Skip to main content

Advertisement

Log in

Low Frequency Pulsed Electromagnetic Field Affects Proliferation, Tissue-Specific Gene Expression, and Cytokines Release of Human Tendon Cells

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Low frequency pulsed electromagnetic field (PEMF) has proven to be effective in the modulation of bone and cartilage tissue functional responsiveness, but its effect on tendon tissue and tendon cells (TCs) is still underinvestigated. PEMF treatment (1.5 mT, 75 Hz) was assessed on primary TCs, harvested from semitendinosus and gracilis tendons of eight patients, under different experimental conditions (4, 8, 12 h). Quantitative PCR analyses were conducted to identify the possible effect of PEMF on tendon-specific gene transcription (scleraxis, SCX and type I collagen, COL1A1); the release of pro- and anti-inflammatory cytokines and of vascular endothelial growth factor (VEGF) was also assessed. Our findings show that PEMF exposure is not cytotoxic and is able to stimulate TCs’ proliferation. The increase of SCX and COL1A1 in PEMF-treated cells was positively correlated to the treatment length. The release of anti-inflammatory cytokines in TCs treated with PEMF for 8 and 12 h was significantly higher in comparison with untreated cells, while the production of pro-inflammatory cytokines was not affected. A dramatically higher increase of VEGF-A mRNA transcription and of its related protein was observed after PEMF exposure. Our data demonstrated that PEMF positively influence, in a dose-dependent manner, the proliferation, tendon-specific marker expression, and release of anti-inflammatory cytokines and angiogenic factor in a healthy human TCs culture model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fini, M., Giavaresi, G., Carpi, A., Nicolini, A., Setti, S., & Giardino, R. (2005). Effects of pulsed electromagneticfields on articular hyaline cartilage: Review of experimental and clinical studies. Biomedicine & Pharmacotherapy, 59, 388–394.

    Article  CAS  Google Scholar 

  2. Massari, L., Benazzo, F., De Mattei, M., Setti, S., Fini, M., CRES Study Group (2007) Effects of electrical physical stimuli on articular cartilage. The Journal of Bone and Joint Surgery. America Volume. 89(suppl 3), 152–161.

    Google Scholar 

  3. Ay, S., & Evcik, D. (2009). The effects of pulsed electromagnetic fields in the treatment of knee osteoarthritis: A randomized, placebo-controlled trial. Rheumatology International, 29, 663–666.

    Article  PubMed  Google Scholar 

  4. Aaron, R. K., Ciombor, D. M., Wang, S., & Simon, B. (2006). Clinical biophysics: The promotion of skeletal repair by physical forces. Annals of the New York Academy of Sciences, 1068, 513–531.

    Article  PubMed  CAS  Google Scholar 

  5. Vavken, P., Arrich, F., Schuhfried, O., & Dorotka, R. (2009). Effectiveness of pulsed electromagnetic field therapy in the management of osteoarthritis of the knee: A meta-analysis of randomized controlled trials. Journal of Rehabilitation Medicine, 41, 406–411.

    Article  PubMed  Google Scholar 

  6. Goldstein, C., Sprague, S., & Petrisor, B. A. (2010). Electrical stimulation for fracture healing: Current evidence. Journal of Orthopaedic Trauma, 24, S62–S65.

    Article  PubMed  Google Scholar 

  7. Marcheggiani Muccioli, GM., Grassi, A., Setti, S., Filardo, G., Zambelli, L., Bonanzinga, T., Rimondi, E., Busacca, M., Zaffagnini, S. (2012). Conservative treatment of spontaneous osteonecrosis of the knee in the early stage: Pulsed electromagnetic fields therapy. European Journal of Radiology. doi:10.1016/j.ejrad.2012.11.011.

  8. Griffin, XL., Costa, ML., Parsons, N., & Smith, N. (2011). Electromagnetic field stimulation for treating delayed union or non-union of long bone fractures in adults. Cochrane Database of Systematic Reviews, 13, CD008471.

  9. Markov, M. S. (2007). Expanding use of pulsed electromagnetic field therapies. Electromagnetic Biology and Medicine, 2007(26), 257–274.

