation and focal adhesion recruitment of myosin IIA regulates migration and mechanosensing. Curr Biol. 2015;25:175–86.

    Article  CAS  PubMed  Google Scholar 

  115. Smrke A, Anderson PM, Gulia A, Gennatas S, Huang PH, Jones RL. Future directions in the treatment of osteosarcoma. Cells. 2021;10:172.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Marshall EA, Ng KW, Anderson C, Hubaux R, Thu KL, Lam WL, et al. Gene expression analysis of microtubule affinity-regulating kinase 2 in non-small cell lung cancer. Genom Data. 2015;6:145–8.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Natarajan SR, Ponnusamy L, Manoharan R. MARK2/4 promotes Warburg effect and cell growth in non-small cell lung carcinoma through the AMPKα1/mTOR/HIF-1α signaling pathway. Biochim Biophys Acta Mol Cell Res. 2022;1869:119242.

    Article  CAS  PubMed  Google Scholar 

  118. Hu Q, Liao Y, Cao J, Fang B, Yun SY, Kinose F, et al. Differential chemoproteomics reveals MARK2/3 as cell migration-relevant targets of the ALK inhibitor brigatinib. Chembiochem. 2023;24:e202200766.

    Article  CAS  PubMed  Google Scholar 

  119. Wu Z-Z, Lu H-P, Chao CCK. Identification and functional analysis of genes which confer resistance to cisplatin in tumor cells. Biochem Pharm. 2010;80:262–76.

    Article  CAS  PubMed  Google Scholar 

  120. Shakur A, Lee JYJ, Freeman S. An update on the role of MRI in treatment stratification of patients with cervical cancer. Cancers (Basel). 2023;15:5105.

    Article  PubMed  Google Scholar 

  121. Panicker S, Chengizkhan G, Gor R, Ramachandran I, Ramalingam S. Exploring the relationship between fusion genes and MicroRNAs in cancer. Cells. 2023;12:2467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hou S, Zhang X, Yang J. Long non-coding RNA ABHD11-AS1 facilitates the progression of cervical cancer by competitively binding to miR-330-5p and upregulating MARK2. Exp Cell Res. 2022;410:112929.

    Article  CAS  PubMed  Google Scholar 

  123. Storz P. Roles of differently polarized macrophages in the initiation and progressionof pancreatic cancer. Front Immunol. 2023;14:1237711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lapierre LA, Manning EH, Mitchell KM, Caldwell CM, Goldenring JR. Interaction of phosphorylated Rab11-FIP2 with Eps15 regulates apical junction composition. Mol Biol Cell. 2017;28:1088–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lewandowski KT, Piwnica-Worms H. Phosphorylation of the E3 ubiquitin ligase RNF41 by the kinase Par-1b is required for epithelial cell polarity. J Cell Sci. 2014;127:315–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Cech NB, Oberlies NH. From plant to cancer drug: lessons learned from the discovery of taxol. Nat Prod Rep. 2023;40:1153–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zeng Y, Yin L, Zhou J, Zeng R, Xiao Y, Black AR, et al. MARK2 regulates chemotherapeutic responses through class IIa HDAC-YAP axis in pancreatic cancer. Oncogene. 2022;41:3859–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Jiang X, Lu Y, Xie S, Chen Y, Liu X, Li S, et al. miR-624 accelerates the growth of liver cancer cells by inhibiting EMC3. Noncoding RNA Res. 2023;8:641–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Redekar SS, Varma SL, Bhattacharjee A. Gene co-expression network construction and analysis for identification of genetic biomarkers associated with glioblastoma multiforme using topological findings. J Egypt Natl Canc Inst. 2023;35:22.

    Article  PubMed  Google Scholar 

  130. Zheng J, Li X-D, Wang P, Liu X-B, Xue Y-X, Hu Y, et al. CRNDE affects the malignant biological characteristics of human glioma stem cells by negatively regulating miR-186. Oncotarget. 2015;6:25339–55.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Anwar S, Shahwan M, Hasan GM, Islam A, Hassan MI. Microtubule-affinity regulating kinase 4: a potential drug target for cancer therapy. Cell Signal. 2022;99:110434.

    Article  CAS  PubMed  Google Scholar 

  132. Marrocco I, Yarden Y. Resistance of lung cancer to EGFR-specific kinase inhibitors: activation of bypass pathways and endogenous mutators. Cancers (Basel). 2023;15:5009.

    Article  PubMed  Google Scholar 

  133. Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47:W556–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Hubei University of Science and Technology (2021WG01; 2022TNB02) to FC, and Department of Education of Hubei Province (T201921) to FC, and Natural Science Foundation of Hubei Province (2023AFD111) to FC.

Author information

Authors and Affiliations

Authors

Contributions

YL: writing – original draft; RZ: methodology; FC: writing – original draft, funding acquisition.

Corresponding authors

Correspondence to Ruyi Zhang or Fei Cai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, Y., Zhang, R. & Cai, F. Role of MARK2 in the nervous system and cancer. Cancer Gene Ther 31, 497–506 (2024). https://doi.org/10.1038/s41417-024-00737-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-024-00737-z

  • Springer Nature America, Inc.

Navigation