Skip to main content
Log in

Key Residues at the Riboflavin Kinase Catalytic Site of the Bifunctional Riboflavin Kinase/FMN Adenylyltransferase From Corynebacterium ammoniagenes

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Many known prokaryotic organisms depend on a single bifunctional enzyme, encoded by the RibC of RibF gene and named FAD synthetase (FADS), to convert Riboflavin (RF), first into FMN and then into FAD. The reaction occurs through the sequential action of two activities present on a single polypeptide chain where the N-terminus is responsible for the ATP:FMN adenylyltransferase (FMNAT) activity and the C-terminus for the ATP: riboflavin kinase (RFK) activity. Sequence and structural analysis suggest that T208, N210 and E268 at the C-terminus RFK module of Corynebacterium ammoniagenes FADS (CaFADS) might be key during RF phosphorylation. The effect of site-directed mutagenesis on the RFK activity, as well as on substrates and products binding, indicates that T208 and N210 provide the RFK active-site geometry for binding and catalysis, while E268 might be involved in the catalytic step as catalytic base. These data additionally suggest concerted conformational changes at the RFK module of CaFADS during its activity. Mutations at the RFK site also modulate the binding parameters at the FMNAT active site of CaFADS, altering the catalytic efficiency in the transformation of FMN into FAD. This observation supports the hypothesis that the hexameric assembly previously revealed by the crystal structure of CaFADS might play a functional role during catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

FADS:

FAD synthetase

RF:

Riboflavin

FMN:

Flavin mononucleotide

FAD:

Flavin adenine dinucleotide

ATP:

Adenosine 5′-triphosphate

RFK:

ATP:riboflavin kinase

FMNAT:

ATP:FMN adenylyltransferase

PIPES:

1,4-Piperazine diethane sulphonic acid

ITC:

Isothermal titration calorimetry

HPLC:

High-performance liquid chromatography

UV:

Ultra-violet

CD:

Circular dichroism

WT:

Wild-type

K FAD, K FMN :

FAD and FMN fluorescence constants

References

  1. Manstein, D. J., & Pai, E. F. (1986). Purification and characterization of FAD synthetase from Brevibacterium ammoniagenes. Journal of Biological Chemistry, 261, 16169–16173.

    PubMed  CAS  Google Scholar 

  2. Mack, M., van Loon, A. P., & Hohmann, H. P. (1998). Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of the flavokinase/flavin adenine dinucleotide synthetase encoded by ribC. Journal of Bacteriology, 180, 950–955.

    PubMed  CAS  Google Scholar 

  3. McCormick, D. B. (1989). Two interconnected B vitamins: riboflavin and pyridoxine. Physiological Reviews, 69, 1170–1198.

    PubMed  CAS  Google Scholar 

  4. Powers, H. J. (2003). Riboflavin (vitamin B2) and health. American Journal of Clinical Nutrition, 77, 1352–1360.

    PubMed  CAS  Google Scholar 

  5. Bacher, A. (1991). Biosynthesis of flavins. In F. Müller (Ed.), Chemistry and biochemistry of flavoproteins (pp. 215–259). Boca Raton, FL: CRC Press.

    Google Scholar 

  6. Bacher, A. (1991). Riboflavin kinase and FAD synthetase. In F. Müller (Ed.), Chemistry and biochemistry of flavoproteins (pp. 349–370). Boca Raton, FL: CRC Press.

    Google Scholar 

  7. Eisenreich, W., Schwarzkopf, B., & Bacher, A. (1991). Biosynthesis of nucleotides, flavins, and deazaflavins in Methanobacterium thermoautotrophicum. Journal of Biological Chemistry, 266, 9622–9631.

    PubMed  CAS  Google Scholar 

  8. Volk, R., & Bacher, A. (1991). Biosynthesis of riboflavin. Studies on the mechanism of l-3,4-dihydroxy-2-butanone 4-phosphate synthase. Journal of Biological Chemistry, 266, 20610–20618.

    PubMed  CAS  Google Scholar 

  9. Efimov, I., Kuusk, V., Zhang, X., & McIntire, W. S. (1998). Proposed steady-state kinetic mechanism for Corynebacterium ammoniagenes FAD synthetase produced by Escherichia coli. Biochemistry, 37, 9716–9723.

    Article  PubMed  CAS  Google Scholar 

  10. Barile, M., Brizio, C., Valenti, D., De Virgilio, C., & Passarella, S. (2000). The riboflavin/FAD cycle in rat liver mitochondria. European Journal of Biochemistry, 267, 4888–4900.