    Article  Google Scholar 

  10. Aaron, R. K., Boyan, B. D., Ciombor, D. M., Schwartz, Z., & Simon, B. J. (2004). Stimulation of growth factor synthesis by electric and electromagnetic fields. Clinical Orthopaedics and Related Research, 419, 30–37.

    Article  PubMed  Google Scholar 

  11. Bachl, N., Ruoff, G., Wessner, B., & Tschan, H. (2008). Electromagnetic interventions in musculoskeletal disorders. Clinics in Sports Medicine, 27, 87–105.

    Article  PubMed  Google Scholar 

  12. Brighton, C. T., Wang, W., Seldes, R., Zhang, G., & Pollack, S. R. (2001). Signal transduction in electrically stimulated bone cells. Journal of Bone and Joint Surgery. American Volume, 83, 1514–1523.

    Google Scholar 

  13. Lohmann, C. H., Schwartz, Z., Liu, Y., Guerkov, H., Dean, D. D., Simon, B., et al. (2000). Pulsed electromagnetic field stimulation of MG63 osteoblast-like cells affects differentiation and local factor production. Journal of Orthopaedic Research, 18, 637–646.

    Article  PubMed  CAS  Google Scholar 

  14. Sollazzo, V., Massari, L., Caruso, A., De Mattei, M., & Pezzetti, F. (1996). Effect s of low frequency pulsed electromagnetic fields on human osteoblast-like cells in vitro. Electro- and Magnetobiology, 15, 75–83.

    Google Scholar 

  15. Fassina, A., Vasai, L., Benazzo, F., Benedetti, L., Calligaro, A., De Angelis, M. G., et al. (2006). Effects of electromagnetic stimulation on calcified matrix production by SAOS-2 cells over a polyurethane porous scaffold. Tissue Engineering, 12, 1985–1999.

    Article  PubMed  CAS  Google Scholar 

  16. Pezzetti, F., De Mattei, M., Caruso, A., Cadossi, R., Zucchini, P., Carinci, F., et al. (1999). Effects of pulsed electromagnetic fields on human chondrocytes: An in vitro study. Calcified Tissue International, 65, 396–401.

    Article  PubMed  CAS  Google Scholar 

  17. Ongaro, A., Pellati, A., Masieri, F. F., Caruso, A., Setti, S., Cadossi, R., et al. (2011). Chondroprotective effects of pulsed electromagnetic fields on human cartilage explants. Bioelectromagnetics, 32, 543–551.

    Article  PubMed  CAS  Google Scholar 

  18. Sakai, A., Suzuki, K., Nakamura, T., Norimura, T., & Tsuchiya, T. (1991). Effects of pulsing electromagnetic fields on cultured cartilage cells. International Orthopaedics, 15, 341–346.

    Article  PubMed  CAS  Google Scholar 

  19. De Mattei, M., Pasello, M., Pellati, A., Stabellini, G., Massari, L., Gemmati, D., et al. (2003). Effects of electromagnetic fields on proteoglycan metabolism of bovine articular cartilage explants. Connective Tissue Research, 44, 154–159.

    PubMed  Google Scholar 

  20. Strauch, B., Patel, M. K., Rosen, D. J., Mahadevia, S., Brindzei, N., & Pilla, A. A. (2006). Pulsed magnetic field therapy increases tensile strength in a rat Achilles’ tendon repair model. The Journal of Hand Surgery, 31, 1131–1135.

    Article  PubMed  Google Scholar 

  21. Bi, Y., Ehirchiou, D., Kilts, T. M., Inkson, C. A., Embree, M. C., Sonoyama, W., et al. (2007). Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nature Medicine, 13, 1219–1227.

    Article  PubMed  CAS  Google Scholar 

  22. Rui, Y. F., Lui, P. P., Li, G., Fu, S. C., Lee, Y. W., & Chan, K. M. (2010). Isolation and characterization of multi-potent rat tendon-derived stem cells. Tissue Engineering Part A, 16, 1549–1558.

    Article  PubMed  CAS  Google Scholar 

  23. Denaro, V., Ruzzini, L., Barnaba, S. A., Longo, U. G., Campi, S., Maffulli, N., et al. (2011). Effect of pulsed electromagnetic fields on human tenocyte cultures from supraspinatus and quadriceps tendons. American Journal of Physical Medicine and Rehabilitation, 90, 119–127.

