Skip to main content
Log in

Effects of pulsing electromagnetic fields on cultured cartilage cells

  • Published:
International Orthopaedics Aims and scope Submit manuscript

Summary

In order to evaluate the effects of pulsing electromagnetic fields (PEMFs) on cell proliferation and glycosaminoglycan (GAG) synthesis and to study the action site of PEMF stimulation in the cells, we performed a series of experiments on rabbit costal growth cartilage cells and human articular cartilage cells in culture. A PEMF stimulator was made using a Helmholz coil. Repetitive pulse burst electric currents with a burst width of 76 ms, a pulse width of 230 μs and 6.4 Hz were passed through this coil. The magnetic field strength reached 0.4 mT (tesla) on the average. The syntheses of DNA and GAG were measured by 3H-thymidine and 35S-sulfuric acid incorporations. The effects on the cells treated with lidocaine, adriamycin and irradiation were also measured using a colony forming assay. The PEMF stimulation for the duration of 5 days promoted both cell proliferation and GAG synthesis in growth cartilage cells and intermittent stimulation on and off alternatively every 12 h increased them most significantly, while, in articular cartilage cells, the stimulation promoted cell proliferation, but did not enhance GAG synthesis. PEMF stimulation promoted cells treated with lidocaine more significantly than with other agents. These results present evidence that intermittent PEMF stimulation is more effective on both cell proliferation and GAG synthesis of cartilage cells than continuous stimulation, and that the stimulation could exert effects not by nucleus directly, but by the cellular membrane-dependent mechanism. This study provides further basic data to encourage the clinical application of PEMF stimulation on bone and cartilage disorders.

Résumé

Afin d'évaluer les effets de champs électromagnétiques vibratoires (CEMV) sur la prolifération cellulaire et la synthèse du glycosaminoglycan (GAG) et d'étudier le milieu d'action de la stimulation par CEMV dans les cellules, nous avons effectué une série d'expériences sur des cellules de cartilage de croissance de la côte du lapin et sur des cellules de cartilage articulaire humain en culture. Un stimulateur CEMV a été fabriqué en employant une bobine de Helmholz. Des courants électriques en salves pulsées répétitives, avec une largeur de salve de 76 ms, une largeur de pulsion de 230 μs et 6.4 Hz étaient envoyés à travers cette bobine. La force du champ électromagnétique atteignait 0.4 mT (tesla) en moyenne. Les synthèses de DNA et de GAG étaient mesurées par incorporation de thymidine H3 et d'acide sulfurique S35. Les effets sur les cellules traitées par la lidocaine, l'adriamycine et l'irradiation étaient aussi mesurés par un essai formant colonie. La stimulation CEMV d'une durée de 5 jours a favorisé et la prolifération cellulaire et la synthèse du GAG dans les cellules de cartilage de croissance. La stimulation intermittente (fonctionnant on non toutes les 12 heures) les a augmentées de façon encore plus significative. D'autre part, dans les cellules de cartilage articulaire, la stimulation a accéléré la prolifération des cellules; cependant, elle n'a pas augmenté la synthèse du GAG. La stimulation CEMV a favorisé les cellules traitées par la lidocaine de façon plus significative que celles traitées par d'autres agents. Ces résultats montrent de façon évidente que la stimulation intermittente CEMV est plus efficace, aussi bien pour la prolifération cellulaire que pour la synthèse de GAG de cellules de cartilage, que la stimulation continue; et que la stimulation pourrait exercer des effets non pas directement par le noyau, mais par le mécanisme dépendant de la membrane cellulaire. Cette étude apporte une nouvelle donnée de base pour encourager les applications cliniques de CEMV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bassett CAL, Becker RO (1962) Generation of electrical potentials by bone in response to mechanical stress. Science 137: 1063–1064

    CAS  PubMed  Google Scholar 

  2. Bassett CAL, Caulo N, Kort J (1981) Congenital “pseud-arthroses” of the tibia: Treatment with pulsing electromagnetic fields. Clin Orthop 154: 136–149

    Google Scholar 

  3. Bassett CAL, Mitchell SN, Gaston SR (1981) Treatment of ununited tibial diaphyseal fractures with pulsing electromagnetic fields. J Bone Joint Surg [Am] 63: 511–523

    Google Scholar 

  4. Bassett CAL (1982) Pulsing electromagnetic fields: a new method to modify cell behavior in calcified and noncalcified tissues. Calcif Tissue Int 34: 1–8

    Google Scholar 

  5. Bassett CAL, Valdes MG, Hernandez E (1982) Modification of fracture repair with selected pulsing electromagnetic fields. J Bone Joint Surg [Am] 64: 888–895

    Google Scholar 

  6. Bassett CAL (1983) Biomedical implication of pulsing electromagnetic fields. Surg Rounds: 20–29

  7. Bresler VM, Bresler SE, Nikiforov AA (1975) Structure and active transport in the plasma membrane of the tubules of frog kidney. Biochim Biophys Acta 406: 526–537