    Article  PubMed  CAS  Google Scholar 

  11. Giancaspero, T. A., Locato, V., de Pinto, M. C., De Gara, L., & Barile, M. (2009). The occurrence of riboflavin kinase and FAD synthetase ensures FAD synthesis in tobacco mitochondria and maintenance of cellular redox status. FEBS Journal, 276, 219–231.

    Article  PubMed  CAS  Google Scholar 

  12. Sandoval, F. J., Zhang, Y., & Roje, S. (2008). Flavin nucleotide metabolism in plants: monofunctional enzymes synthesize FAD in plastids. Journal of Biological Chemistry, 283, 30890–30900.

    Article  PubMed  CAS  Google Scholar 

  13. Pallotta, M. L., Brizio, C., Fratianni, A., De Virgilio, C., Barile, M., & Passarella, S. (1998). Saccharomyces cerevisiae mitochondria can synthesise FMN and FAD from externally added riboflavin and export them to the extramitochondrial phase. FEBS Letters, 428, 245–249.

    Article  PubMed  CAS  Google Scholar 

  14. Mashhadi, Z., Xu, H., Grochowski, L. L., & White, R. H. (2010). Archaeal ribL: a new FAD synthetase that is air sensitive. Biochemistry, 49, 8748–8755.

    Article  PubMed  CAS  Google Scholar 

  15. Mashhadi, Z., Zhang, H., Xu, H., & White, R. H. (2008). Identification and characterization of an archaeon-specific riboflavin kinase. Journal of Bacteriology, 190, 2615–2618.

    Article  PubMed  CAS  Google Scholar 

  16. Yruela, I., Arilla-Luna, S., Medina, M., & Contreras-Moreira, B. (2010). Evolutionary divergence of chloroplasts FAD synthetase proteins. BMC Evolutionary Biology, 10, 311.

    Article  PubMed  Google Scholar 

  17. Torchetti, E. M., Bonomi, F., Galluccio, M., Gianazza, E., Giancaspero, T. A., Lametti, S., et al. (2011). Human FAD synthase (isoform 2): a component of the machinery that delivers FAD to apo-flavoproteins. FEBS Journal, 278, 4434–4449.

    Article  PubMed  Google Scholar 

  18. Torchetti, E. M., Brizio, C., Colella, M., Galluccio, M., Giancaspero, T. A., Indiveri, C., et al. (2010). Mitochondrial localization of human FAD synthetase isoform 1. Mitochondrion, 10, 263–273.

    Article  PubMed  CAS  Google Scholar 

  19. Wu, M., Repetto, B., Glerum, D. M., & Tzagoloff, A. (1995). Cloning and characterization of FAD1, the structural gene for flavin adenine dinucleotide synthetase of Saccharomyces cerevisiae. Molecular and Cellular Biology, 15, 264–271.

    PubMed  CAS  Google Scholar 

  20. Santos, M. A., Jimenez, A., & Revuelta, J. L. (2000). Molecular characterization of FMN1, the structural gene for the monofunctional flavokinase of Saccharomyces cerevisiae. Journal of Biological Chemistry, 275, 28618–28624.

    Article  PubMed  CAS  Google Scholar 

  21. Herguedas, B., Martínez-Júlvez, M., Frago, S., Medina, M., & Hermoso, J. A. (2010). Oligomeric state in the crystal structure of modular FAD synthetase provides insights in its sequential catalysis in prokaryotes. Journal of Molecular Biology, 400, 218–230.

    Article  PubMed  CAS  Google Scholar 

  22. Frago, S., Velázquez-Campoy, A., & Medina, M. (2009). The puzzle of ligand binding to Corynebacterium ammoniagenes FAD synthetase. Journal of Biological Chemistry, 284, 6610–6619.

    Article  PubMed  CAS  Google Scholar 

  23. Frago, S., Martínez-Júlvez, M., Serrano, A., & Medina, M. (2008). Structural analysis of FAD synthetase from Corynebacterium ammoniagenes. BMC Microbiology, 8, 160.

    Article  PubMed  Google Scholar 

  24. Krupa, A., Sandhya, K., Srinivasan, N., & Jonnalagadda, S. (2003). A conserved domain in prokaryotic bifunctional FAD synthetases can potentially catalyze nucleotide transfer. Trends in Biochemical Sciences, 28, 9–12.

    Article  PubMed  CAS  Google Scholar 

  25. Huerta, C., Borek, D., Machius, M., Grishin, N. V., & Zhang, H. (2009). Structure and mechanism of a eukaryotic FMN adenylyltransferase. Journal of Molecular Biology, 389, 388–400.

    Article  PubMed  CAS  Google Scholar 

  26. Wang, W., Kim, R., Yokota, H., & Kim, S. H. (2005). Crystal structure of flavin binding to FAD synthetase of Thermotoga maritima. Proteins, 58, 246–248.