    Article  PubMed  Google Scholar 

  24. De Mattei, M., Fini, M., Setti, S., Ongaro, A., Gemmati, D., Stabellini, G., et al. (2007). Proteoglycan synthesis in bovine articular cartilage explants exposed to different low-frequency low-energy pulsed electromagnetic fields. 2007. Osteoarthritis Cartilage, 15(2), 163–168.

    Article  PubMed  Google Scholar 

  25. Chang, K., Chang, W. H., Tsai, M. T., & Shih, C. (2006). Pulsed electromagnetic fields accelerate apoptotic rate in osteoclasts. 2006. Connective Tissue Research, 47(4), 222–228.

    Article  PubMed  Google Scholar 

  26. Castro-Malaspina, H., Gay, R. E., Resnick, G., Kapoor, N., Meyers, P., Chiarieri, D., et al. (1980). Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny. Blood, 56, 289–301.

    PubMed  CAS  Google Scholar 

  27. Varani, K., De Mattei, M., Vincenzi, F., Gessi, S., Merighi, S., Pellati, A., et al. (2008). Characterization of adenosine receptors in bovine chondrocytes and fibroblast-like synoviocytes exposed to low frequency low energy pulsed electromagnetic fields. Osteoarthritis Cartilage, 16, 292–304.

    Article  PubMed  CAS  Google Scholar 

  28. Ongaro, A., Varani, K., Masieri, F. F., Pellati, A., Massari, L., Cadossi, R., et al. (2012). Electromagnetic fields (EMFs) and adenosine receptors modulate prostaglandin E(2) and cytokine release in human osteoarthritic synovial fibroblasts. Journal of Cellular Physiology, 227, 2461–2469.

    Article  PubMed  CAS  Google Scholar 

  29. Pigault, C., Follenius-Wund, A., Schmutz, M., Freyssinet, J. M., & Brisson, A. (1994). Formation of two-dimensional arrays of annexin V on phosphatidylserine-containing liposomes. Journal of Molecular Biology, 236(1), 199–208.

    Article  PubMed  CAS  Google Scholar 

  30. Kuypers, F. A., Lewis, R. A., Hua, M., Schott, M. A., Discher, D., Ernst, J. D., et al. (1996). Detection of altered membrane phospholipid asymmetry in subpopulations of human red blood cells using fluorescently labeled annexin V. Blood, 87(3), 1179–1187.

    PubMed  CAS  Google Scholar 

  31. Kingham, P. J., Kalbermatten, D. F., Mahay, D., Armstrong, S. J., Wiberg, M., & Terenghi, G. (2007). Adipose derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Experimental Neurology, 207, 267–274.

    Article  PubMed  CAS  Google Scholar 

  32. Owegi, R., & Johnson, M. T. (2006). Localized pulsed magnetic fields for tendonitis therapy. Biomedical Sciences Instrumentation, 42, 428–433.

    PubMed  Google Scholar 

  33. Lee, E. W., Maffulli, N., Li, C. K., & Chan, K. M. (1997). Pulsed magnetic and electromagnetic fields in experimental achilles tendonitis in the rat: A prospective randomized study. Archives of Physical Medicine and Rehabilitation, 78(4), 399–404.

    Article  PubMed  CAS  Google Scholar 

  34. Sollazzo, V., Palmieri, A., Pezzetti, F., Massari, L., & Carinci, F. (2010). Effects of pulsed electromagnetic fields on human osteoblast like cells (MG-63): A pilot study. Clinical Orthopaedics and Related Research, 468, 2260–2277.

    Article  PubMed  Google Scholar 

  35. De Mattei, M., Gagliano, N., Moscheni, C., Dellavia, C., Calastrini, C., Pellati, A., et al. (2005). Changes in polyamines, c-myc and c-fos gene expression in osteoblast-like cells exposed to pulsed electromagnetic fields. Bioelectromagnetics, 26, 207–214.

    Article  PubMed  Google Scholar 

  36. Zorzi, C., Dall’Oca, C., Cadossi, R., & Setti, S. (2007). Effects of pulsed electromagnetic fields on patients’ recovery after arthroscopic surgery: Prospective, randomized and double-blind study. Knee Surgery, Sports Traumatology, Arthroscopy, 15, 830–834.