    Google Scholar 

  8. Brighton CT, McCluskey WP (1986) Cellular response and mechanisms of action of electrically induced osteogenesis. In Peck WA (ed) Bone and mineral research, vol 4. Elsevier, Amsterdam

    Google Scholar 

  9. Collis CS, Segal MB (1988) Effects of pulsed electromagnetic fields on Na+ fluxes across stripped rabbit colon epithelium. J Appl Physiol 65: 124–130

    Google Scholar 

  10. Dietrich JW, Mundy GR, Raisz LG (1979) Inhibition of bone resorption in tissue culture by membrane-stabilizing drugs. Endocrinology 104: 1644–1648

    Google Scholar 

  11. Endo N (1987) The effect of pulsing electromagnetic fields on differentiation and proliferation of rabbit costal chondrocytes in culture. J Niigata Med Soc 101: 367–381

    Google Scholar 

  12. Farndale RW, Maroudas A, Marsland TP (1987) Effects of low-amplitude pulsed magnetic fields on cellular ion transport. Bioelectromagnetics 8: 119–134

    Google Scholar 

  13. Fink BR, Kenny GE, Simpson WE (1969) Depression of oxygen uptake in cell culture by volatile, barbiturate and local anesthetics. Anesthesiology 30: 150–155

    Google Scholar 

  14. Gorczyńska E, Wegrzynowicz R (1986) Effect of chronic exposure to static magnetic field upon the K+, Na+ and chlorides concentrations in the serum of guinea pigs. J Hyg Epidemiol Microbiol Immunol 30: 121–126

    Google Scholar 

  15. Ketenjian AY, Arsenis C (1975) Morphological and biochemical studies during differentiation and calcification of fracture callus cartilage. Clin Orthop 107: 266–273

    Google Scholar 

  16. Kim SH, Kim JH (1972) Lethal effect of adriamycin on the division cycle of HeLa cells. Cancer Res 32: 323–325

    Google Scholar 

  17. Krempen JF, Silver RA (1981) External electromagnetic fields in the treatment of nonunion of bones. Orthopaedic Rev 10: 33–39

    Google Scholar 

  18. Luben RA, Cain CD, Chen MC, Rosen DM, Adey WR (1982) Effects of electromagnetic stimuli on bone and bone cells in vitro: inhibition of responses to parathyroid hormone by low-energy low-frequency fields. Proc Natl Acad Sci USA 79: 4180–4184

    Google Scholar 

  19. Norton LA, Rodan GA, Bourret LA (1977) Epiphyseal Cartilage cAMP changes produced by electrical and mechanical perturbations. Clin Orthop 124: 59–68

    Google Scholar 

  20. Pollack SR (1984) Bioelectrical properties of bone: endogenous electrical signals. Orthop Clin North Am 15: 3–14

    Google Scholar 

  21. Rodan GA, Bourret LA, Harvey A, Mensi T (1975) Cyclic AMP and cyclic GMP: Mediators of the mechanical effects on bone remodeling. Science 189: 467–469

    Google Scholar 

  22. Rodan GA, Bourret LA, Norton LA (1978) DNA synthesis in cartilage cells is stimulated by oscillating electric fields. Science 199: 690–692

    Google Scholar 

  23. Saarni H, Tammi M (1977) A rapid method for separation and assay of radiolabeled mucopolysaccharides from cell culture medium. Anal Biochem 81: 40–46

    Google Scholar 

  24. Sharrard WJW, Sutcliffe ML, Robson MJ, Maceachern AG (1982) The treatment of fibrous non-union of fractures by pulsing electromagnetic stimulation. J Bone Joint Surg [Br] 64: 189–193

    Google Scholar 

  25. Shimomura Y, Suzuki F (1984) Cultured growth cartilage cells. Clin Orthop 184: 93–105

    Google Scholar 

  26. Sturrock JE, Nunn JF (1979) Cytotoxic effects of procaine, lignocaine and bupivacaine. Br J Anaesth 51: 273–281

    Google Scholar 

  27. Sutcliffe ML, Goldberg AAJ (1982) The treatment of congenital pseudarthrosis of the tibia with pulsing electromagnetic fields. Clin Orthop 166: 45–57

    Google Scholar 

  28. Suzuki F, Takase T, Takigawa M, Uchida A, Shimomura Y (1981) Simulation of the initial stage of endochondral ossification: in vitro sequential culture of growth cartilage cells and bone marrow cells. Proc Natl Acad Sci USA 78: 2368–2372

    Google Scholar 

  29. Yasuda I (1953) Fundamental aspects of fracture treatment. J Kyoto Med Soc 4: 395–406

    Google Scholar 

  30. Yasuda I, Noguchi K, Sata T (1954) Mechanical callus and electrical callus. J Jpn Orthop Assoc 28: 267–268

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Reprint requests to: A. Sakai

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakai, A., Suzuki, K., Nakamura, T. et al. Effects of pulsing electromagnetic fields on cultured cartilage cells. International Orthopaedics 15, 341–346 (1991). https://doi.org/10.1007/BF00186874

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00186874

Keywords

Navigation