    Article  PubMed  CAS  Google Scholar 

  27. Leulliot, N., Blondeau, K., Keller, J., Ulryck, N., Quevillon-Cheruel, S., & van Tilbeurgh, H. (2010). Crystal structure of yeast FAD synthetase (Fad1) in complex with FAD. Journal of Molecular Biology, 398, 641–646.

    Article  PubMed  CAS  Google Scholar 

  28. Karthikeyan, S., Zhou, Q., Osterman, A. L., & Zhang, H. (2003). Ligand binding-induced conformational changes in riboflavin kinase: structural basis for the ordered mechanism. Biochemistry, 42, 12532–12538.

    Article  PubMed  CAS  Google Scholar 

  29. Bauer, S., Kemter, K., Bacher, A., Huber, R., Fischer, M., & Steinbacher, S. (2003). Crystal structure of Schizosaccharomyces pombe riboflavin kinase reveals a novel ATP and riboflavin-binding fold. Journal of Molecular Biology, 326, 1463–1473.

    Article  PubMed  CAS  Google Scholar 

  30. Herguedas, B., Martínez-Júlvez, M., Frago, S., Medina, M., & Hermoso, J. A. (2009). Crystallization and preliminary X-ray diffraction studies of FAD synthetase from Corynebacterium ammoniagenes. Acta Crystallographica, Section F: Structural Biology and Crystallization Communications, 65, 1285–1288.

    Article  Google Scholar 

  31. Karthikeyan, S., Zhou, Q., Mseeh, F., Grishin, N. V., Osterman, A. L., & Zhang, H. (2003). Crystal structure of human riboflavin kinase reveals a beta barrel fold and a novel active site arch. Structure, 11, 265–273.

    Article  PubMed  CAS  Google Scholar 

  32. Cheek, S., Ginalski, K., Zhang, H., & Grishin, N. V. (2005). A comprehensive update of the sequence and structure classification of kinases. BMC Structural Biology, 5, 6.

    Article  PubMed  Google Scholar 

  33. Leskovac, V. (2003). Comprehensive enzyme kinetics. New York: Kluwer Adacemic/Plenum Publishers.

    Google Scholar 

  34. Kabsch, W. (2010). XDS. Acta Crystallographica. Section D, Biological Crystallography, 66, 125–132.

    Article  PubMed  Google Scholar 

  35. CCP4: Collaborative Computational Project, N. (1994). The CCP4 suite: programs for protein crystallography. Acta Crystallographica. Section D, Biological Crystallography, 50, 760–763.

    Article  Google Scholar 

  36. Vagin, A. A., & Teplyakov, A. (1997). MOLREP: an automated program for molecular replacement. Journal of Applied Crystallography, 30, 1022–1025.

    Article  CAS  Google Scholar 

  37. Murshudov, G. N., Vagin, A. A., & Dodson, E. J. (1997). Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallographica. Section D, Biological Crystallography, 53, 240–255.

    Article  PubMed  CAS  Google Scholar 

  38. Emsley, P., & Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallographica. Section D, Biological Crystallography, 60, 2126–2132.

    Article  PubMed  Google Scholar 

  39. Chen, V. B., Arendall, W. B., I. I. I., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., et al. (2010). MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallographica. Section D, Biological Crystallography, 66, 12–21.

    Article  PubMed  Google Scholar 

  40. Hagihara, T., Fujio, T., & Aisaka, K. (1995). Cloning of FAD synthetase gene from Corynebacterium ammoniagenes and its application to FAD and FMN production. Applied Microbiology and Biotechnology, 42, 724–729.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Spanish Ministry of Science and Innovation [BIO2010-14983 to M.M.].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milagros Medina.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

12013_2012_9403_MOESM1_ESM.pdf

Additional information includes; oligonucleotides for site-directed mutagenesis and methods for determination of kinetic and binding parameters; Table SD.1 with crystallographic data, Tables SD.2, SD.3 and SD.4 with thermodynamic parameters; Fig. SD.1 with scheme of the RFK and FMNAT activities of CaFADS; Fig. SD.2 with overall folding, topology and logo of sequence at the RFK consensus sequences; Fig. SD.3 with difference spectra; Fig. SD.4 with structural comparison of RFK modules; Fig. SD.5 with the trimeric structure of CaFADS. This material is available free of charge via the Internet at (pdf 686 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serrano, A., Frago, S., Herguedas, B. et al. Key Residues at the Riboflavin Kinase Catalytic Site of the Bifunctional Riboflavin Kinase/FMN Adenylyltransferase From Corynebacterium ammoniagenes . Cell Biochem Biophys 65, 57–68 (2013). https://doi.org/10.1007/s12013-012-9403-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-012-9403-9

Keywords

Navigation