    Article  PubMed  CAS  Google Scholar 

  37. Benazzo, F., Zanon, G., Pederzini, L., Modonesi, F., Cardile, C., Falez, F., et al. (2008). Effects of biophysical stimulation in patients undergoing arthroscopic reconstruction of anterior cruciate ligament: Prospective, randomized and double blind study. Knee Surgery, Sports Traumatology, Arthroscopy, 16(6), 595–601.

    Article  PubMed  Google Scholar 

  38. Arnoczky, S. P., Lavagnino, M., Egerbacher, M., Caballero, O., & Gardner, K. (2007). Matrix metalloproteinase inhibitors prevent a decrease in the mechanical properties of stress-deprived tendons: An in vitro experimental study. American Journal of Sports Medicine, 35, 763–769.

    Article  PubMed  Google Scholar 

  39. Egerbacher, M., Arnoczky, S. P., Caballero, O., Lavagnino, M., & Gardner, K. L. (2008). Loss of homeostatic tension induces apoptosis in tendon cells: An in vitro study. Clinical Orthopaedics and Related Research, 466, 1562–1568.

    Article  PubMed  Google Scholar 

  40. Eliasson, P., Andersson, T., & Aspenberg, P. (2009). Rat Achilles tendon healing: Mechanical loading and gene expression. Journal of Applied Physiology, 107, 399–407.

    Article  PubMed  Google Scholar 

  41. Riley, G. P., Curry, V., DeGroot, J., van El, B., Verzijl, N., Hazleman, B. L., et al. (2002). Matrix metalloproteinase activities and their relationship with collagen remodelling in tendon pathology. Matrix Biology, 21, 185–195.

    Article  PubMed  CAS  Google Scholar 

  42. Chang, C. H., Loo, S. T., Liu, H. L., Fang, H. W., & Lin, H. Y. (2010). Can low frequency electromagnetic field help cartilage tissue engineering? Journal of Biomedical Materials Research. Part A, 1(92), 843–851.

    Google Scholar 

  43. Schweitzer, R., Chyung, J. H., Murtaugh, L. C., Brent, A. E., Rosen, V., Olson, E. N., et al. (2001). Analysis of the tendon cell fate using scleraxis, a specific marker for tendons and ligaments. Development, 128, 3855–3866.

    PubMed  CAS  Google Scholar 

  44. Brent, A. E., Schweitzer, R., & Tabin, C. J. (2003). A somitic compartment of tendon progenitors. Cell, 18(113), 235–248.

    Article  Google Scholar 

  45. Brown, D., Wagner, D., Li, X., Richardson, J. A., & Olson, E. N. (1999). Dual role of the basic helix-loop-helix transcription factor scleraxis in mesoderm formation and chondrogenesis during mouse embryogenesis. Development, 126, 4317–4329.

    PubMed  CAS  Google Scholar 

  46. Léjard, V., Brideau, G., Blais, F., Salingcarnboriboon, R., Wagner, G., Roehrl, M. H., et al. (2007). Scleraxis and NFATc regulate the expression of the pro-alpha1(I) collagen gene in tendon fibroblasts. Journal of Biological Chemistry, 282, 17665–17675.

    Article  PubMed  Google Scholar 

  47. Sakabe, T., & Sakai, T. (2011). Musculoskeletal diseases: Tendon. British Medical Bulletin, 99, 211–225.

    Article  PubMed  Google Scholar 

  48. John, T., Lodka, D., Kohl, B., Ertel, W., Jammrath, J., Conrad, C., et al. (2010). Effect of pro-inflammatory and immunoregulatory cytokines on human tenocytes. Journal of Orthopaedic Research, 28, 1071–1077.

    PubMed  CAS  Google Scholar 

  49. Hosaka, Y., Sakamoto, Y., Kirisawa, R., Watanabe, T., Ueda, H., Takehana, K., et al. (2004). Distribution of TNF receptors and TNF receptor-associated intracellular signaling factors on equine tendinocytes in vitro. Japanese Journal of Veterinary Research, 52, 135–144.

    PubMed  Google Scholar 

  50. Lin, T. W., Cardenas, L., Glaser, D. L., & Soslowsky, L. J. (2006). Tendon healing in interleukin-4 and interleukin-6 knockout mice. Journal of Biomechanics, 39, 61–69.

    Article  PubMed  Google Scholar 

  51. Schulze-Tanzil, G., Zreiqat, H., Sabat, R., Kohl, B., Halder, A., Müller, R. D., et al. (2009). Interleukin-10 and articular cartilage: experimental therapeutical approaches in cartilage disorders. Current Gene Therapy, 9, 306–315.

    Article  PubMed  CAS  Google Scholar 

  52. Ricchetti, E. T., Reddy, S. C., Ansorge, H. L., Zgonis, M. H., Van Kleunen, J. P., Liechty, K. W., et al. (2008). Effect of interleukin-10 overexpression on the properties of healing tendon in a murine patellar tendon model. The Journal of Hand Surgery, 33, 1843–1852.

    Article  PubMed  Google Scholar 

  53. Wojciak, B., & Crossan, J. F. (1993). The accumulation of inflammatory cells in synovial sheath and epitenon during adhesion formation in healing rat flexor tendons. Clinical and Experimental Immunology, 93, 108–114.

    Article  PubMed  CAS  Google Scholar 

  54. Li, J. K., Lin, J. C., Liu, H. C., & Chang, W. H. (2007). Cytokine release from osteoblasts in response to different intensities of pulsed electromagnetic field stimulation. Electromagnetic Biology and Medicine, 26, 153–165.

    Article  PubMed  CAS  Google Scholar 

  55. Ongaro, A., Varani, K., Masieri, F. F., Pellati, A., Massari, L., Cadossi, R., et al. (2012). Electromagnetic fields (EMFs) and adenosine receptors modulate prostaglandin E(2) and cytokine release in human osteoarthritic synovial fibroblasts. Journal of Cellular Physiology, 227(6), 2461–2469.

    Article  PubMed  CAS  Google Scholar 

  56. Goto, T., Fujioka, M., Ishida, M., Kuribayashi, M., Ueshima, K., & Kubo, T. (2010). Noninvasive up-regulation of angiopoietin-2 and fibroblast growth factor-2 in bone marrow by pulsed electromagnetic field therapy. Journal of Orthopaedic Science, 15, 661–665.

    Article  PubMed  CAS  Google Scholar 

  57. Molloy, T., Wang, Y., & Murrell, G. (2003). The roles of growth factors in tendon and ligament healing. Sports Medicine (Auckland, N. Z.), 33, 381–394.

    Article  Google Scholar 

  58. Chen, C. H., Cao, Y., Wu, Y. F., Bais, A. J., Gao, J. S., & Tang, J. B. (2008). Tendon healing in vivo: gene expression and production of multiple growth factors in early tendon healing period. The Journal of Hand Surgery, 33, 1834–1842.

    Article  PubMed  Google Scholar 

  59. Pufe, T., Petersen, W. J., Mentlein, R., & Tillmann, B. N. (2005). The role of vasculature and angiogenesis for the pathogenesis of degenerative tendons disease. Scandinavian Journal of Medicine and Science in Sports, 15, 211–222.

    Article  PubMed  CAS  Google Scholar 

  60. Schulze-Tanzil, G., Al-Sadi, O., Wiegand, E., Ertel, W., Busch, C., Kohl, B., et al. (2011). The role of pro-inflammatory and immunoregulatory cytokines in tendon healing and rupture: New insights. Scandinavian Journal of Medicine and Science in Sports, 21, 337–351.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The Authors thank Dr. Arianna Lovati, Dr. Pietro Romeo, Mrs. Jocelyn Serfontein and Dr. Gabriele Thiebat for their precious help in this study. The study has been partially supported by IGEA SpA, Clinical Biophysics, Carpi (Italy) and by the Italian Ministry of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. de Girolamo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Girolamo, L., Stanco, D., Galliera, E. et al. Low Frequency Pulsed Electromagnetic Field Affects Proliferation, Tissue-Specific Gene Expression, and Cytokines Release of Human Tendon Cells. Cell Biochem Biophys 66, 697–708 (2013). https://doi.org/10.1007/s12013-013-9514-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9514-y

Keywords

Navigation